Aromatic Characterization of Graševina Wines from Slavonia and Podunavlje Sub-Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Commercial Samples
2.3. Determination of Volatile Compounds
2.4. Multivariate Data Analysis and Data Visualization
3. Results and Discussion
3.1. Comparison of Aroma Compounds between Graševina Wines and Other Wines from the Same Producers
3.2. Identifying Patterns in the Whole Dataset Using Heatmaps and Hierarchical Clustering
3.3. Relationships between the Groups of VOCs and Samples Using PCA and PLS-DA
3.4. Multivariate Data Analysis Based on 22 VOCs
3.5. Relationships between the Groups of VOCs and Samples Using PCA and PLS-DA
3.6. Potential Markers of Graševina Wines’ Regionality
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Correlation Matrix and (Pearson) Correlation Coefficients
Appendix B. PCA Results
F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | |
---|---|---|---|---|---|---|---|---|---|---|
Eigenvalue | 15.215 | 8.693 | 5.653 | 4.238 | 3.587 | 2.536 | 2.410 | 2.043 | 1.741 | 1.668 |
Variability (%) | 26.694 | 15.252 | 9.917 | 7.434 | 6.293 | 4.449 | 4.227 | 3.584 | 3.055 | 2.927 |
Cumulative % | 26.694 | 41.945 | 51.862 | 59.297 | 65.590 | 70.039 | 74.266 | 77.850 | 80.905 | 83.832 |
VOC | α-Terpinen | 1,4-Cineol | (+)-Limonene | γ-Terpinene | Z-3-Hexenyl Acetate | α-Terpinolene | E-Nerolidol |
---|---|---|---|---|---|---|---|
F1 | 2.713 | 0.297 | 2.419 | 2.239 | 3.287 | 2.940 | 3.345 |
F2 | 4.264 * | 5.494 * | 4.803 | 4.018 * | 1.937 | 4.450 * | 0.021 |
VOC | cis-Geraniol | Vitispirane 2 | Linalool | TDN | trans-Linalool oxide | Ethyl dodecanoate | trans-β-Damascenone |
F1 | 2.574 | 0.802 | 3.188 | 0.415 | 0.494 | 3.215 * | 3.701 * |
F2 | 0.463 | 5.164 * | 0.311 | 6.407 * | 6.184 * | 0.396 | 0.999 |
VOC | Hexyl acetate | Ethyl octanoate | p-Cymene | Ethyl leucate | Ethyl phenylacetate | Propyl acetate | Isoamyl acetate |
F1 | 4.315 * | 3.706 * | 1.996 | 3.112 | 3.815 * | 4.015 * | 3.854 |
F2 | 2.068 | 0.311 | 6.172 * | 0.029 | 0.255 | 1.301 | 2.819 |
VOC | Octyl acetate | Ethyl isovalerate | Citronellol | Ethyl isobutyrate | trans-Linalool oxide | Ethyl hexanoate | |
F1 | 3.119 | 3.193 * | 4.132 * | 4.211 * | 2.940 | 2.604 | |
F2 | 0.511 | 0.021 | 0.082 | 0.369 | 4.450 * | 0.726 |
Appendix C. PLS-DA Loadings for 57 VOCs and 22 VOCs
Appendix D. Boxplots and Scattergram
References
- Andabaka, Ž.; Filaković, K.; Preiner, D.; Stupić, D.; Marković, Z.; Maletić, E.; Šikuten, I.; Karoglav Kontić, J.; Štambuk, P.; Tomaz, I. Ampelographic evaluation of clone candidates of grapevine variety Graševina bijela (Vitis vinifera L.) in the vineyards of Zagreb. Glas. Zašt. Bilja 2021, 44, 34–38. [Google Scholar] [CrossRef]
- Raimondi, S.; Tumino, G.; Ruffa, P.; Boccacci, P.; Gambino, G.; Schneider, A. DNA-Based Genealogy Reconstruction of Nebbiolo, Barbera and Other Ancient Grapevine Cultivars from Northwestern Italy. Sci. Rep. 2020, 10, 15782. [Google Scholar] [CrossRef] [PubMed]
- Flak, W.; Tscheik, G.; Krizan, R.; Wallner, E. Die Charakterisierung von Weinen der Sorte “Welschriesling” aus dem Gebiet Burgenland-Leithagebirge. Mitteilungen Klosterneubg. 2003, 53, 223–234. [Google Scholar]
- Flak, W.; Tscheik, G.; Krizan, R.; Wallner, E. Die Auswirkungen einer koordinierten Wein- bereitung auf die QualitaÈ t von Weinen der Sorte “Welschriesling” mit der Herkunftsbezeichnung 1Burgenland-Leithagebirgea. Mitteilungen Klosterneubg. 2006, 56, 14–21. [Google Scholar]
- Suklje, K.; Čuš, F. Modulation of Welschriesling Wine Volatiles through the Selection of Yeast and Lactic Acid Bacteria. OENO One 2021, 55, 245–260. [Google Scholar] [CrossRef]
- Tomašević, M.; Lukić, K.; Ćurko, N.; Jagatić Korenika, A.-M.; Preiner, D.; Tuščić, V.; Jeromel, A.; Kovačević Ganić, K. The Influence of Grape Clone and Yeast Strain on Varietal Thiol Concentrations and Sensory Properties of Graševina Wines. Foods 2023, 12, 985. [Google Scholar] [CrossRef] [PubMed]
- Šikuten, I.; Jeromel, A.; Budžaki, A.; Tomaz, I.; Jagatić Korenika, A.-M. Aromatski profil vina priznatih klonova sorte ‘Graševina’. Glas. Zašt. Bilja 2023, 46, 92–98. [Google Scholar] [CrossRef]
- Česnik, U.; Martelanc, M.; Øvsthus, I.; Radovanović Vukajlović, T.; Hosseini, A.; Mozetič Vodopivec, B.; Butinar, L. Functional Characterization of Saccharomyces Yeasts from Cider Produced in Hardanger. Fermentation 2023, 9, 824. [Google Scholar] [CrossRef]
- Antalick, G.; Perello, M.-C.; De Revel, G. Esters in Wines: New Insight through the Establishment of a Database of French Wines. Am. J. Enol. Vitic. 2014, 65, 293–304. [Google Scholar] [CrossRef]
- Antalick, G.; Tempère, S.; Šuklje, K.; Blackman, J.W.; Deloire, A.; de Revel, G.; Schmidtke, L.M. Investigation and Sensory Characterization of 1,4-Cineole: A Potential Aromatic Marker of Australian Cabernet Sauvignon Wine. J. Agric. Food Chem. 2015, 63, 9103–9111. [Google Scholar] [CrossRef] [PubMed]
- Tamura, H.; Boonbumrung, S.; Yoshizawa, T.; Varanyanond, W. The Volatile Constituents in the Peel and Pulp of a Green Thai Mango, Khieo Sawoei Cultivar (Mangifera indica L.). Food Sci. Technol. Res. 2001, 7, 72–77. [Google Scholar] [CrossRef]
- Chigo-Hernandez, M.M.; Tomasino, E. Aroma Perception of Limonene, Linalool and α-Terpineol Combinations in Pinot Gris Wine. Foods 2023, 12, 2389. [Google Scholar] [CrossRef] [PubMed]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology, Volume 2: The Chemistry of Wine—Stabilization and Treatments; John Wiley & Sons: Hoboken, NJ, USA, 2006; ISBN 978-0-470-01038-9. [Google Scholar]
- Makhotkina, O.; Kilmartin, P.A. Hydrolysis and Formation of Volatile Esters in New Zealand Sauvignon Blanc Wine. Food Chem. 2012, 135, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Šuklje, K.; Carlin, S.; Antalick, G.; Blackman, J.W.; Deloire, A.; Vrhovsek, U.; Schmidtke, L.M. Regional Discrimination of Australian Shiraz Wine Volatome by Two-Dimensional Gas Chromatography Coupled to Time-of-Flight Mass Spectrometry. J. Agric. Food Chem. 2019, 67, 10273–10284. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Blackman, J.W.; Schmidtke, L.M. Exploring the Regional Typicality of Australian Shiraz Wines Using Untargeted Metabolomics. Aust. J. Grape Wine Res. 2021, 27, 378–391. [Google Scholar] [CrossRef]
- Schartner, M.; Beck, J.M.; Laboyrie, J.; Riquier, L.; Marchand, S.; Pouget, A. Predicting Bordeaux Red Wine Origins and Vintages from Raw Gas Chromatograms. Commun. Chem. 2023, 6, 247. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, C.; Barbe, J.-C.; Darriet, P.; Geffroy, O.; Gomès, E.; Guillaumie, S.; Helwi, P.; Laboyrie, J.; Lytra, G.; Menn, N.L.; et al. Recent Advancements in Understanding the Terroir Effect on Aromas in Grapes and Wines. OENO One 2020, 54, 985–1006. [Google Scholar] [CrossRef]
- Slaghenaufi, D.; Ugliano, M. Norisoprenoids, Sesquiterpenes and Terpenoids Content of Valpolicella Wines During Aging: Investigating Aroma Potential in Relationship to Evolution of Tobacco and Balsamic Aroma in Aged Wine. Front. Chem. 2018, 6, 66. [Google Scholar] [CrossRef] [PubMed]
- The Good Scents Company. Flavor, Fragrance, Food and Cosmetics Ingredients Information. Available online: http://www.thegoodscentscompany.com/ (accessed on 28 January 2024).
Terpenes | Quantified Ion (m/z) | Calibration Curve (k 5) | Calibration Range (µg/L) | R2 | Repeatability 6 (%) | Recovery 7 (%) |
---|---|---|---|---|---|---|
3-carene 1 | 93 | 0.0347 | 0.01–2 | 0.997 | 6.1 | 79 |
α-terpinene 1 | 136 | 0.0198 | 0.01–2 | 0.9999 | 7.0 | 93 |
1,4-cineole 1 | 111 | 0.0155 | 0.01–2 | 0.9995 | 3.0 | 108 |
limonene 1 | 136 | 0.0164 | 0.01–2 | 0.9995 | 7.0 | 112 |
eucalyptol 1 | 108 | 0.0085 | 0.01–2 | 0.9997 | 3.0 | 97 |
δ-terpinene 1 | 136 | 0.0123 | 0.01–2 | 0.9992 | 7.3 | 92 |
p-cymene 1 | 119 | 0.0072 | 0.01–2 | 0.9997 | 8.2 | 95 |
α-terpinolene 1 | 136 | 0.00054 | 0.01–2 | 0.998 | 8.0 | 117 |
cis-rose oxide 1 | 139 | 0.0743 | 0.05–10 | 0.9997 | 7.1 | 90 |
trans-rose oxide 1 | 139 | 0.0463 | 0.05–10 | 0.9996 | 7.1 | 89 |
trans-linalool oxide 2 | 94 | 0.0016 | 0.5–100 | 0.9999 | 9.3 | 114 |
cis-linalool oxide 2 | 94 | 0.0012 | 0.5–100 | 0.9999 | 7.4 | 102 |
linalool 2 | 93 | 0.0134 | 0.5–100 | 0.9990 | 8.4 | 110 |
4-terpineol 2 | 111 | 0.0139 | 0.05–10 | 0.9999 | 4.5 | 90 |
α-terpineol 2 | 93 | 0.0081 | 0.5–100 | 0.9999 | 6.1 | 97 |
cis-geraniol (nerol) 4 | 93 | 0.0027 | 0.5–100 | 0.9998 | 5.1 | 102 |
trans geraniol 4 | 136 | 0.0014 | 0.5–100 | 0.998 | 7.6 | 104 |
trans-nerolidol 4 | 93 | 0.0289 | 0.05–10 | 0.998 | 8.7 | 87 |
E-nerolidol 4 | 93 | 0.0264 | 0.05–10 | 0.996 | 7.2 | 85 |
citronellol 4 | 93 | 0.0126 | 0.5–100 | 0.998 | 6.8 | 112 |
Norisoprenoids | ||||||
vitispirane 1 3 | 192 | 2.80 | 0.5–100 | 0.997 | 5.1 | 94 |
vitispirane 2 3 | 192 | 2.08 | 0.5–100 | 0.998 | 5.2 | 97 |
TDN | 157 | 4.79 | 0.05–10 | 0.998 | 4.8 | 102 |
trans-β-damascenone 3 | 190 | 0.226 | 0.05–10 | 0.9998 | 4.9 | 97 |
α-ionone 3 | 121 | 0.898 | 0.01–2 | 0.995 | 5.4 | 103 |
β -ionone 3 | 177 | 1.395 | 0.01–2 | 0.9998 | 6.1 | 89 |
Internal Standards | Stock Solution (g/L) | Stock Mix Solution (mg/L) | Sample Solution (µg/L) |
---|---|---|---|
For terpenes | |||
geraniol d6 | 0.1 | 10 | 33.3 |
linalool d5 | 0.1 | 10 | 33.3 |
2-octanol | 0.1 | 10 | 33.3 |
ethyl trans cinnamate d5 | 2.5 | 0.75 | 0.3 |
For norisoprenoids | |||
ethyl trans cinnamate d5 | 2.5 | 0.75 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martelanc, M.; Antalick, G.; Radovanović Vukajlović, T.; Mozetič Vodopivec, B.; Sternad Lemut, M.; Hosseini, A.; Obradović, V.; Mesić, J.; Butinar, L. Aromatic Characterization of Graševina Wines from Slavonia and Podunavlje Sub-Regions. Beverages 2024, 10, 24. https://doi.org/10.3390/beverages10020024
Martelanc M, Antalick G, Radovanović Vukajlović T, Mozetič Vodopivec B, Sternad Lemut M, Hosseini A, Obradović V, Mesić J, Butinar L. Aromatic Characterization of Graševina Wines from Slavonia and Podunavlje Sub-Regions. Beverages. 2024; 10(2):24. https://doi.org/10.3390/beverages10020024
Chicago/Turabian StyleMartelanc, Mitja, Guillaume Antalick, Tatjana Radovanović Vukajlović, Branka Mozetič Vodopivec, Melita Sternad Lemut, Ahmad Hosseini, Valentina Obradović, Josip Mesić, and Lorena Butinar. 2024. "Aromatic Characterization of Graševina Wines from Slavonia and Podunavlje Sub-Regions" Beverages 10, no. 2: 24. https://doi.org/10.3390/beverages10020024
APA StyleMartelanc, M., Antalick, G., Radovanović Vukajlović, T., Mozetič Vodopivec, B., Sternad Lemut, M., Hosseini, A., Obradović, V., Mesić, J., & Butinar, L. (2024). Aromatic Characterization of Graševina Wines from Slavonia and Podunavlje Sub-Regions. Beverages, 10(2), 24. https://doi.org/10.3390/beverages10020024