Large-Scale Expansion of Human Umbilical Cord-Derived Mesenchymal Stem Cells in a Stirred Suspension Bioreactor Enabled by Computational Fluid Dynamics Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture of Human Umbilical Cord-Derived MSCs
2.2. Spinner Flask and 1.5 L Computer-Controlled Bioreactor Setup for hUCMSCs Expansion
2.3. Growth Kinetics Evaluation
2.4. Substrate and Metabolic Intermediate Analysis
2.5. Assessment of the Characteristic Biomarkers of hUVMSCs via Flow Cytometry
2.6. CFD Modeling
2.7. Numerical Strategies
2.8. Suspension Determination
2.9. Statistical Analysis
3. Results and Discussions
3.1. Expanding hUCMSCs in a 200 mL Spinner Flask in Batch Culture
3.2. CFD Model for Scale-Up Criteria of hUCMSCs from 200 mL Spinner Flask to BioStar 1.5c
3.3. Scale-Up Expansion of hUCMSCs in BioStar 1.5c by Batch Culture
3.4. Scale-Up Expansion of hUCMSCs by Fed-Batch Culture
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, D.-C.; Chang, Y.-H.; Shyu, W.-C.; Lin, S.-Z. Human Umbilical Cord Mesenchymal Stem Cells: A New Era for Stem Cell Therapy. Cell Transplant. 2015, 3, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Dabrowska, S.; Andrzejewska, A.; Janowski, M.; Lukomska, B. Immunomodulatory and Regenerative Effects of Mesenchymal Stem Cells and Extracellular Vesicles: Therapeutic Outlook for Inflammatory and Degenerative Diseases. Front. Immunol. 2021, 11, 3809. [Google Scholar] [CrossRef] [PubMed]
- Abbaszadeh, H.; Ghorbani, F.; Derakhshani, M.; Movassaghpour, A.; Yousefi, M. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles: A novel therapeutic paradigm. J. Cell. Physiol. 2020, 2, 706–717. [Google Scholar] [CrossRef] [PubMed]
- Baksh, D.; Yao, R.; Tuan, R.S. Comparison of Proliferative and Multilineage Differentiation Potential of Human Mesenchymal Stem Cells Derived from Umbilical Cord and Bone Marrow. Stem Cells 2007, 6, 1384–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, M.L.; Anderson, C.; Medicetty, S.; Seshareddy, K.B.; Weiss, R.J.; VanderWerff, I.; Troyer, D.; McIntosh, K.R. Immune Properties of Human Umbilical Cord Wharton’s Jelly-Derived Cells. Stem Cells 2008, 11, 2865–2874. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, X.; Cao, W.; Ma, J.; Sun, L.; Qian, H.; Zhu, W.; Xu, W. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Acute Myocardial Ischemic Injury. Stem Cells Int. 2015, 2015, 761643. [Google Scholar] [CrossRef]
- Gnecchi, M.; Zhang, Z.; Ni, A.; Dzau, V.J. Paracrine Mechanisms in Adult Stem Cell Signaling and Therapy. Circ. Res. 2008, 11, 1204–1219. [Google Scholar] [CrossRef]
- Kuraitis, D.; Ruel, M.; Suuronen, E.J. Mesenchymal Stem Cells for Cardiovascular Regeneration. Cardiovasc. Drug. Ther. 2011, 4, 349–362. [Google Scholar] [CrossRef]
- Konala, V.B.R.; Mamidi, M.K.; Bhonde, R.; Das, A.K.; Pochampally, R.; Pal, R. The current landscape of the mesenchymal stromal cell secretome: A new paradigm for cell-free regeneration. Cytotherapy 2016, 1, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Rivera-Bolanos, N.; Jiang, B.; Ameer, G.A. Advanced Functional Biomaterials for Stem Cell Delivery in Regenerative Engineering and Medicine. Adv. Funct. Mater. 2019, 23, 1809009. [Google Scholar] [CrossRef]
- Joyce, N.; Annett, G.; Wirthlin, L.; Olson, S.; Bauer, G.; Nolta, J.A. Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen. Med. 2010, 6, 933–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panchalingam, K.; Wang, T.; Jung, S.; Baghbaderani, B.A. Development of bioreactor protocols for stem cell-based therapies. Can. J. Chem. Eng. 2021, 11, 2505–2516. [Google Scholar] [CrossRef]
- Mummery, C.L.; Zhang, J.; Ng, E.S.; Elliott, D.A.; Elefanty, A.G.; Kamp, T.J. Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells to Cardiomyocytes. Circ. Res. 2012, 3, 344–358. [Google Scholar] [CrossRef] [PubMed]
- Kan, X.L.; Pan, X.H.; Zhao, J.; He, J.; Cai, X.M.; Pang, R.Q.; Zhu, X.Q.; Cao, X.B.; Ruan, G.P. Effect and mechanism of human umbilical cord mesenchymal stem cells in treating allergic rhinitis in mice. Sci. Rep. 2020, 1, 19295. [Google Scholar] [CrossRef] [PubMed]
- Nirmal, S.R.; Nair, P. Significance of soluble growth factors in the chondrogenic response of human umbilical cord matrix stem cells in a porous three dimensional scaffold. Eur. Cell. Mater. 2013, 11, 234–251. [Google Scholar] [CrossRef] [PubMed]
- Rungarunlert, S.; Techakumphu, M.; Pirity, M.K.; Dinnyes, A. Embryoid body formation from embryonic and induced pluripotent stem cells: Benefits of bioreactors. World J. Stem Cells 2009, 1, 11–21. [Google Scholar] [CrossRef]
- Eaker, S.; Abraham, E.; Allickson, J.; Brieva, T.A.; Baksh, D.; Heathman, T.R.J.; Mistry, B.; Zhang, N. Bioreactors for cell therapies: Current status and future advances. Cytotherapy 2017, 1, 9–18. [Google Scholar] [CrossRef]
- Hernández, M.; Quijano, G.; Thalasso, F.; Daugulis, A.J.; Villaverde, S.; Muñoz, R. A comparative study of solid and liquid non-aqueous phases for the biodegradation of hexane in two-phase partitioning bioreactors. Biotechnol. Bioeng. 2010, 5, 731–740. [Google Scholar] [CrossRef]
- Chalmers, J.J. Mixing, aeration and cell damage, 30+ years later: What we learned, how it affected the cell culture industry and what we would like to know more about. Curr. Opin. Chem. Eng. 2015, 10, 94–102. [Google Scholar] [CrossRef]
- Kazemzadeh, A.; Elias, C.; Tamer, M.; Ein-Mozaffari, F. Hydrodynamic performance of a single-use aerated stirred bioreactor in animal cell culture: Applications of tomography, dynamic gas disengagement (DGD), and CFD. Bioproc. Biosyst. Eng. 2018, 5, 679–695. [Google Scholar] [CrossRef]
- Werner, S.; Kaiser, S.; Kraume, M.; Eibl, D. Computational fluid dynamics as a modern tool for engineering characterization of bioreactors. Pharm. Bioprocess. 2014, 2, 85–99. [Google Scholar] [CrossRef]
- He, S.; Li, Y.; Wang, R.Z. Progress of mathematical modeling on ejectors. Renew. Sustain. Energy Rev. 2009, 8, 1760–1780. [Google Scholar] [CrossRef]
- Cattafesta, L.N., III; Sheplak, M. Actuators for Active Flow Control. Annu. Rev. Fluid Mech. 2011, 1, 247–272. [Google Scholar] [CrossRef] [Green Version]
- van Baten, J.M.; Krishna, R. Modelling sieve tray hydraulics using computational fluid dynamics. Chem. Eng. J. 2000, 3, 143–151. [Google Scholar] [CrossRef]
- Rodrigues, C.A.V.; Fernandes, T.G.; Diogo, M.M.; da Silva, C.L.; Cabral, J.M.S. Stem cell cultivation in bioreactors. Biotechnol. Adv. 2011, 6, 815–829. [Google Scholar] [CrossRef]
- Poon, C. Measuring the density and viscosity of culture media for optimized computational fluid dynamics analysis of in vitro devices. J. Mech. Behav. Biomed. Mater. 2022, 126, 105024. [Google Scholar] [CrossRef]
- Du, W.; Bao, X.; Xu, J.; Wei, W. Computational fluid dynamics (CFD) modeling of spouted bed: Assessment of drag coefficient correlations. Chem. Eng. Sci. 2006, 5, 1401–1420. [Google Scholar] [CrossRef]
- Bitog, J.P.; Lee, I.B.; Lee, C.G.; Kim, K.S.; Hwang, H.S.; Hong, S.W.; Seo, I.H.; Kwon, K.S.; Mostafa, E. Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: A review. Comput. Electron. Agric. 2011, 2, 131–147. [Google Scholar] [CrossRef]
- Hutmacher, D.W.; Singh, H. Computational fluid dynamics for improved bioreactor design and 3D culture. Trends Biotechnol. 2008, 4, 166–172. [Google Scholar] [CrossRef]
- Almuttahar, A.; Taghipour, F. Computational fluid dynamics of high density circulating fluidized bed riser: Study of modeling parameters. Powder Technol. 2008, 1, 11–23. [Google Scholar] [CrossRef]
- Li, Z.; Tao, J.; Sun, H.; Luo, Y.; Ding, L.; Deng, Z. Hydrodynamic calculation and analysis of a complex-shaped underwater robot based on computational fluid dynamics and prototype test. Adv. Mech. Eng. 2017, 11, 1687814017734500. [Google Scholar] [CrossRef] [Green Version]
- Murthy, B.N.; Joshi, J.B. Assessment of standard k–ε, RSM and LES turbulence models in a baffled stirred vessel agitated by various impeller designs. Chem. Eng. Sci. 2008, 22, 5468–5495. [Google Scholar] [CrossRef]
- Shafa, M.; Panchalingam, K.M.; Walsh, T.; Richardson, T.; Baghbaderani, B.A. Computational fluid dynamics modeling, a novel, and effective approach for developing scalable cell therapy manufacturing processes. Biotechnol. Bioeng. 2019, 12, 3228–3241. [Google Scholar] [CrossRef] [PubMed]
- Taghavi, M.; Zadghaffari, R.; Moghaddas, J.; Moghaddas, Y. Experimental and CFD investigation of power consumption in a dual Rushton turbine stirred tank. Chem. Eng. Res. Des. 2011, 3, 280–290. [Google Scholar] [CrossRef]
- D’Arcy, D.M.; Healy, A.M.; Corrigan, O.I. Towards determining appropriate hydrodynamic conditions for in vitro in vivo correlations using computational fluid dynamics. Eur. J. Pharm. Sci. 2009, 3, 291–299. [Google Scholar] [CrossRef]
- Bieback, K.; Kern, S.; Klüter, H.; Eichler, H. Critical Parameters for the Isolation of Mesenchymal Stem Cells from Umbilical Cord Blood. Stem Cells 2004, 4, 625–634. [Google Scholar] [CrossRef] [Green Version]
- Baghbaderani, B.A.; Mukhida, K.; Sen, A.; Kallos, M.S.; Hong, M.; Mendez, I.; Behie, L.A. Bioreactor expansion of human neural precursor cells in serum-free media retains neurogenic potential. Biotechnol. Bioeng. 2010, 4, 823–833. [Google Scholar] [CrossRef]
- Sen, A.; Kallos, M.S.; Behie, L.A. Expansion of mammalian neural stem cells in bioreactors: Effect of power input and medium viscosity. Dev. Brain Res. 2002, 1, 103–113. [Google Scholar] [CrossRef]
- Li, C.; Teng, X.; Peng, H.; Yi, X.; Zhuang, Y.; Zhang, S.; Xia, J. Novel scale-up strategy based on three-dimensional shear space for animal cell culture. Chem. Eng. Sci. 2020, 212, 115329. [Google Scholar] [CrossRef]
- Baghbaderani, B.A.; Mukhida, K.; Hong, M.; Mendez, I.; Behie, L.A. A Review of Bioreactor Protocols for Human Neural Precursor Cell Expansion in Preparation for Clinical Trials. Curr. Stem Cell Res. Ther. 2011, 3, 229–254. [Google Scholar] [CrossRef]
- Hassan, M.N.F.B.; Yazid, M.D.; Yunus, M.H.M.; Chowdhury, S.R.; Lokanathan, Y.; Idrus, R.B.H.; Ng, A.M.H.; Law, J.X. Large-Scale Expansion of Human Mesenchymal Stem Cells. Stem Cells Int. 2020, 2020, 9529465. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, I.; Kolisis, F.N.; Papaevangeliou, D.; Zoumpourlis, V. Comparative Evaluation of Human Mesenchymal Stem Cells of Fetal (Wharton’s Jelly) and Adult (Adipose Tissue) Origin during Prolonged In Vitro Expansion: Considerations for Cytotherapy. Stem Cells Int. 2013, 2013, 246134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, T.G.; Heerkens, T.; Thomsen, P.D.; Betts, D.H. Isolation of mesenchymal stem cells from equine umbilical cord blood. BMC Biotechnol. 2007, 7, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mennan, C.; Garcia, J.; Roberts, S.; Hulme, C.; Wright, K. A comprehensive characterisation of large-scale expanded human bone marrow and umbilical cord mesenchymal stem cells. Stem Cell Res. Ther. 2019, 1, 99. [Google Scholar] [CrossRef] [Green Version]
- Mebarki, M.; Iglicki, N.; Marigny, C.; Abadie, C.; Nicolet, C.; Churlaud, G.; Maheux, C.; Boucher, H.; Monsel, A.; Menasche, P.; et al. Cras. Development of a human umbilical cord-derived mesenchymal stromal cell-based advanced therapy medicinal product to treat immune and/or inflammatory diseases. Stem Cell Res. Ther. 2021, 12, 1–15. [Google Scholar]
- Raileanu, V.N.; Whiteley, J.; Chow, T.; Kollara, A.; Mohamed, A.; Keating, A.; Rogers, I.M. Banking Mesenchymal Stromal Cells from Umbilical Cord Tissue: Large Sample Size Analysis Reveals Consistency Between Donors. Stem Cells Transl. Med. 2019, 10, 1041–1054. [Google Scholar] [CrossRef] [Green Version]
- Siegel, G.; Kluba, T.; Hermanutz-Klein, U.; Bieback, K.; Northoff, H.; Schäfer, R. Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells. BMC Med. 2013, 1, 146. [Google Scholar] [CrossRef] [Green Version]
Speeds (rpm) | Inoculum | Adherence Rate (Day 1) | Maximum Density | Maximum Specific Growth Rate (μmax) |
---|---|---|---|---|
(×105 cells/mL) | (%) | (×105 cells/mL) | (h−1) | |
35 | 1.35 | 86.47 ± 1.26 | 7.54 ± 0.27 | 0.0262 ± 0.0022 |
45 | 1.35 | 98.68 ± 0.15 | 8.76 ± 0.19 | 0.0268 ± 0.0014 |
55 | 1.35 | 51. 32 ± 2.48 | 5.02 ± 1.88 | 0.0249 ± 0.0010 |
Culture Methods | Speeds (rpm) | Inoculum (×105 cells/mL) | Adherence Rate (%) | Maximum Density (×105 cells/mL) | Maximum Specific Growth Rate (μmax) (h−1) |
---|---|---|---|---|---|
BioStar 1.5c | 30 | 1.35 | 78.56± 2.65 | 8.13 ± 0.31 | 0.02554 ± 0.026 |
40 | 1.35 | 98.36 ± 1.02 | 9.86 ± 1.35 | 0.02722 ± 0.030 | |
50 | 1.35 | 81.36 ± 1.23 | 7.59 ± 0.26 | 0.02561 ± 0.025 | |
60 | 1.35 | 65.21 ± 2.23 | 5.68 ± 0.16 | 0.0240 ± 0.012 | |
70 | 1.35 | 45.62 ± 1.45 | 4.35 ± 0.89 | 0.02381 ± 0.056 | |
Spinner flask | 45 | 1.35 | 98.13 ± 1.24 | 8.45 ± 1.15 | 0.02719 ± 0.042 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Peng, Y.; Guo, M.; Li, C. Large-Scale Expansion of Human Umbilical Cord-Derived Mesenchymal Stem Cells in a Stirred Suspension Bioreactor Enabled by Computational Fluid Dynamics Modeling. Bioengineering 2022, 9, 274. https://doi.org/10.3390/bioengineering9070274
Zhang J, Peng Y, Guo M, Li C. Large-Scale Expansion of Human Umbilical Cord-Derived Mesenchymal Stem Cells in a Stirred Suspension Bioreactor Enabled by Computational Fluid Dynamics Modeling. Bioengineering. 2022; 9(7):274. https://doi.org/10.3390/bioengineering9070274
Chicago/Turabian StyleZhang, Junhong, Yan Peng, Meijin Guo, and Chao Li. 2022. "Large-Scale Expansion of Human Umbilical Cord-Derived Mesenchymal Stem Cells in a Stirred Suspension Bioreactor Enabled by Computational Fluid Dynamics Modeling" Bioengineering 9, no. 7: 274. https://doi.org/10.3390/bioengineering9070274
APA StyleZhang, J., Peng, Y., Guo, M., & Li, C. (2022). Large-Scale Expansion of Human Umbilical Cord-Derived Mesenchymal Stem Cells in a Stirred Suspension Bioreactor Enabled by Computational Fluid Dynamics Modeling. Bioengineering, 9(7), 274. https://doi.org/10.3390/bioengineering9070274