Influence of Different Load Conditions on Lower Extremity Biomechanics during the Lunge Squat in Novice Men
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments
2.3. Procedures
2.4. Data Collection and Processing
2.5. Statistical Analysis
3. Results
3.1. Hip, Knee, and Ankle Joint Angles
3.2. Hip, Knee, and Ankle Joint Moments
3.3. The COP of the Lunge
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eliassen, W.; Saeterbakken, A.H.; van den Tillaar, R. Comparison of bilateral and unilateral squat exercises on barbell kinematics and muscle activation. Int. J. Sports Phys. Ther. 2018, 13, 871–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, D.; Kavanagh, R.; Bolton, J.; Myers, C.; O’Connor, S. ‘Prime Time of Life’, A 12-Week Home-Based Online Multimodal Exercise Training and Health Education Programme for Middle-Aged and Older Adults in Laois. Phys. Act. Health 2021, 5, 178–194. [Google Scholar] [CrossRef]
- Marchetti, P.H.; Guiselini, M.A.; da Silva, J.J.; Tucker, R.; Behm, D.G.; Brown, L.E. Balance and lower limb muscle activation between in-line and traditional lunge exercises. J. Hum. Kinet. 2018, 62, 15–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.W.; Tsai, C.F.; Liang, K.H.; Chang, Y.W. Effect of Loading Devices on Muscle Activation in Squat and Lunge. J. Sport Rehabil. 2020, 29, 200–205. [Google Scholar] [CrossRef]
- Gu, Y.; Lu, Y.; Mei, Q.; Li, J.; Ren, J. Effects of different unstable sole construction on kinematics and muscle activity of lower limb. Hum. Mov Sci. 2014, 36, 46–57. [Google Scholar] [CrossRef]
- Xu, D.; Quan, W.; Zhou, H.; Sun, D.; Baker, J.S.; Gu, Y. Explaining the differences of gait patterns between high and low-mileage runners with machine learning. Sci. Rep. 2022, 12, 2981. [Google Scholar] [CrossRef]
- Nadzalan, A.; Mohamad, N.; Lee, J.; Chinnasee, C. Lower body muscle activation during low load versus high load forward lunge among untrained men. J. Fundam. Appl. Sci. 2018, 10, 205–217. [Google Scholar] [CrossRef]
- Park, S.; Huang, T.; Song, J.; Lee, M. Comparative Study of the Biomechanical Factors in Range of Motion, Muscle Activity, and Vertical Ground Reaction Force between a Forward Lunge and Backward Lunge. Phys. Ther. Rehabil. Sci. 2021, 10, 98–105. [Google Scholar] [CrossRef]
- Riemann, B.L.; Lapinski, S.; Smith, L.; Davies, G. Biomechanical analysis of the anterior lunge during 4 external-load conditions. J. Athl. Train. 2012, 47, 372–378. [Google Scholar] [CrossRef] [Green Version]
- Bouillon, L.E.; Wilhelm, J.; Eisel, P.; Wiesner, J.; Rachow, M.; Hatteberg, L. Electromyographic assessment of muscle activity between genders during unilateral weight-bearing tasks using adjusted distances. Int. J. Sports Phys. Ther. 2012, 7, 595–605. [Google Scholar]
- Ireland, M.L.; Willson, J.D.; Ballantyne, B.T.; Davis, I.M. Hip strength in females with and without patellofemoral pain. J. Orthop. Sports Phys. Ther. 2003, 33, 671–676. [Google Scholar] [CrossRef]
- Leetun, D.T.; Ireland, M.L.; Willson, J.D.; Ballantyne, B.T.; Davis, I.M. Core stability measures as risk factors for lower extremity injury in athletes. Med. Sci. Sports Exerc. 2004, 36, 926–934. [Google Scholar] [CrossRef] [Green Version]
- Powers, C.M. The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: A theoretical perspective. J. Orthop. Sports Phys. Ther. 2003, 33, 639–646. [Google Scholar] [CrossRef]
- Lehecka, B.; Edwards, M.; Haverkamp, R.; Martin, L.; Porter, K.; Thach, K.; Sack, R.J.; Hakansson, N.A. Building a better gluteal bridge: Electromyographic analysis of hip muscle activity during modified single-leg bridges. Int. J. Sports Phys. Ther. 2017, 12, 543–549. [Google Scholar]
- Kim, E.-K. The effect of gluteus medius strengthening on the knee joint function score and pain in meniscal surgery patients. J. Phys. Ther. Sci. 2016, 28, 2751–2753. [Google Scholar] [CrossRef] [Green Version]
- Jeong, U.-C.; Sim, J.-H.; Kim, C.-Y.; Hwang-Bo, G.; Nam, C.-W. The effects of gluteus muscle strengthening exercise and lumbar stabilization exercise on lumbar muscle strength and balance in chronic low back pain patients. J. Phys. Ther. Sci. 2015, 27, 3813–3816. [Google Scholar] [CrossRef] [Green Version]
- Nelson-Wong, E.; Flynn, T.; Callaghan, J.P. Development of active hip abduction as a screening test for identifying occupational low back pain. J. Orthop. Sports Phys. Ther. 2009, 39, 649–657. [Google Scholar] [CrossRef] [Green Version]
- Doma, K.; Leicht, A.S.; Boullosa, D.; Woods, C.T. Lunge exercises with blood-flow restriction induces post-activation potentiation and improves vertical jump performance. Eur. J. Appl. Physiol. 2020, 120, 687–695. [Google Scholar] [CrossRef]
- Stastny, P.; Lehnert, M.; Zaatar, A.M.; Svoboda, Z.; Xaverova, Z. Does the dumbbell-carrying position change the muscle activity in split squats and walking lunges? J. Strength Cond. Res. 2015, 29, 3177. [Google Scholar] [CrossRef] [Green Version]
- Nayanti, A.P.; Prabowo, T.; Sari, D.M. The Effects of Kinesio Taping and Quadriceps Muscle Strengthening Exercise on Quadriceps Muscle Strength and Functional Status in Knee Osteoarthritis. J. Med. Health 2020, 2, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Bobbert, M.F.; Van Zandwijk, J. Dynamics of force and muscle stimulation in human vertical jumping. Med. Sci. Sports Exerc. 1999, 31, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Farrokhi, S.; Pollard, C.D.; Souza, R.B.; Chen, Y.J.; Reischl, S.; Powers, C.M. Trunk position influences the kinematics, kinetics, and muscle activity of the lead lower extremity during the forward lunge exercise. J. Orthop. Sports Phys. Ther. 2008, 38, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Comfort, P.; Jones, P.A.; Smith, L.C.; Herrington, L. Joint kinetics and kinematics during common lower limb rehabilitation exercises. J. Athl. Train. 2015, 50, 1011–1018. [Google Scholar] [CrossRef] [Green Version]
- Schütz, P.; List, R.; Zemp, R.; Schellenberg, F.; Taylor, W.R.; Lorenzetti, S. Joint angles of the ankle, knee, and hip and loading conditions during split squats. J. Appl. Biomech. 2014, 30, 373–380. [Google Scholar] [CrossRef]
- Phomsoupha, M.; Laffaye, G. The science of badminton: Game characteristics, anthropometry, physiology, visual fitness and biomechanics. Sports Med. 2015, 45, 473–495. [Google Scholar] [CrossRef]
- Cronin, J.; McNair, P.J.; Marshall, R.N. Lunge performance and its determinants. J. Sports Sci. 2003, 21, 49–57. [Google Scholar] [CrossRef]
- Escamilla, R.F.; Zheng, N.; MacLeod, T.D.; Edwards, W.B.; Hreljac, A.; Fleisig, G.S.; Wilk, K.E.; Moorman III, C.T.; Imamura, R.; Andrews, J.R. Patellofemoral joint force and stress between a short-and long-step forward lunge. J. Orthop. Sports Phys. Ther. 2008, 38, 681–690. [Google Scholar] [CrossRef]
- Muyor, J.M.; Martin-Fuentes, I.; Rodriguez-Ridao, D.; Antequera-Vique, J.A. Electromyographic activity in the gluteus medius, gluteus maximus, biceps femoris, vastus lateralis, vastus medialis and rectus femoris during the Monopodal Squat, Forward Lunge and Lateral Step-Up exercises. PLoS ONE 2020, 15, e0230841. [Google Scholar] [CrossRef] [PubMed]
- Dill, K.E.; Begalle, R.L.; Frank, B.S.; Zinder, S.M.; Padua, D.A. Altered knee and ankle kinematics during squatting in those with limited weight-bearing-lunge ankle-dorsiflexion range of motion. J. Athl. Train. 2014, 49, 723–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escamilla, R.F.; Zheng, N.; MacLeod, T.D.; Imamura, R.; Edwards, W.B.; Hreljac, A.; Fleisig, G.S.; Wilk, K.E.; Moorman III, C.T.; Paulos, L. Cruciate ligament tensile forces during the forward and side lunge. Clin. Biomech. 2010, 25, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Ying, S.; Li, H. Reliability and Validity of the Short Version of Perceived Benefits and Barriers Scale for Physical Activity. Phys. Act. Health 2022, 6, 64–72. [Google Scholar] [CrossRef]
- Macrum, E.; Bell, D.R.; Boling, M.; Lewek, M.; Padua, D. Effect of limiting ankle-dorsiflexion range of motion on lower extremity kinematics and muscle-activation patterns during a squat. J. Sport Rehabil. 2012, 21, 144–150. [Google Scholar] [CrossRef]
- Shi, Z.; Sun, D. Conflict between Weightlifting and Health? The Importance of Injury Prevention and Technology Assistance. Phys. Act. Health 2022, 6, 1–4. [Google Scholar] [CrossRef]
- Xu, D.; Jiang, X.; Cen, X.; Baker, J.S.; Gu, Y. Single-leg landings following a volleyball spike may increase the risk of anterior cruciate ligament injury more than landing on both-legs. Appl. Sci. 2020, 11, 130. [Google Scholar] [CrossRef]
- Hsue, B.-J.; Miller, F.; Su, F.-C. The dynamic balance of the children with cerebral palsy and typical developing during gait. Part I: Spatial relationship between COM and COP trajectories. Gait Posture 2009, 29, 465–470. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, D.; Quan, W.; Liang, M.; Ugbolue, U.C.; Baker, J.S.; Gu, Y. A Pilot Study of Muscle Force between Normal Shoes and Bionic Shoes during Men Walking and Running Stance Phase Using Opensim. Actuators 2021, 10, 274. [Google Scholar] [CrossRef]
- Lu, Y.; Mei, Q.; Peng, H.T.; Li, J.; Wei, C.; Gu, Y. A Comparative Study on Loadings of the Lower Extremity during Deep Squat in Asian and Caucasian Individuals via OpenSim Musculoskeletal Modelling. BioMed Res. Int. 2020, 2020, 7531719. [Google Scholar] [CrossRef]
- Catelli, D.S.; Wesseling, M.; Jonkers, I.; Lamontagne, M. A musculoskeletal model customized for squatting task. Comput. Methods Biomech. Biomed. Eng. 2019, 22, 21–24. [Google Scholar] [CrossRef]
- Butler, A.B.; Caruntu, D.I.; Freeman, R.A. Knee joint biomechanics for various ambulatory exercises using inverse dynamics in OpenSim. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Tampa, FL, USA, 3–9 November 2017; p. V003T004A045. [Google Scholar]
- Goulette, D.; Griffith, P.; Schiller, M.; Rutherford, D.; Kernozek, T.W. Patellofemoral joint loading during the forward and backward lunge. Phys. Ther. Sport 2021, 47, 178–184. [Google Scholar] [CrossRef]
- Zellmer, M.; Kernozek, T.W.; Gheidi, N.; Hove, J.; Torry, M. Patellar tendon stress between two variations of the forward step lunge. J. Sport Health Sci. 2019, 8, 235–241. [Google Scholar] [CrossRef]
- Xiang, L.; Mei, Q.; Wang, A.; Shim, V.; Fernandez, J.; Gu, Y. Evaluating function in the hallux valgus foot following a 12-week minimalist footwear intervention: A pilot computational analysis. J. Biomech. 2022, 132, 110941. [Google Scholar] [CrossRef]
- da Costa, G.V.; de Castro, M.P.; Sanchotene, C.G.; Ribeiro, D.C.; de Brito Fontana, H.; Ruschel, C. Relationship between passive ankle dorsiflexion range, dynamic ankle dorsiflexion range and lower limb and trunk kinematics during the single-leg squat. Gait Posture 2021, 86, 106–111. [Google Scholar] [CrossRef]
- Horan, S.A.; Watson, S.L.; Carty, C.P.; Sartori, M.; Weeks, B.K. Lower-limb kinematics of single-leg squat performance in young adults. Physiother. Can. 2014, 66, 228–233. [Google Scholar] [CrossRef] [Green Version]
25% BW (Mean ± SD) | 50% BW (Mean ± SD) | ||||
---|---|---|---|---|---|
ROM | PFA | ROM | PFA | ||
vest (°) | hip | 90.04 ± 8.26 | 101.92 ± 9.79 | 88.38 ± 2.95 | 95.97 ± 2.57 |
knee | 108.98 ± 7.33 | 124.33 ± 3.93 | 110.52 ± 8.24 | 122.37 ± 2.37 | |
ankle | 34.13 ± 5.66 | 23.51 ± 8.73 d | 33.73 ± 5.02 | 20.28 ± 7.01 d | |
barbell (°) | hip | 83.86 ± 12.26 | 101.62 ± 9.04 | 81.23 ± 12.68 | 100.23 ± 9.48 |
knee | 103.58 ± 6.19 b | 125.81 ± 2.63 | 114.73 ± 4.21 ab | 125.07 ± 2.80 | |
ankle | 32.72 ± 2.98 | 25.50 ± 3.51 d | 32.80 ± 4.79 | 23.49 ± 6.75 d | |
dumbbell (°) | hip | 86.35 ± 5.47 | 100.23 ± 6.69 | 84.26 ± 10.00 | 99.70 ± 9.43 |
knee | 105.42 ± 3.56 | 123.31 ± 6.96 | 107.90 ± 3.32 a | 122.00 ± 4.65 | |
ankle | 29.96 ± 7.12 | 21.84 ± 10.44 | 31.40 ± 5.78 | 21.92 ± 7.15 |
25% BW (Mean ± SD) | 50% BW (Mean ± SD) | ||
---|---|---|---|
vest (Nm/kg) | hip | −1.96 ± 0.14 c | −2.12 ± 0.24 c |
knee | −1.41 ± 0.11 c | −1.44 ± 0.17 c | |
ankle | −0.79 ± 0.15 b | −0.98 ± 0.19 ab | |
barbell (Nm/kg) | hip | −1.87 ± 0.32 c | −2.09 ± 0.32 c |
knee | −1.46 ± 0.13 c | −1.59 ± 0.17 c | |
ankle | −0.78 ± 0.18 | −0.89 ± 0.22 | |
dumbbell (Nm/kg) | hip | −1.90 ± 0.29 c | −2.30 ± 0.30 c |
knee | −1.47 ± 0.20 c | −1.58 ± 0.12 c | |
ankle | −0.70 ± 0.21 | −0.81 ± 0.20 a |
25% BW (Mean ± SD) | 50% BW (Mean ± SD) | |||
---|---|---|---|---|
x-axis (mm/m) | y-axis (mm.s/m) | x-axis (mm/m) | y-axis (mm.s/m) | |
vest | 31.07 ± 9.00 | 5.35 ± 1.76 c | 35.85 ± 9.13 | 8.43 ± 1.94 c |
barbell | 38.08 ± 10.43 d | 6.99 ± 3.37 c | 35.37 ± 5.47 d | 4.84 ± 1.68 c |
dumbbell | 28.26 ± 4.59 d | 4.88 ± 2.54 c | 31.75 ± 4.82 d | 6.53 ± 2.81 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, L.; Lu, Z.; Liang, M.; Baker, J.S.; Gu, Y. Influence of Different Load Conditions on Lower Extremity Biomechanics during the Lunge Squat in Novice Men. Bioengineering 2022, 9, 272. https://doi.org/10.3390/bioengineering9070272
Gao L, Lu Z, Liang M, Baker JS, Gu Y. Influence of Different Load Conditions on Lower Extremity Biomechanics during the Lunge Squat in Novice Men. Bioengineering. 2022; 9(7):272. https://doi.org/10.3390/bioengineering9070272
Chicago/Turabian StyleGao, Lidong, Zhenghui Lu, Minjun Liang, Julien S. Baker, and Yaodong Gu. 2022. "Influence of Different Load Conditions on Lower Extremity Biomechanics during the Lunge Squat in Novice Men" Bioengineering 9, no. 7: 272. https://doi.org/10.3390/bioengineering9070272
APA StyleGao, L., Lu, Z., Liang, M., Baker, J. S., & Gu, Y. (2022). Influence of Different Load Conditions on Lower Extremity Biomechanics during the Lunge Squat in Novice Men. Bioengineering, 9(7), 272. https://doi.org/10.3390/bioengineering9070272