The Influence of a Shoe’s Heel-Toe Drop on Gait Parameters during the Third Trimester of Pregnancy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Shoe Conditions
2.3. Testing Procedure
2.4. Data Processing
2.5. Outcome Measures
2.6. Data Analysis
3. Results
3.1. Gait Spatiotemporal Parameters
3.2. GRF
3.3. COP Trajectory
3.4. COM-COP Inclination Angles
4. Discussion
4.1. Gait Spatiotemporal Parameters
4.2. GRF
4.3. COP Trajectory
4.4. COM-COP Inclination Angles
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haddox, A.; Hausselle, J.; Azoug, A. Changes in segmental mass and inertia during pregnancy: A musculoskeletal model of the pregnant woman. Gait Posture 2020, 76, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Gao, Y.; Yang, Z.; Li, J.; Xuan, R.; Liu, J.; Chen, X.; Thirupathi, A. The effect of pelvic floor muscle training on pelvic floor dysfunction in pregnant and postpartum women. Phys. Act. Health 2020, 4, 130–141. [Google Scholar] [CrossRef]
- Gu, Y.D.; Li, J.S.; Lake, M.J.; Zeng, Y.J.; Ren, X.J.; Li, Z.Y. Image-based midsole insert design and the material effects on heel plantar pressure distribution during simulated walking loads. Comput. Methods Biomech. Biomed. Engin. 2011, 14, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Mei, Q.; Gu, Y.; Fernandez, J. Alterations of pregnant gait during pregnancy and post-partum. Sci. Rep. 2018, 8, 1–7. [Google Scholar]
- Butler, E.E.; Colón, I.; Druzin, M.L.; Rose, J. Postural equilibrium during pregnancy: Decreased stability with an increased reliance on visual cues. Am. J. Obstet. Gynecol. 2006, 195, 1104–1108. [Google Scholar] [CrossRef]
- Inanir, A.; Cakmak, B.; Hisim, Y.; Demirturk, F. Evaluation of postural equilibrium and fall risk during pregnancy. Gait Posture 2014, 39, 1122–1125. [Google Scholar] [CrossRef]
- Kesikburun, S.; Güzelküçük, Ü.; Fidan, U.; Demir, Y.; Ergün, A.; Tan, A.K. Musculoskeletal pain and symptoms in pregnancy: A descriptive study. Ther. Adv. Musculoskelet. Dis. 2018, 10, 229–234. [Google Scholar] [CrossRef]
- Dunning, K.; LeMasters, G.; Levin, L.; Bhattacharya, A.; Alterman, T.; Lordo, K. Falls in workers during pregnancy: Risk factors, job hazards, and high risk occupations. Am. J. Ind. Med. 2003, 44, 664–672. [Google Scholar] [CrossRef]
- Dyer, I.; Barclay, D.L. Accidental trauma complicating pregnancy and delivery. Am. J. Obstet. Gynecol. 1962, 83, 907–929. [Google Scholar] [CrossRef]
- Crosby, W.M. Traumatic injuries during pregnancy. Clin. Obstet. Gynecol. 1983, 26, 902–912. [Google Scholar] [CrossRef]
- Fildes, J.; Reed, L.; Jones, N.; Martin, M.; Barrett, J. Trauma: The leading cause of maternal death. J. Trauma 1992, 32, 643–645. [Google Scholar] [CrossRef] [PubMed]
- Connolly, C.P.; Conger, S.A.; Montoye, A.H.; Marshall, M.R.; Schlaff, R.A.; Badon, S.E.; Pivarnik, J.M. Walking for health during pregnancy: A literature review and considerations for future research. J. Sport Health Sci. 2019, 8, 401–411. [Google Scholar] [CrossRef]
- Bertuit, J.; Leyh, C.; Rooze, M.; Feipel, F. Pregnancy-related changes in centre of pressure during gait. Acta Bioeng. Biomech. 2017, 19, 95–102. [Google Scholar]
- Lymbery, J.K.; Gilleard, W. The stance phase of walking during late pregnancy: Temporospatial and ground reaction force variables. J. Am. Podiatr. Med. Assoc. 2005, 95, 247–253. [Google Scholar] [CrossRef]
- Forczek, W.; Staszkiewicz, R. Changes of kinematic gait parameters due to pregnancy. Acta Bioeng. Biomech. 2012, 14, 113–119. [Google Scholar] [PubMed]
- Błaszczyk, J.W.; Opala-Berdzik, A.; Plewa, M. Adaptive changes in spatiotemporal gait characteristics in women during pregnancy. Gait Posture 2016, 43, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Sun, D. Conflict between Weightlifting and Health? The Importance of Injury Prevention and Technology Assistance. Phys. Act. Health 2022, 6, 1–4. [Google Scholar] [CrossRef]
- Nigg, B.; Hintzen, S.; Ferber, R. Effect of an unstable shoe construction on lower extremity gait characteristics. Clin. Biomech. 2006, 21, 82–88. [Google Scholar] [CrossRef]
- Dimou, E.; Manavis, A.; Papachristou, E.; Kyratsis, P. A conceptual design of intelligent shoes for pregnant women. In Proceedings of the Workshop on Business Models and ICT Technologies for the Fashion Supply Chain, Florence, Italy, 20–22 April 2016; pp. 69–77. [Google Scholar]
- Gimunová, M.; Zvonař, M.; Sebera, M.; Turčínek, P.; Kolářová, K. Special footwear designed for pregnant women and its effect on kinematic gait parameters during pregnancy and postpartum period. PLoS ONE 2020, 15, e0232901. [Google Scholar] [CrossRef]
- Jang, S.I.; Lee, Y.R.; Kwak, H.S.; Moon, K.S.; Shin, J.-C.; Kim, J.-H. The effect of balanced incline shoes on walking and feet for the pregnant women. Korean J. Obstet. Gynecol. 2010, 53, 988–997. [Google Scholar] [CrossRef] [Green Version]
- Mo, S.; Lam, W.-K.; Ching, E.C.; Chan, Z.Y.; Zhang, J.H.; Cheung, R.T. Effects of heel-toe drop on running biomechanics and perceived comfort of rearfoot strikers in standard cushioned running shoes. Footwear Sci. 2020, 12, 91–99. [Google Scholar] [CrossRef]
- Li, J.X.; Hong, Y. Kinematic and electromyographic analysis of the trunk and lower limbs during walking in negative-heeled shoes. J. Am. Podiatr. Med. Assoc. 2007, 97, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Baaklini, E.; Angst, M.; Schellenberg, F.; Hitz, M.; Schmid, S.; Tal, A.; Taylor, W.R.; Lorenzetti, S. High-heeled walking decreases lumbar lordosis. Gait Posture 2017, 55, 12–14. [Google Scholar] [CrossRef] [PubMed]
- Russell, B.S. The effect of high-heeled shoes on lumbar lordosis: A narrative review and discussion of the disconnect between Internet content and peer-reviewed literature. J. Chiropr. Med. 2010, 9, 166–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, B. ACSM’s guidelines for exercise testing and prescription 9th Ed. 2014. J. Can. Chiropr. Assoc. 2014, 58, 328. [Google Scholar]
- Lu, Z.; Sun, D.; Xu, D.; Li, X.; Baker, J.S.; Gu, Y. Gait Characteristics and Fatigue Profiles When Standing on Surfaces with Different Hardness: Gait Analysis and Machine Learning Algorithms. Biology 2021, 10, 1083. [Google Scholar] [CrossRef]
- Sun, J.; Liu, Y.; Yan, S.; Wang, S.; Lester, D.K.; Zeng, J.; Miao, J.; Zhang, K. Clinical gait evaluation of patients with lumbar spine stenosis. Orthop. Surg. 2018, 10, 32–39. [Google Scholar] [CrossRef]
- Zhang, H.H.; Yan, S.H.; Fang, C.; Zhang, K. To evaluate the operation effect of total hip arthroplasty with portable gait analyzer. J. Med. Biomech. 2015, 6, E361–E366. [Google Scholar]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef] [Green Version]
- Saremi, K.; Marehbian, J.; Xiaohong, Y.; Regnaux, J.-P.; Elashoff, R.; Bussel, B.; Dobkin, B.H. Reliability and validity of bilateral thigh and foot accelerometry measures of walking in healthy and hemiparetic subjects. Neurorehabilit. Neural Repair 2006, 20, 297–305. [Google Scholar] [CrossRef]
- Winter, D.A. Biomechanics and Motor Control of Human Movement; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Xinyan, J.; Huiyu, Z.; Wenjing, Q.; Qiuli, H.; Baker, J.S.; Gu, Y. Ground Reaction Force Differences between Bionic Shoes and Neutral Running Shoes in Recreational Male Runners before and after a 5 km Run. Int. J. Environ. Res. Public Health 2021, 18, 9787. [Google Scholar]
- Hasan, C.Z.C.; Jailani, R.; Tahir, N.M.; Ilias, S. The analysis of three-dimensional ground reaction forces during gait in children with autism spectrum disorders. Res. Dev. Disabil. 2017, 66, 55–63. [Google Scholar] [CrossRef]
- Tucker, C.A. Measuring Walking: A Handbook of Clinical Gait Analysis; Mac Keith Press: London, UK, 2014. [Google Scholar]
- Lin, Y.; Qichang, M.; Liangliang, X.; Wei, L.; Mohamad, N.I.; István, B.; Fernandez, J.; Yaodong, G. Principal Component Analysis of the Running Ground Reaction Forces With Different Speeds. Front. Bioeng. Biotechnol. 2021, 9, 629809. [Google Scholar]
- Lee, H.J.; Chou, L.S. Detection of gait instability using the center of mass and center of pressure inclination angles. Arch. Phys. Med. Rehabil. 2006, 87, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Pataky, T.C.; Robinson, M.A.; Vanrenterghem, J. Vector field statistical analysis of kinematic and force trajectories. J. Biomech. 2013, 46, 2394–2401. [Google Scholar] [PubMed] [Green Version]
- Buehler, C.; Koller, W.; De Comtes, F.; Kainz, H. Quantifying Muscle Forces and Joint Loading During Hip Exercises Performed With and Without an Elastic Resistance Band. Front. Sports Act. Living 2021, 223. [Google Scholar] [CrossRef]
- Pataky, T.C. One-dimensional statistical parametric mapping in Python. Comput. Methods Biomech. Biomed. Eng. 2012, 15, 295–301. [Google Scholar] [CrossRef]
- Jing, L. Gait and metabolic adaptation of walking with negative heel shoes. Res. Sports Med. 2003, 11, 277–296. [Google Scholar]
- Benz, D.A.; Stacoff, A.; Balmer, E.; Durrer, A.; Stuessi, E. Walking pattern with missing-heel shoes. J. Biomech. 1998, 1001, 132. [Google Scholar] [CrossRef]
- Leroux, A.; Fung, J.; Barbeau, H. Postural adaptation to walking on inclined surfaces: I. Normal strategies. Gait Posture 2002, 15, 64–74. [Google Scholar]
- Lange, G.W.; Hintermeister, R.A.; Schlegel, T.; Dillman, C.J.; Steadman, J.R. Electromyographic and kinematic analysis of graded treadmill walking and the implications for knee rehabilitation. J. Orthop. Sports Phys. Ther. 1996, 23, 294–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woollacott, M.H.; Tang, P.-F. Balance control during walking in the older adult: Research and its implications. Phys. Ther. 1997, 77, 646–660. [Google Scholar] [CrossRef] [PubMed]
- Winter, D.A.; Patla, A.E.; Frank, J.S.; Walt, S.E. Biomechanical walking pattern changes in the fit and healthy elderly. Phys. Ther. 1990, 70, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Sudarsky, L. Gait disorders in the elderly. N. Engl. J. Med. 1990, 322, 1441–1446. [Google Scholar]
- Hollman, J.H.; Brey, R.H.; Bang, T.J.; Kaufman, K.R. Does walking in a virtual environment induce unstable gait?: An examination of vertical ground reaction forces. Gait Posture 2007, 26, 289–294. [Google Scholar] [CrossRef]
- John, C.T.; Seth, A.; Schwartz, M.H.; Delp, S.L. Contributions of muscles to mediolateral ground reaction force over a range of walking speeds. J. Biomech. 2012, 45, 2438–2443. [Google Scholar] [CrossRef] [Green Version]
- Wannop, J.W.; Worobets, J.T.; Stefanyshyn, D.J. Normalization of ground reaction forces, joint moments, and free moments in human locomotion. J. Appl. Biomech. 2012, 28, 665–676. [Google Scholar] [CrossRef]
- Moccellin, A.; Driusso, P. Adjustments in static and dynamic postural control during pregnancy and their relationship with quality of life: A descriptive study. Fisioterapia 2012, 34, 196–202. [Google Scholar] [CrossRef]
- Sole, G.; Pataky, T.; Sole, C.C.; Hale, L.; Milosavljevic, S. Age-related plantar centre of pressure trajectory changes during barefoot walking. Gait Posture 2017, 57, 188–192. [Google Scholar] [CrossRef]
- Winter, D.A. Human balance and posture control during standing and walking. Gait Posture 1995, 3, 193–214. [Google Scholar] [CrossRef]
- Sims, K.; Brauer, S. A rapid upward step challenges medio-lateral postural stability. Gait Posture 2000, 12, 217–224. [Google Scholar] [CrossRef]
- Maki, B.E.; McIlroy, W.E. Control of rapid limb movements for balance recovery: Age-related changes and implications for fall prevention. Age Ageing 2006, 35, ii12–ii18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Li, B. Influence of in-shoe heel lifts on plantar pressure and center of pressure in the medial–lateral direction during walking. Gait Posture 2014, 39, 1012–1016. [Google Scholar] [CrossRef] [PubMed]
- Hesse, S.; Luecke, D.; Jahnke, M.; Mauritz, K. Gait function in spastic hemiparetic patients walking barefoot, with firm shoes, and with ankle-foot orthosis. Int. J. Rehabil. Res. 1996, 19, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Robain, G.; Valentini, F.; Renard-Deniel, S.; Chennevelle, J.; Piera, J. A baropodometric parameter to analyze the gait of hemiparetic patients: The path of center of pressure. Ann. Readapt Med. Phys. 2006, 49, 609–613. [Google Scholar] [CrossRef]
- Nag, P.; Nag, A.; Vyas, H.; Shukla, P.S. Influence of footwear on stabilometric dimensions and muscle activity. Footwear Sci. 2011, 3, 179–188. [Google Scholar] [CrossRef]
- Orendurff, M.S.; Segal, A.D.; Klute, G.K.; Berge, J.S.; Rohr, E.S.; Kadel, N.J. The effect of walking speed on center of mass displacement. J. Rehabil. Res. Dev. 2004, 41, 829–834. [Google Scholar] [CrossRef] [Green Version]
- Xiang, L.; Mei, Q.; Wang, A.; Shim, V.; Fernandez, J.; Gu, Y. Evaluating function in the hallux valgus foot following a 12-week minimalist footwear intervention: A pilot computational analysis. J. Biomech. 2022, 132, 110941. [Google Scholar] [CrossRef]
- Xu, D.; Quan, W.; Zhou, H.; Sun, D.; Baker, J.S.; Gu, Y. Explaining the differences of gait patterns between high and low-mileage runners with machine learning. Sci. Rep. 2022, 12, 2981. [Google Scholar] [CrossRef]
Abbreviation | Explanation |
---|---|
PHS | Positive Heel Shoes |
NHS | Negative Heel Shoes |
NS | Normal Shoes |
SPM | Statistical Parametric Mapping |
ANOVA | Analyses of Variance |
ACOG | American College of Obstetricians and Gynecologists |
GRF | Ground Reaction Force |
COP | Center of Pressure |
AP | Anterior-Posterior |
ML | Medial-Lateral |
Indexes (Unit) | NHS (Mean ± SD) | NS (Mean ± SD) | PHS (Mean ± SD) | F | p |
---|---|---|---|---|---|
Stride length (m) | 0.99 ± 0.08 c | 1.05 ± 0.07 | 1.11 ± 0.03 a | 10.24 | <0.001 |
Walking speed (m/s) | 0.76 ± 0.11 bc | 0.83 ± 0.16 a | 0.90 ± 0.08 b | 5.97 | <0.001 |
Step frequency (step/s) | 1.48 ± 0.13 | 1.56 ± 0.21 | 1.56 ± 0.14 | 1.51 | 0.25 |
Double support time/single support time (%) | 0.32 ± 0.01 | 0.32 ± 0.02 | 0.31 ± 0.01 | 2.02 | 0.16 |
Indexes (Unit) | NHS (Mean ± SD) | NS (Mean ± SD) | PHS (Mean ± SD) | F | p |
---|---|---|---|---|---|
Peak medial angles (°) | 3.28 ± 0.91 | 3.38 ± 0.70 | 3.14 ± 0.48 | 0.35 | 0.71 |
Peak anterior angles (°) | 16.00 ± 1.79 | 15.90 ± 3.31 | 17.00 ± 1.61 | 1.22 | 0.30 |
Peak posterior angles (°) | 12.82 ± 2.61 bc | 15.22 ± 2.18 a | 14.53 ± 1.72 a | 16.52 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Lu, Z.; Sun, D.; Xuan, R.; Zheng, Z.; Gu, Y. The Influence of a Shoe’s Heel-Toe Drop on Gait Parameters during the Third Trimester of Pregnancy. Bioengineering 2022, 9, 241. https://doi.org/10.3390/bioengineering9060241
Li X, Lu Z, Sun D, Xuan R, Zheng Z, Gu Y. The Influence of a Shoe’s Heel-Toe Drop on Gait Parameters during the Third Trimester of Pregnancy. Bioengineering. 2022; 9(6):241. https://doi.org/10.3390/bioengineering9060241
Chicago/Turabian StyleLi, Xin, Zhenghui Lu, Dong Sun, Rongrong Xuan, Zhiyi Zheng, and Yaodong Gu. 2022. "The Influence of a Shoe’s Heel-Toe Drop on Gait Parameters during the Third Trimester of Pregnancy" Bioengineering 9, no. 6: 241. https://doi.org/10.3390/bioengineering9060241
APA StyleLi, X., Lu, Z., Sun, D., Xuan, R., Zheng, Z., & Gu, Y. (2022). The Influence of a Shoe’s Heel-Toe Drop on Gait Parameters during the Third Trimester of Pregnancy. Bioengineering, 9(6), 241. https://doi.org/10.3390/bioengineering9060241