Effects of Jump-Rope-Specific Footwear Selection on Lower Extremity Biomechanics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments
2.3. Procedures
2.4. Data Reduction and Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thompson, W.R. Worldwide survey of fitness trends for 2022. ACSMs Health Fit. J. 2021, 26, 11–20. [Google Scholar]
- Ha, A.S.; Lonsdale, C.; Ng, J.Y.Y.; Lubans, D.R. A School-Based Rope Skipping Intervention for Adolescentsin Hong Kong: Protocol of a Matched-Pair Cluster Randomized Controlled Trial. BMC Public Health 2014, 14, 535. [Google Scholar]
- Ha, A.S.; Burnett, A.; Sum, R.; Medic, N.; Ng, J.Y.Y. Outcomes of the Rope Skipping “STAR” Programme for School children. J. Hum. Kinet. 2015, 45, 233–240. [Google Scholar] [PubMed] [Green Version]
- Quirk, J.E.; Sinning, W.E. Anaerobic and aerobic responses of males and females to rope skipping. Med. Sci. Sports Exerc. 1982, 14, 26–29. [Google Scholar] [PubMed]
- Duzgun, I.; Baltaci, G.; Colakoglu, F.; Tunay, V.B.; Ozer, D. The effects of jump-rope training on shoulder isokinetic strength in adolescent volleyball players. J. Sport Rehabil. 2010, 19, 184–199. [Google Scholar] [PubMed]
- Miyaguchi, K.; Demura, S.; Omoya, M. Relationship between jump rope double unders and sprint performance in elementary schoolchildren. J. Strength Cond. Res. 2015, 29, 3229–3233. [Google Scholar]
- Ozer, D.; Duzgun, I.; Baltaci, G.; Karacan, S.; Colakoglu, F. The effects of rope or weighted rope jump training on strength, coordination and proprioception in adolescent female volleyball players. J. Sport Med. Phys. Fit. 2011, 51, 211. [Google Scholar]
- Pettersson, U.; Nordstro, P.; Alfredson, H. Effect of high impact activity on bone mass and size in adolescent females: A comparative study between two different types of sports. Calcif. Tissue Int. 2000, 67, 207–214. [Google Scholar]
- Eler, N.; Acar, H. The Effects of the Rope Jump Training Program in Physical Education Lessons on Strength, Speed and VO2Max in Children. Univers. J. Educ. Res. 2018, 6, 340–345. [Google Scholar]
- Martinez, A.; Snyder, A.J.; Smith, G.A. Home Exercise Equipment-Related Injuries Among Children in the United States. Clin. Pediatr. 2011, 50, 553–558. [Google Scholar] [CrossRef]
- Theisen, D.; Malisoux, L.; Gette, P.; Nührenbörger, C.; Urhausen, A. Footwear and running-related injuries: Running on faith? Sports Orthop. Traumatol. 2016, 32, 169–176. [Google Scholar]
- Prado, M.P.; Saito, G.H. Sports Footwear: Problems and Advances. In The Sports Medicine Physician; Rocha Piedade, S., Imhoff, A., Clatworthy, M., Cohen, M., Espregueira-Mendes, J., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Lake, M.J. Determining the protective function of sports footwear. Ergonomics 2000, 43, 1610–1621. [Google Scholar] [CrossRef]
- Chiou, W.; Chiu, H.; Chao, A.; Wang, M.; Chen, Y. The influence of body mass on the foot dimensions during pregnancy. Appl. Ergon. 2015, 46, 212–217. [Google Scholar] [PubMed]
- Lamontagne, M.; Kennedy, M.J. The biomechanics of vertical hopping: A review. Res. Sports Med. 2013, 21, 380–394. [Google Scholar] [CrossRef] [PubMed]
- Shorten, M.R. The energetics of running and running shoes. J. Biomech. 1993, 26, 41–51. [Google Scholar] [PubMed]
- Jang, K.H.; Son, M.J.; Kim, D.Y.; Lee, M.G.; Kim, Y.K.; Kim, J.H.; Youm, C.H. Effects of skill level and feet width on kinematic and kinetic variables during jump rope single under. Korean J. Sport Biomech. 2017, 27, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.Y.; Jang, K.H.; Lee, M.G.; Son, M.J.; Kim, Y.K.; Kim, J.H.; Youm, C.H. Analysis of kinematics and kinetics according to skill level and sex in double-under jump rope technique. Korean J. Sport Biomech. 2017, 27, 171–179. [Google Scholar] [CrossRef]
- Pittenger, V.M.; McCaw, S.T.; Thomas, D.O. Vertical ground reaction forces of children during one- and two-leg rope jumping. Res. Q. Exerc. Sport 2002, 73, 445–449. [Google Scholar] [CrossRef]
- Shek, M.C.; Fong, D.T.P.; Hong, Y. Ground reaction forces and plantar kinetics of rope skipping in different sports shoes–A pilot study. In Proceedings of the 23rd International Symposium on Biomechanics in Sports, Beijing, China, 22–27 August 2005. [Google Scholar]
- Bruce, O.L.; Ramsay, M.; Kennedy, G.; Edwards, W.B. Lower-limb joint kinetics in jump rope skills performed by competitive athletes. Sports Biomech. 2020, 28, 1–14. [Google Scholar] [CrossRef]
- Yu, H.-B.; Tai, W.-H.; Li, J.; Zhang, R.; Hao, W.-Y.; Lin, J.-Z. Effects of Shoe Midsole Hardness on Lower Extremity Biomechanics during Jump Rope in Healthy Males. Healthcare 2021, 9, 1394. [Google Scholar] [CrossRef]
- Hobara, H.; Inoue, K.; Muraoka, T.; Omuro, K.; Sakamoto, M.; Kanosue, K. Leg stiffness adjustment for a range of hopping frequencies in humans. J. Biomech. 2010, 43, 506–511. [Google Scholar] [PubMed]
- Sinclair, J.; Chockalingam, N.; Naemi, R.; Vincent, H. The effects of sport-specific and minimalist footwear on the kinetics and kinematics of three netball-specific movements. Footwear Sci. 2014, 7, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Putti, A.B.; Arnold, G.P.; Cochrane, L.; Abboud, R.J. The Pedar in-shoe system: Repeatability and normal pressure values. Gait Posture 2007, 25, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Queen, R.M.; Mall, N.A.; Nunley, J.A.; Chuckpaiwong, B. Differences in plantar loading between flat and normal feet during different athletic tasks. Gait Posture 2009, 29, 582–586. [Google Scholar] [PubMed]
- Van Melick, N.; Meddeler, B.M.; Hoogeboom, T.J.; Nijhuis-van der Sanden, M.W.G.; van Cingel, R.E.H. How to determine leg dominance: The agreement between self-reported and observed performance in healthy adults. PLoS ONE 2017, 12, e0189876. [Google Scholar]
- Barnett, S.; Cunningham, J.L.; West, S. A comparison of vertical force and temporal parameters produced by an in-shoe pressure measuring system and a force platform. Clin. Biomech. 2001, 16, 353–357. [Google Scholar] [CrossRef]
- Weizman, Y.; Tan, A.M.; Fuss, F.K. Benchmarking study of the forces and centre of pressure derived from a novel smart-insole against an existing pressure measuring insole and force plate. Measurement 2019, 142, 48–59. [Google Scholar]
- Cheung, J.T.; Zhang, M. Parametric design of pressure-relieving foot orthosis using statistics-based finite element method. Med. Eng. Phys. 2008, 30, 269–277. [Google Scholar] [CrossRef]
- Yu, H.B.; Monchai, C.; Tsai, Y.S. Effects of athletic footwear on plantar force during rope skipping. Int. J. Exp. Comput. Biomech. 2018, 4, 184–195. [Google Scholar]
- Hsu, Y.C.; Gung, Y.W.; Shih, S.L.; Feng, C.K.; Wei, S.H.; Yu, C.H.; Chen, C.S. Using an Optimization Approach to Design an Insole for Lowering Plantar Fascia Stress—A Finite Element Study. Ann. Biomed. Eng. 2008, 36, 1345. [Google Scholar] [CrossRef]
- Weist, R.; Eils, E.; Rosenbaum, D. The influence of muscle fatigue on electromyogram and plantar pressure patterns as an explanation for the incidence of metatarsal stress fractures. Am. J. Sports Med. 2004, 32, 1893–1898. [Google Scholar] [PubMed]
- Hobara, H.; Kanosue, K.; Suzuki, S. Changes in muscle activity with increase in leg stiffness during hopping. Neurosci. Lett. 2007, 418, 55–59. [Google Scholar] [PubMed]
- Pithioux, M.; Chavet, P.; St-Onge, N.; Nicol, C. Influence of muscle preactivation of the lower limb on impact dynamics in the case of frontal collision. Int. J. Crashworthiness 2005, 10, 557–565. [Google Scholar] [CrossRef] [Green Version]
- Pruyn, E.C.; Watsford, M.; Murphy, A. The relationship between lower-body stiffness and dynamic performance. Appl. Physiol. Nutr. Metab. 2014, 39, 1144–1150. [Google Scholar] [CrossRef]
Footwear | Running Shoe | Jumping Shoe | p-Values | ||||
---|---|---|---|---|---|---|---|
Variables | One-Leg Jump | Two-Leg Jump | One-Leg Jump | Two-Leg Jump | Interaction | Footwear | Condition |
vGRF (N) c | 1829.04 ± 320.14 | 2511.32 ± 516.40 | 2045.33 ± 638.47 | 2494.61 ± 588.51 | p = 0.220 | p = 0.275 | p < 0.001 |
Peak vGRF (N) c | 1936.53 ± 351.39 | 2610.48 ± 529.64 | 2146.99 ± 628.34 | 2574.54 ± 591.77 | p = 0.209 | p = 0.345 | p < 0.001 |
vGRF (BW) c | 3.07 ± 0.36 | 4.21 ± 0.53 | 3.39 ± 0.64 | 4.17 ± 0.60 | p = 0.173 | p = 0.283 | p < 0.001 |
Peak vGRF (BW) c | 3.27 ± 0.43 | 4.38 ± 0.55 | 3.57 ± 0.62 | 4.30 ± 0.59 | p = 0.175 | p = 0.390 | p < 0.001 |
Contact time (ms) | 289.06 ± 104.36 | 248.38 ± 71.33 | 297.54 ± 88.82 | 249.98 ± 74.81 | p = 0.670 | p = 0.498 | p = 0.054 |
Flight time (ms) a,c | 235.54 ± 57.39 | 297.8 ± 93.80 | 238 ± 59.65 | 283.56 ±9 3.15 | p = 0.040 | p = 0.274 | p = 0.002 |
Variables | Running Shoe | Jumping Shoe | p-Values | ||||
---|---|---|---|---|---|---|---|
One-Leg Jump | Two-Leg Jump | One-Leg Jump | Two-Leg Jump | Interaction | Footwear | Condition | |
Peak force (N) c | 1579.83 ± 392.28 | 987.60 ± 227.21 | 1552.26 ± 330.29 | 1097.13 ± 272.73 | p = 0.150 | p = 0.195 | p < 0.001 |
Peak force (BW) c | 2.66 ± 0.52 | 1.71 ± 0.28 | 2.61 ± 0.42 | 1.84 ± 0.31 | p = 0.189 | p = 0.376 | p < 0.001 |
Peak pressure (kpa) b,c | 438.57 ± 122.37 | 324.76 ± 66.60 | 469.34 ± 110.76 | 391.90 ± 148.69 | p = 0.453 | p = 0.044 | p = 0.005 |
Average pressure (kpa) c | 139.071 ± 23.82 | 115.38 ± 23.44 | 149.998 ± 32.43 | 128.49 ± 39.88 | p = 0.841 | p = 0.073 | p = 0.006 |
RF (kpa) | 63.13 ± 29.20 | 30.88 ± 26.21 | 40.22 ± 59.37 | 32.39 ± 66.63 | p = 0.456 | p = 0.385 | p = 0.223 |
Lat MF (kpa) a,b,c | 183.79 ± 60.33 | 89.81 ± 59.57 | 114.52 ± 84.66 | 103.34 ±5 8.51 | p = 0.036 | p = 0.001 | p = 0.001 |
Med MF (kpa) a,b,c | 125.55 ± 32.13 | 43.09 ± 37.73 | 58.52 ± 37.09 | 28.28 ± 30.38 | p = 0.007 | p < 0.000 | p < 0.001 |
Med FF (kpa) | 229.77 ± 81.09 | 272.70 ± 174.04 | 296.42 ± 216.99 | 283.61 ± 158.99 | p = 0.481 | p = 0.290 | p = 0.533 |
Mid FF (kpa) | 364.83 ± 68.14 | 412.97 ± 178.76 | 453.78 ± 127.85 | 463.62 ± 148.05 | p = 0.526 | p = 0.107 | p = 0.430 |
Lat FF (kpa) | 157.08 ± 7.74 | 185.47 ± 67.44 | 198.05 ± 42.33 | 217.29 ± 101.06 | p = 0.711 | p = 0.207 | p = 0.059 |
H (kpa) c | 136.56 ± 33.73 | 196.06 ± 73.11 | 144.72 ± 43.23 | 179.48 ± 24.58 | p = 0.418 | p = 0.798 | p = 0.002 |
LT (kpa) b | 131.57 ± 27.42 | 219.27 ± 99.52 | 179.31 ± 66.88 | 186.31 ± 42.29 | p = 0.291 | p = 0.018 | p = 0.709 |
P × T (kpa∙s) c | 5069.13 ± 1747.14 | 3562.34 ± 1396.92 | 4651.14 ± 1733.35 | 4393.57 ± 1116.79 | p = 0.072 | p = 0.714 | p = 0.039 |
F × T (N∙s) c | 14,701.38 ± 5390.83 | 8855.83 ± 3120.25 | 13,049.98 ± 4451.39 | 8517.45 ± 4085.79 | p = 0.519 | p = 0.242 | p < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.-B.; Li, J.; Zhang, R.; Hao, W.-Y.; Lin, J.-Z.; Tai, W.-H. Effects of Jump-Rope-Specific Footwear Selection on Lower Extremity Biomechanics. Bioengineering 2022, 9, 135. https://doi.org/10.3390/bioengineering9040135
Yu H-B, Li J, Zhang R, Hao W-Y, Lin J-Z, Tai W-H. Effects of Jump-Rope-Specific Footwear Selection on Lower Extremity Biomechanics. Bioengineering. 2022; 9(4):135. https://doi.org/10.3390/bioengineering9040135
Chicago/Turabian StyleYu, Hai-Bin, Jing Li, Rui Zhang, Wei-Ya Hao, Jian-Zhi Lin, and Wei-Hsun Tai. 2022. "Effects of Jump-Rope-Specific Footwear Selection on Lower Extremity Biomechanics" Bioengineering 9, no. 4: 135. https://doi.org/10.3390/bioengineering9040135
APA StyleYu, H. -B., Li, J., Zhang, R., Hao, W. -Y., Lin, J. -Z., & Tai, W. -H. (2022). Effects of Jump-Rope-Specific Footwear Selection on Lower Extremity Biomechanics. Bioengineering, 9(4), 135. https://doi.org/10.3390/bioengineering9040135