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Abstract: Footwear is among the most important equipment in sports to decrease injuries and enhance
performance during exercise. In this study, we investigated differences in lower extremity plantar
pressure and muscle activations during jump rope activities. Ten participants performed jump rope
under two landing conditions with different footwear. A force platform (AMTI, 1000 Hz), a Novel
Pedar-X system (Nove, 100 Hz), and a wireless electromyography (EMG) system (Noraxon, 1500 Hz)
were used to measure biomechanical parameters during the jump rope exercise. Vertical ground
reaction forces (vGRF), plantar pressure, and lower extremity muscle activations were analyzed.
One-leg landing resulted in a significantly greater vGRF and shorter fly time than two-leg landing
(p < 0.05). A significantly higher peak pressure and lesser toe (LT) area pressure was shown with
the jumping shoe (all p < 0.05), but lower plantar pressure resulted in the middle foot area (p < 0.05).
The EMG results of tibialis anterior (TA) were significantly greater with one-leg landing (all p < 0.05)
during the pre- and background activity (BGA) phases. The results suggest that plantar pressure
distribution should be considered when deciding on footwear during jump rope exercises, but care
should be taken with regards to recovery after repeated collisions and fatigue. The jumping shoe
provides benefits in terms of decreased plantar pressure sustained during jump rope exercises.

Keywords: jump rope; plantar pressure; electromyography

1. Introduction

Due to the global coronavirus disease 2019 (COVID-19) pandemic, people are con-
tinuing to stay at home and take advantage of accessible equipment to maintain physical
activities (PA). In 2022, the “home-based exercise” concept arose as an ACSM fitness
trend [1], using simple equipment for health promotion or self-training. Under these cir-
cumstances, jump rope is a recommended PA, given that it is highly accessible, enjoyable,
and affordable for anyone [2,3]. Numerous studies have shown that the jump rope is
beneficial to cardiorespiratory health [4], strength [5], agility [6], coordination [7], and bone
health [8]. Similar benefits are observed in children [9]. However, a study on home exercise
equipment-related injuries indicated that the proportion of injuries caused by jump ropes
was 26.3%, with most injuries involving the ankle (79.1%) [10], whereas appropriate shoes
may decrease injury risk [11]. Therefore, footwear selection is particularly important in
jump rope exercise.

Footwear is the interface between the foot and the ground that protects the plantar,
provides shock absorption against repetitive impact, and stabilizes the feet [12]. Footwear
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is also designed to enhance the performance of movement and foot–ground interaction
during exercise [13]. Poorly fitting shoes have a negative effect on muscles and bones and
may lead to foot pain [14]. Sports footwear choices should be made on the basis of the type
of activity rather than on an individual basis [12]. In the context of exercising, performance,
comfort, and injury prevention should be considered in footwear selection [12]. Some
characteristics of footwear, such as stability, flexibility, weight, and sole structure, are
modified in the name of performance and injury prevention [13]. However, people who
participate in exercise are more focused on the protective role of footwear in helping to
prevent either acute injury or chronic damage during sporting activities [12–14].

The characteristics of jump rope include continuous hopping, wherein the majority
of jumping forces are absorbed by the ankle and knee because of the relative rigidity
of the lower extremity [15]. Therefore, ankle injury prevention is an important issue in
jump rope exercises [10], and appropriate footwear may help to decrease injuries caused
by jump rope [16]. Previous studies have reported on vertical ground reaction force
(vGRF) [17–20], plantar pressure [20], joint kinetics [21], kinematics [17,18], and electromyo-
graphy (EMG) [22,23] as parameters to consider during jump rope exercises. These studies
primarily compared jump rope and similar actions, such as hopping [23], and assessed
the difference in hardness of the midsoles of different shoes [22]. However, there is a lack
of investigation into the effects of different footwear on the biomechanical parameters of
injury risk in the jumper. Currently, there is a trend in many sports towards selecting mini-
malist footwear for performance and training, yet the efficacy of these types of footwear
has not been established [24]. Therefore, the purpose of this study was to evaluate the
influence of jump-rope- and running-specific footwear on the plantar pressure and lower
extremity EMG of one- and two-leg consecutive single movements of jump rope. However,
we hypothesized that the distribution and magnitude of lower-limb muscle activations and
plantar pressure parameters would be different depending on footwear.

2. Materials and Methods
2.1. Participants

Ten healthy physical education graduate students (age 23 ± 1.3 years, height
165.6 ± 8.3 cm, body mass 58.6 ± 8.7 kg) were recruited (5 male and 5 female). Partic-
ipants were selected that had ability to complete at least 140 single under-rope jumps in
1 min. The participants were free of any lower extremity injuries for 6 months prior to
the tests. All the participants read and signed informed consent before the experiment.
This research was conducted according to the guidelines of the Declaration of Helsinki and
approved by the Ethics Committee of the University of Taipei (IRB-2016-021).

2.2. Instruments

Force data were collected using a force platform (60 × 90 cm AMTI BP600900-6-2000;
Advance Mechanical Technology, INC., Watertown, MA, USA) at a 1000 Hz sampling
rate. Plantar pressures were collected using a Novel Pedar-X pressure distribution insole
(Novel GmbH, Munich, Germany) at a 100 Hz sampling rate. There were 99 force sensors
contained in the insole, with a spatial resolution of approximately 10 mm and a measuring
range up to 600 kPa. The system has previously been shown to have high reliability and
good validity of plantar pressures [25]. A wireless surface electrode (Noraxon USA Inc.,
Scottsdale, AZ, USA) was used to record the muscle activations of the vastus medialis (VM),
biceps femoris (BF), tibialis anterior (TA), and gastrocnemius muscle (GA) of the dominant
leg at a 1500 Hz sampling rate [22].

2.3. Procedures

A 5 min dynamic warmup included jump rope practice and leg muscle stretching.
Then, a 3 min walk was performed to help accustomate the participants to the backpacks
and insoles. The skin was shaved and swabbed with alcohol to decrease EMG artifacts
before the electrode piece was attached. Participants were then tested for their maximal
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voluntary isometric contraction (MVC) on four muscles for the sake of normalization [22].
Each muscle was voluntarily contracted and held with maximal effort for 5 s. Pedar insoles
were placed in both shoes, and the insole was connected to the Pedar-X box in a backpack,
which was attached to the waist of each participant.

Subsequently, the jump rope test was conducted. Each participant was randomly
assigned to perform one- and two-leg jump rope trials on a force platform with two testing
conditions—running shoe (Li Ning, Beijing, China) and jumping shoe (Jingyuan, Hongkong,
China)—at a tempo of 2.2 Hz under metronome guidance. The footwear is shown in
Figure 1. The most differentiated of the test footwear was the design of forefoot area; that of
the running shoe was upturned, whereas that of the jumping shoe was flat. There were also
some differences in the thickness of the midsole; that of the running shoe (forefoot 20 mm,
heel 29 mm) was thicker than that of the jumping shoe (forefoot 17.6 mm, heel 26.7 mm).
Each trial was undertaken for 30 s to ensure stable jumping was performed [17,22]. Five
consecutive cycles of jump rope exercises (ground contact—flight—ground contact) were
selected for further analysis from the 30 s of data collected. Participants had a 1 min rest
between trials.
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Figure 1. Test footwear: (A) running shoe; (B) jumping shoe.

2.4. Data Reduction and Analysis

Ground contact and flight time were measured by the force platform. Plantar pressure
was processed using Pedar Multiproject-ip software (Novel Electronics, New Delhi, India),
which divided the foot into 8 regions (Figure 2) for measurement [26]. The discrete plantar
pressure measures extracted for statistical analysis were maximum force, peak pressure,
average pressure, and force–time integral. The vGRF data were normalized to body weight
(BW). The variables of the dominant leg were used for analysis, and this was defined as
the segment that would be used to kick a ball [27]. Raw EMG signals were modified by
a band-pass filter at 20–400 Hz and full-wave-rectified to denoise and remove artefacts.
The root mean square (RMS) algorithm was calculated using a window length of 50.
Four EMG phases were analyzed during landings [10,11]. The 100 ms prior to ground
contact was defined as the pre-activation (PRE), 30 ms after ground contact was defined as
the background activity (BGA), the 30–60 ms after ground contact was defined as a short-
latency stretch reflex component (M1) from the spinal reflex, and the 60–90 ms after the
ground contact was defined as the long-latency stretch reflex component (M2) by voluntary
muscle activity.
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2.5. Statistical Analysis

SPSS software (IBM SPSS Statistics 21.0, Somers, New York, NY, USA) was used
for statistical analysis. Descriptive data are presented as the means (M) and standard
deviations (SD) of the parameters. Data homogeneity was tested using Levene’s test, and
Shapiro–Wilk tests were conducted to assess the normal distribution. Two-way repeated
measures ANOVA was used to determine the differences between landing conditions and
footwear during jump rope exercises. Tukey’s honestly significant difference (HSD) test
post hoc analysis was then conducted when the level of significance was met; the level of
significance for all statistical tests was p = 0.05.

3. Results

The results of the variations in the main effects and the simple main effects on footwear
and landing conditions are shown in Tables 1 and 2. The force platform results show that
the vGRF and peak vGRF were significantly greater in two-leg landing (all p < 0.05). No
significant difference was found in contact time (p > 0.05). There was an interaction found
between footwear and landing conditions in terms of flight time. The simple main effects
of flight time show that two-leg landing was significantly longer than one-leg landing
(Table 1).

Table 1. Descriptive statistics (Mean ± SD) and statistical results of force platform variables during
the jump rope task.

Footwear Running Shoe Jumping Shoe p-Values

Variables One-Leg Jump Two-Leg Jump One-Leg Jump Two-Leg Jump Interaction Footwear Condition

vGRF (N) c 1829.04 ± 320.14 2511.32 ± 516.40 2045.33 ± 638.47 2494.61 ± 588.51 p = 0.220 p = 0.275 p < 0.001
Peak vGRF (N) c 1936.53 ± 351.39 2610.48 ± 529.64 2146.99 ± 628.34 2574.54 ± 591.77 p = 0.209 p = 0.345 p < 0.001

vGRF (BW) c 3.07 ± 0.36 4.21 ± 0.53 3.39 ± 0.64 4.17 ± 0.60 p = 0.173 p = 0.283 p < 0.001
Peak vGRF (BW) c 3.27 ± 0.43 4.38 ± 0.55 3.57 ± 0.62 4.30 ± 0.59 p = 0.175 p = 0.390 p < 0.001
Contact time (ms) 289.06 ± 104.36 248.38 ± 71.33 297.54 ± 88.82 249.98 ± 74.81 p = 0.670 p = 0.498 p = 0.054
Flight time (ms) a,c 235.54 ± 57.39 297.8 ± 93.80 238 ± 59.65 283.56 ±9 3.15 p = 0.040 p = 0.274 p = 0.002

a means significant interaction of footwear and landing condition. c means significant difference between one-
and two-leg landing during jump rope.

Table 2. Descriptive statistics (Mean ± SD) and statistical results of plantar pressure variables during
the jump rope task.

Variables
Running Shoe Jumping Shoe p-Values

One-Leg Jump Two-Leg Jump One-Leg Jump Two-Leg Jump Interaction Footwear Condition

Peak force (N) c 1579.83 ± 392.28 987.60 ± 227.21 1552.26 ± 330.29 1097.13 ± 272.73 p = 0.150 p = 0.195 p < 0.001
Peak force (BW) c 2.66 ± 0.52 1.71 ± 0.28 2.61 ± 0.42 1.84 ± 0.31 p = 0.189 p = 0.376 p < 0.001

Peak pressure (kpa) b,c 438.57 ± 122.37 324.76 ± 66.60 469.34 ± 110.76 391.90 ± 148.69 p = 0.453 p = 0.044 p = 0.005
Average pressure (kpa) c 139.071 ± 23.82 115.38 ± 23.44 149.998 ± 32.43 128.49 ± 39.88 p = 0.841 p = 0.073 p = 0.006

RF (kpa) 63.13 ± 29.20 30.88 ± 26.21 40.22 ± 59.37 32.39 ± 66.63 p = 0.456 p = 0.385 p = 0.223
Lat MF (kpa) a,b,c 183.79 ± 60.33 89.81 ± 59.57 114.52 ± 84.66 103.34 ±5 8.51 p = 0.036 p = 0.001 p = 0.001

Med MF (kpa) a,b,c 125.55 ± 32.13 43.09 ± 37.73 58.52 ± 37.09 28.28 ± 30.38 p = 0.007 p < 0.000 p < 0.001
Med FF (kpa) 229.77 ± 81.09 272.70 ± 174.04 296.42 ± 216.99 283.61 ± 158.99 p = 0.481 p = 0.290 p = 0.533
Mid FF (kpa) 364.83 ± 68.14 412.97 ± 178.76 453.78 ± 127.85 463.62 ± 148.05 p = 0.526 p = 0.107 p = 0.430
Lat FF (kpa) 157.08 ± 7.74 185.47 ± 67.44 198.05 ± 42.33 217.29 ± 101.06 p = 0.711 p = 0.207 p = 0.059

H (kpa) c 136.56 ± 33.73 196.06 ± 73.11 144.72 ± 43.23 179.48 ± 24.58 p = 0.418 p = 0.798 p = 0.002
LT (kpa) b 131.57 ± 27.42 219.27 ± 99.52 179.31 ± 66.88 186.31 ± 42.29 p = 0.291 p = 0.018 p = 0.709

P × T (kpa·s) c 5069.13 ± 1747.14 3562.34 ± 1396.92 4651.14 ± 1733.35 4393.57 ± 1116.79 p = 0.072 p = 0.714 p = 0.039
F × T (N·s) c 14,701.38 ± 5390.83 8855.83 ± 3120.25 13,049.98 ± 4451.39 8517.45 ± 4085.79 p = 0.519 p = 0.242 p < 0.001

a means significant interaction between footwear and landing condition. b means significant difference between
running shoe and jumping shoe. c means significant difference between one- and two-leg landing during jump
rope. RF = rearfoot; LatMF = lateral midfoot; MedMF = medial midfoot; MedFF = medial forefoot; MidFF = middle
forefoot; LatFF = lateral forefoot; H = hallux; LT = lesser toes; P = pressure; T = time; F = force.

The plantar pressure results show that the peak force, peak pressure, average pressure,
H area pressure, pressure–time integral, and force–time integral were significantly greater
in one-leg landing (all p < 0.05). Moreover, significantly higher peak pressure and LT
pressure were attained with the jumping shoe (all p < 0.05). No significant difference was
found in RF and forefoot areas (all p > 0.05). There was an interaction between footwear
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and landing conditions in terms of Lat MF and Med MF pressure. The simple main effects
of Lat MF and Med MF pressure were significantly smaller in two-leg landing than in
one-leg landing (both p < 0.05), and we also found a significantly lower pressure with the
jumping shoe (both p < 0.05) (Table 2).

The EMG results show that the TA was significantly greater in one-leg landing (all
p < 0.05) during the pre, BGA, and M2 phases (Figure 3). No significant difference was
found in BF and GA (p > 0.05). There was an interaction between footwear and landing
conditions in terms of VM and TA during the pre, BGA, and M2 phases. The simple main
effects of TA in two-leg landing were significantly smaller than in one-leg landing (both
p < 0.05), and we also found significantly fewer muscle activations with the jumping shoe
(both p < 0.05).
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4. Discussion

The purpose of this study was to evaluate the influence of different footwear on
the plantar pressure and lower extremity EMG during jump rope exercise. The results
demonstrate that there were greater differences in vGRF and plantar pressure variables with
different landing conditions with different footwear. The plantar pressures were greater
when wearing running shoes in peak pressure, Lat MF, Med MF, and LT areas. Additionally,
one-leg landing showed higher muscle activation in VM. The TA shows smaller muscle
activation with two-leg landing and wearing jumping shoes. These findings may offer an
important implication for those planning integrate jump rope into their training programs.
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A larger landing force was measured with the force platform than with Pedar system,
which is consistent with previous research [28]. In this study, the force platform data reflect
the total ground reaction force produced during the jump rope activity (both land in a force
platform), which acts on the whole body, whereas the data from the Pedar sensors were
restricted to the contact areas of the sensors, which measured a smaller force value than the
platform [29]. Second, the difference between the two landing conditions affects the ground
contact area (one-leg and two-leg landing), which may influence the force value calculated
by the Pedar sensors. Therefore, in the present research, the term “force” and “vGRF” were
used to represent landing force from the two devices (Table 1). Previous research indicated
that the jump rope technique may have a smaller ground contact area with increased
jumping frequency [21], which manifests as stiffness of jump movement [23]. This may
influence the force measurement from the Pedar insole but not the force platform. However,
previous research has shown a good accuracy and reliability between devices, be it the force
plate or the insole [28]. However, the force data of the Pedar insole was more implicated
in the present research to reflect one- and two-legged jump rope, as the insole pressure
measurements have a better applicability compared with those of the force platform.

A significant difference in peak plantar pressure was found, with the main difference
coming from the forefoot (H and LT areas) and midfoot (Lat MF and Med MF areas),
which may have been affected by the different forefoot design and midsole thickness of
the footwear. Previous research has indicated that the peak pressure mainly occurs in the
metatarsal heads and thumbs during jump rope exercises [20], and research using finite
element analysis has suggested that except for in the customized model, arch design was
most influential in reducing plantar pressure [30]. In the current result, however, there was
an inevitable difference between one- and two-leg jump rope, which are totally different
skills [31]. The jumping shoe shows a higher plantar pressure in the lesser forefoot but a
smaller pressure in the midfoot, which might be caused by differences in shoe structure
design, such as the flat structure in the forefoot and thinner midsole. The higher pressures
in the midfoot may increase the fascia stress [32] and accelerate fatigue [33]. From this
perspective, the jumping shoe may be suitable for long-term jumping exercise.

In the current study, the TA was significantly greater in the pre and BGA phases
when wearing the jumping shoe and performing one-leg landing, but higher activation
occurred in the M2 phase when wearing the running shoe. Generally, the pre-activity and
BGA phases are driven by signals from the central nervous system, which reflect the reflex
sensitivity by modulating the excitability of the motor neuron pool [23], and the M2 phase
is considered to be voluntarily activated by a supraspinal command, which is classified as
a long-latency reflex [34]. The mechanisms of these muscle activities adjust joint stiffness
to predict the landing impact; specifically, the processes of preparatory (pre-phase) and
reflexive (BGA-M2 phase) muscle activation contribute to functional joint stability, which is
also considered a protective mechanism that decreases lower extremity stiffness during
impact [35]. Previous research has suggested that when performing repeated strength-
shortening cycle movements, higher lower-body stiffness appeared to be advantageous [36].
Thus, the higher level of TA muscle activation in the current study may reflect greater
lower extremity stiffness with one-leg jumping and when wearing jumping shoes during
jump rope exercises. Although lower extremity stiffness was not measured, we inferred
the possible causes of the higher TA activation from the combined plantar pressure results.
However, we do not have enough evidence to prove the inference, which necessitates a
more comprehensive investigation in the future.

Some limitations of this study should be mentioned. The sample size was small, and
the technique differences may be affected by skill level [17,18]. Lower extremity stiffness
was not measured in this study, which is something future investigations should address.
Additionally, kinematics data must be investigated, which will help us better understand
the influence of shoe differences during jump rope exercises.
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5. Conclusions

The present study investigated the effects of different footwear and landing conditions
on plantar pressure, vertical ground reaction force, and lower extremity muscle activation
during jump rope exercises. The footwear structural design may influence the plantar
pressure in the midfoot area, and the movements of the jump rope activity were mainly
focused in the forefoot area. Higher TA muscle activation was observed with jumping
shoes than with running shoes during jump rope exercises, and this might reveal better
rebound of the jumping shoe. Although the difference between running and jumping
shoes may be minor, these may also have been concealed by jump rope skill level. The
results suggest that jumping shoes cause lower plantar pressure, which may be suitable for
prolonged jump rope exercises. It is important to consider footwear function and design
when participating in jump rope exercises.
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