Measuring Biosignals with Single Circuit Boards
Abstract
:1. Introduction
2. ECG and Pulse Measurements
3. Breathing Measurements
4. EMG Measurements
5. EEG Measurements
6. Bioimpedance Measurements
7. Skin Temperature Measurement
8. Moisture Detection
9. Sweat Analysis
10. Other Biosignals
11. Didactical Approaches
12. Discussion
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Da Silva, H.P.; Fred, A.; Martins, R. Biosignals for Everyone. IEEE Pervasive Comput. 2014, 13, 64–71. [Google Scholar] [CrossRef]
- Dey, N.; Ashour, A.S.; Chakraborty, S.; Banerjee, S.; Gospodinova, E.; Gospodinov, M.; Hassanien, A.E. Watermarking in biomedical signal processing. In Intelligent Techniques in Signal Processing for Multimedia Security; Dey, N., Santhi, V., Eds.; Springer: Cham, Switzerland, 2016; pp. 345–369. [Google Scholar]
- Kim, S.; Yeom, S.; Kwon, O.-J.; Shin, D.; Shin, D. Ubiquitous Healthcare System for Analysis of Chronic Patients’ Biological and Lifelog Data. IEEE Access 2018, 6, 8909–8915. [Google Scholar] [CrossRef]
- Ray, T.; Choi, J.; Reeder, J.; Lee, S.P.; Aranyosi, A.J.; Ghaffari, R.; Rogers, J.A. Soft, skin-interfaced wearable systems for sports science and analytics. Curr. Opin. Biomed. Eng. 2019, 9, 47–56. [Google Scholar] [CrossRef]
- He, L. Application of Biomedical Signal Acquisition Equipment in Human Sport Heart Rate Monitoring. J. Med. Imaging Health Inform. 2020, 10, 877–883. [Google Scholar] [CrossRef]
- Zhong, F. Experiment of biological pulse sensor and its application in physical education. Microprocess. Microsyst. 2020, 81, 103781. [Google Scholar] [CrossRef]
- Park, J.; Woo, I.; Park, S. Application of EEG for multimodal human-machine interface. In Proceedings of the 2012 12th International Conference on Control, Automation and Systems, Jeju Island, Korea, 17–21 October 2012; pp. 1869–1873. [Google Scholar]
- Song, M.-S.; Kang, S.-G.; Lee, K.-T.; Kim, J.H. Wireless, skin-mountable EMG sensor for human-machine interface applications. Micromachines 2019, 10, 879. [Google Scholar] [CrossRef] [Green Version]
- Ding, M.; Nagashima, M.; Cho, S.-G.; Takamatsu, J.; Ogasawara, T. Control of Walking Assist Exoskeleton with Time-delay Based on the Prediction of Plantar Force. IEEE Access 2020, 8, 138642–138651. [Google Scholar] [CrossRef]
- Ayvali, M.; Wickenkamp, I.; Ehrmann, A. Design, Construction and Tests of a Low-Cost Myoelectric Thumb. Technologies 2021, 9, 63. [Google Scholar] [CrossRef]
- Cochrane, C.; Hertleer, C.; Schwarz-Pfeiffer, A. Smart textiles in health: An overview. In Smart Textiles and their Applications, Woodhead Publishing Series in Textiles; Elsevier: Amsterdam, The Netherlands, 2016; pp. 9–32. [Google Scholar]
- Nigusse, A.; Malengier, B.; Mengistie, D.; Tseghai, G.; Van Langenhove, L. Development of Washable Silver Printed Textile Electrodes for Long-Term ECG Monitoring. Sensors 2020, 20, 6233. [Google Scholar] [CrossRef]
- Meding, J.T.; Tuvshinbayar, K.; Döpke, C.; Tamoue, F. Textile electrodes for bioimpedance measuring. Commun. Dev. Assembl. Text. Prod. 2021, 2, 49–60. [Google Scholar] [CrossRef]
- Blachowicz, T.; Ehrmann, G.; Ehrmann, A. Textile-Based Sensors for Biosignal Detection and Monitoring. Sensors 2021, 21, 6042. [Google Scholar] [CrossRef]
- Jiang, S.; Stange, O.; Bätcke, F.O.; Sultanova, S.; Sabantina, L. Applications of smart clothing—A brief overview. Commun. Dev. Assembl. Text. Prod. 2021, 2, 123–140. [Google Scholar] [CrossRef]
- Ehrmann, G.; Ehrmann, A. Electronic textiles. Encyclopedia 2021, 1, 115–130. [Google Scholar] [CrossRef]
- Jeong, G.S.; Baek, D.-H.; Jung, H.; Song, J.H.; Moon, J.H.; Hong, S.W.; Kim, I.Y.; Lee, S.-H. Solderable and electroplatable flexible electronic circuit on a porous stretchable elastomer. Nat. Commun. 2012, 3, 977. [Google Scholar] [CrossRef]
- Park, J.H.; Hwang, J.C.; Kim, G.G.; Park, J.-U. Flexible electronics based on one-dimensional and two-dimensional hybrid nanomaterials. InfoMat 2020, 2, 33–56. [Google Scholar] [CrossRef] [Green Version]
- Spanu, A.; Casula, G.; Cosseddu, P.; Lai, S.; Martines, L.; Pani, D.; Bonfiglio, A. Flexible and wearable monitoring systems for biomedical applications in organic flexible electronics: Fundamentals, devices, and applications. In Organic Flexible Electronics, Woodhead Publishing Series in Electronic and Optical Materials; Elsevier: Amsterdam, The Netherlands, 2021; pp. 599–625. [Google Scholar]
- Mercuri, M.; Lorato, I.R.; Liu, Y.-H.; Wieringa, F.; Van Hoof, C.; Torfs, T. Vital-sign monitoring and spatial tracking of multiple people using a contactless radar-based sensor. Nat. Electron. 2019, 2, 252–262. [Google Scholar] [CrossRef]
- Ng, C.L.; Reaz, M.B.I. Evolution of a capacitive electromyography contactless biosensor: Design and modelling techniques. Measurement 2019, 145, 460–471. [Google Scholar] [CrossRef]
- Kusche, R.; John, F.; Cimdins, M.; Hellbruck, H. Contact-Free Biosignal Acquisition via Capacitive and Ultrasonic Sensors. IEEE Access 2020, 8, 95629–95641. [Google Scholar] [CrossRef]
- Umar, A.H.; Othman, M.A.; Harun, F.K.C.; Yusof, Y. Dielectrics for Non-Contact ECG Bioelectrodes: A Review. IEEE Sensors J. 2021, 21, 18353–18367. [Google Scholar] [CrossRef]
- Ehrmann, G.; Ehrmann, A. Suitability of common single circuit boards for sensing and actuating in smart textiles. Commun. Dev. Assem. Text. Prod. 2020, 1, 170–179. [Google Scholar] [CrossRef]
- Louis, L. Working Principle of Arduino and using it as a Tool for Study and Research. Int. J. Control. Autom. Commun. Syst. 2016, 1, 21–29. [Google Scholar] [CrossRef]
- Kunikowski, W.; Czerwiński, E.; Olejnik, P.; Awrejcewicz, J. An Overview of ATmega AVR Microcontrollers Used in Scientific Research and Industrial Applications. Pomiary Autom. Robot. 2015, 215, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Arduino Products. Available online: https://www.arduino.cc/en/Main/Products (accessed on 2 January 2022).
- Joy-it Digispark Mikrocontroller. Available online: https://joy-it.net/de/products/ARD-Digispark (accessed on 2 January 2022).
- RaspberryPI Models Comparison. Available online: https://socialcompare.com/en/comparison/raspberrypi-models-comparison (accessed on 2 January 2022).
- Da Silva, H.P. Physiological sensing now open to the world: New resources are allowing us to learn, experiment, and create imaginative solutions for biomedical applications. IEEE Pulse 2018, 9, 9–11. [Google Scholar] [CrossRef] [PubMed]
- da Silva, H.P.; Guerreiro, J.; Lourenco, A.; Fred, A.; Martins, R. BITalino: A novel hardware framework for physiological computing. In Proceedings of the International Conference on Physiological Computing ‘Systems (PhyCS-2014), Lisbon, Portugal, 7–9 January 2014; SciTePress: Setúbal, Portugal, 2014; pp. 246–253. [Google Scholar]
- Alves, A.; Silva, H.; Lourenco, A.; Fred, A. BITalino: A biosignal acquisition system based on the Arduino. In Proceedings of the 6th International Conference on Bio-Inspired Systems and Signal Processing (BIOSIGNALS), Barcelona, Spain, 11–14 February 2013; SciTePress: Setúbal, Portugal, 2013; pp. 261–264. [Google Scholar]
- Da Silva, H.P.; Lourenco, A.; Fred, A.; Martins, R. BIT: Biosignal Igniter Toolkit. Comput. Methods Progr. Biomed. 2014, 115, 20–32. [Google Scholar] [CrossRef]
- Ibrahim, H.; Ewais, S.; Chatterjee, S. A novel, low-cost NeuroIS prototype for supporting bio signals experimentation based on BITalino. In Information Systems and Neuroscience; Davis, F., Riedl, R., vom Brocke, J., Léger, P.M., Randolph, A., Eds.; Springer: Cham, Switzerland, 2015; pp. 77–83. [Google Scholar]
- Pinto, A.G.; Dias, G.; Felizardo, V.; Pombo, N.; Silva, H.; Fazendeiro, P.; Crisóstomo, R.; Garcia, N. Electrocardiography, electromyography, and accelerometry signals collected with BITalino while swimming: Device assembly and preliminary results. In Proceedings of the 2016 IEEE 12th International Conference on Intelligent Computer Communication and Processing, Cluj-Napoca, Romania, 8–10 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 37–41. [Google Scholar]
- Lesko, J.; Seibert, S.; Zhu, Y. Design and validation of a low-cost non-invasive device to detect overnight hypoglycemia. Volume 3: Biomedical and Biotechnology Engineering. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Pittsburgh, PA, USA, 9–15 November 2018. [Google Scholar]
- Batista, D.; da Silva, H.P.; Fred, A.; Moreira, C.; Reis, M.; Ferreira, H.A. Benchmarking of the BITalino biomedical toolkit against an established gold standard. Heal. Technol. Lett. 2019, 6, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Olimex Shield EKG-EMG. Available online: https://www.olimex.com/Products/Duino/Shields/SHIELD-EKG-EMG/ (accessed on 12 December 2021).
- Artifice, A.; Ferreira, F.; Marcelino-Jesus, E.; Sarraipa, J.; Jardim-Goncalves, R. Student’s attention improvement supported by physiological measurement analysis. In Proceedings of the Doctoral Conference on Computing, Electrical and Industrial Systems—Technological Innovation for Smart Systems, Costa de Caparica, Portugal, 3–5 May 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 93–102. [Google Scholar]
- Guerreiro, J.; Lourenço, A.; Silva, H.; Fred, A. Performance Comparison of Low-cost Hardware Platforms Targeting Physiological Computing Applications. Procedia Technol. 2014, 17, 399–406. [Google Scholar] [CrossRef] [Green Version]
- Akshay, N.; Krishna, G.V. Design & implementation of real time bio-signal acquisition system for quality health care services for the population of rural India. In Proceedings of the 2016 IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 20–21 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1315–1319. [Google Scholar]
- Bharadwaj, K.; Dhawan, R.; Kar Ray, M.; Mahalakshmi, P. Wi-fi-based low-cost monitoring of ECG and temperature parameters using Arduino and ThingSpeak. In Advances in Systems, Control and Automation; Springer: Berlin/Heidelberg, Germany, 2017; pp. 637–646. [Google Scholar]
- Camara, C.; Peris, P.; Tapiador, J.E.; Suarez-Tangil, G. Non-invasive Multi-modal Human Identification System Combining ECG, GSR, and Airflow Biosignals. J. Med. Biol. Eng. 2015, 35, 735–748. [Google Scholar] [CrossRef] [Green Version]
- Doddapaneni, P.; Wofford, Q.; Maneth, N. Multi-sensor health platform with cloud analysis. In Proceedings of the Fifty-Second Annual International Telemetering Conference and Technical Exhibition, New Horizons in Telemetry, Glendale, AZ, USA, 7–10 November 2016; Volume 52. Available online: https://hdl.handle.net/10150/624186 (accessed on 2 January 2022).
- Shanmathi, N.; Jagannath, M. Real-time Decision Support System for Pharmaceutical Applications. Res. J. Pharm. Technol. 2018, 11, 4929. [Google Scholar] [CrossRef]
- Rahman, K.K.M.; Subashini, M.M.; Nasor, M.; Tawfik, A. Development of bio-shields for Arduino Uno. In Proceedings of the 2018 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, Sharjah, Abu Dhabi, United Arab Emirates, 6 February–5 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar]
- Rivera Julio, Y.E. Design ubiquitous architecture for telemedicine based on mhealth Arduino 4G LTE. In Proceedings of the 2016 IEEE 18th International Conference on e-Health Networking, Applications and Services (Healthcom), Munich, Germany, 14–16 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6. [Google Scholar]
- Stuart, T.; Kasper, K.A.; Iwerunmor, I.C.; McGuire, D.T.; Peralta, R.; Hanna, J.; Johnson, M.; Farley, M.; LaMantia, T.; Udorvich, P.; et al. Biosymbiotic, personalized, and digitally manufactured wireless devices for indefinite collection of high-fidelity biosignals. Sci. Adv. 2021, 7, eabj3269. [Google Scholar] [CrossRef]
- Lin, Q.; Song, S.; Castro, I.D.; Jiang, H.; Konijnenburg, M.; van Wegberg, R.; Biswas, D.; Stanzione, S.; Sijbers, W.; Van Hoof, C.; et al. Wearable Multiple Modality Bio-Signal Recording and Processing on Chip: A Review. IEEE Sens. J. 2020, 21, 1108–1123. [Google Scholar] [CrossRef]
- Ne, C.K.H.; Muzaffar, J.; Amlani, A.; Bance, M. Hearables, in-ear sensing devices for bio-signal acquisition: A narrative review. Expert Rev. Med. Devices 2021, 18, 95–128. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Seong, J.; Ozlu, B.; Shim, B.; Marakhimov, A.; Lee, S. Biosignal Sensors and Deep Learning-Based Speech Recognition: A Review. Sensors 2021, 21, 1399. [Google Scholar] [CrossRef] [PubMed]
- Stuart, T.; Cai, L.; Burton, A.; Gutruf, P. Wireless and battery-free platforms for collection of biosignals. Biosens. Bioelectron. 2021, 178, 113007. [Google Scholar] [CrossRef]
- Sayem, A.S.M.; Teay, S.H.; Shahariar, H.; Fink, P.L.; Albarbar, A. Review on Smart Electro-Clothing Systems (SeCSs). Sensors 2020, 20, 587. [Google Scholar] [CrossRef] [Green Version]
- Wagih, M.; Wei, Y.; Beeby, S. Flexible 2.4 GHz Node for Body Area Networks with a Compact High-Gain Planar Antenna. IEEE Antennas Wirel. Propag. Lett. 2018, 18, 49–53. [Google Scholar] [CrossRef] [Green Version]
- Krykpayev, B.; Farooqui, M.F.; Bilal, R.M.; Shamim, A. A WiFi tracking device printed directly on textile for wearable electronics applications. In Proceedings of the 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, USA, 22–27 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–4. [Google Scholar] [CrossRef] [Green Version]
- Bolaños-Torres, M.; Torrealba-Meléndez, R.; Muñoz-Pacheco, J.M.; Goméz-Pavón, L.D.C.; Tamariz-Flores, E.I. Multiband Flexible Antenna for Wearable Personal Communications. Wirel. Pers. Commun. 2018, 100, 1753–1764. [Google Scholar] [CrossRef]
- Pinto, J.R.; Cardoso, J.S.; Lourenço, A.; Carreiras, C. Towards a Continuous Biometric System Based on ECG Signals Acquired on the Steering Wheel. Sensors 2017, 17, 2228. [Google Scholar] [CrossRef] [Green Version]
- Madeiro, J.P.D.V.; Marques, J.A.L.; Han, T.; Pedrosa, R.C. Evaluation of mathematical models for QRS feature extraction and QRS morphology classification in ECG signals. Measurement 2020, 156, 107580. [Google Scholar] [CrossRef]
- Martínez, A.; Alcaraz, R.; Rieta, J.J. Application of the phasor transform for automatic delineation of single-lead ECG fiducial points. Physiol. Meas. 2010, 31, 1467–1485. [Google Scholar] [CrossRef]
- Maršánová, L.; Němcová, A.; Smíšek, R. Detection of P wave during Second-Degree Atrioventricular Block in ECG Signals. In Proceedings of the Student Conference Blansko; 2016; pp. 55–58. Available online: https://dspace.vutbr.cz/bitstream/handle/11012/187184/655_eeict2017.pdf (accessed on 2 January 2022).
- Mártínez, E.A.; Rossi, E.; Siri, L.N. Microprocessor-based simulator of surface ECG signals. J. Phys. Conf. Ser. 2007, 90. [Google Scholar] [CrossRef]
- Nayak, S.; Soni, M.K.; Bansal, D. Filtering techniques for ECG signal processing. Int. J. Res. Eng. Appl. Sci. 2012, 2, 671–679. [Google Scholar]
- Itterheimová, P.; Foret, F.; Kubáň, P. High-resolution Arduino-based data acquisition devices for microscale separation systems. Anal. Chim. Acta 2021, 1153, 338294. [Google Scholar] [CrossRef]
- Baskoro, F.; Sulistiyo, E.; Basuki, I.; Widodo, A.; Nurdiansyah, A.P. Design of function generator using arduino due 12 bit dac. J. Phys. Conf. Ser. 2020, 1569, 032097. [Google Scholar] [CrossRef]
- Ahamed, M.A.; Ahad, M.A.; Sohag, M.H.; Ahmad, M. Development of low cost wireless biosignal acquisition system for ECG EMG and EOG. In Proceedings of the 2015 2nd International Conference on Electrical Information and Communication Technologies, Khulna, Bangladesh, 10–12 December 2015; pp. 195–199. [Google Scholar]
- Lin, C.-T.; Wang, C.-Y.; Huang, K.-C.; Horng, S.-J.; Liao, L.-D. Wearable, Multimodal, Biosignal Acquisition System for Potential Critical and Emergency Applications. Emerg. Med. Int. 2021, 2021, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gifari, M.W.; Zakaria, H.; Mengko, R. Design of ECG Homecare: 12-lead ECG acquisition using single channel ECG device developed on AD8232 analog front end. In Proceedings of the 2015 International Conference on Electrical Engineering and Informatics (ICEEI), Denpasar, Indonesia, 10–11 August 2015; pp. 371–376. [Google Scholar] [CrossRef]
- Memon, S.; Soothar, K.; Memon, K.; Magsi, A.; Laghari, A.; Abbas, M.; Ain, N. The Design of Wireless Portable Electrocardiograph Monitoring System Based on ZigBee. ICST Trans. Scalable Inf. Syst. 2020, 7, e6. [Google Scholar] [CrossRef]
- Jeong, S.; Heo, S.; Kang, M.; Kim, H.-J. Mechanical durability enhancement of gold-nanosheet stretchable electrodes for wearable human bio-signal detection. Mater. Des. 2020, 196, 109178. [Google Scholar] [CrossRef]
- Branzila, M.; David, V. Wireless intelligent systems for biosignals monitoring using low cost devices. In Proceedings of the 19th Symposium IMEKO TC 4 Symposium and 17th IWADC Workshop, Barcelona, Spain, 18–19 July 2013; pp. 319–322. [Google Scholar]
- Cordova-Frage, T.; Sosa-Aquino, M.; Bernal-Alvarado, J.; Gómez-Aguilar, J.F.; Contreras-Gaytán, C.R.; Zaragoza-Zambrano, J.O. Wireless implementation for monitoring the bio-signal shape of blood vessels. Ing. Investig. Tecnol. 2014, 15, 11–19. [Google Scholar]
- Morales, J.M.; Díaz-Piedra, C.; Di Stasi, L.L.; Martínez-Cañada, P.; Romero, S. Low-cost Remote Monitoring of Biomedical Signals. In IWINAC 2015, Part I, LNCS 9107; Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 288–295. [Google Scholar]
- PulseSensor. Available online: https://pulsesensor.com/ (accessed on 12 October 2021).
- E-Health Sensor Platform V2.0 for Arduino and Raspberry Pi (Biometric/Medical Applications). Available online: https://www.cooking-hacks.com/documentation/tutorials/ehealth-biometric-sensor-platform-arduino-raspberry-pi-medical.html (accessed on 12 October 2021).
- Menicucci, D.; Laurino, M.; Marinari, E.; Cesari, V.; Gemignani, A. The PERFORM mask: A psychophysiological sensors mask for real-life cognitive monitoring. In Wireless Mobile Communication and Healthcare MobiHealth 2019; Lecture Notes of the Institute for Computer Science, Social Informatics and Telecommunications Engineering 320; O’Hare, G., O’Grady, M., O’Donoghue, J., Henn, P., Eds.; Springer: Cham, Switzerland, 2020; pp. 86–93. [Google Scholar]
- Bednar, T.; Babusiak, B.; Smondrk, M.; Cap, I.; Borik, S. The impact of active electrode guard layer in capacitive measurements of biosignals. Measurement 2020, 171, 108740. [Google Scholar] [CrossRef]
- Kast, C.; Krenn, M.; Aramphianlert, W.; Hofer, C.; Aszmann, O.C.; Mayr, W. Modular multi-channel real-time bio-signal acquisition system. In Proceedings of the International Conference on Advancements of Medicine and Health Care through Technology, Cluj-Napoca, Romania, 12–15 October 2016; pp. 95–98. [Google Scholar]
- Abtahi, F.; Snäll, J.; Aslamy, B.; Abtahi, S.; Seoane, F.; Lindecrantz, K. Biosignal PI, an Affordable Open-Source ECG and Respiration Measurement System. Sensors 2014, 15, 93–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hafid, A.; Benouar, S.; Kedir-Talha, M.; Abtahi, F.; Attari, M.; Seoane, F. Full Impedance Cardiography Measurement Device Using Raspberry PI3 and System-on-Chip Biomedical Instrumentation Solutions. IEEE J. Biomed. Health Inform. 2017, 22, 1883–1894. [Google Scholar] [CrossRef]
- Abtahi, F.; Aslamy, B.; Boujabir, I.; Seoane, F.; Lindecrantz, K. An affordable ECG and respiration monitoring system based on Raspberry PI and ADAS1000: First step towards homecare applications. In Proceedings of the 16th Nordic-Baltic Conference on Biomedical Engineering, Gothenburg, Sweden, 14–16 October 2014; Mindedal, H., Persson, M., Eds.; Springer: Cham, Switzerland, 2015; Volume 48, pp. 5–8. [Google Scholar]
- Hamil, H.; Zidelmal, Z.; Azzaz, M.S.; Sakhi, S.; Kaibou, R.; Djilali, S.; Abdeslam, D.O. Design of a secured telehealth system based on multiple biosignals diagnosis and classification for IoT application. Expert Syst. 2021, e12765. [Google Scholar] [CrossRef]
- Hugeng, H.; Kurniawan, R. Development of the ‘Healthcor’ System as a Cardiac Disorders Symptoms Detector using an Expert System based on Arduino Uno. Int. J. Technol. 2016, 7, 78. [Google Scholar] [CrossRef]
- Alam, M.; Hussain, M.; Amin, A. A novel design of a respiratory rate monitoring system using a push switch circuit and Arduino microcontroller. In Proceedings of the 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Dhaka, Bangladesh, 10–12 January 2019; pp. 470–473. [Google Scholar]
- Bhakre, V.; Pathrabe, A.; Sahare, S.; Jais, S.; Bhagat, A. Research on DIY ventilator using Arduino with blood oxygen sensor for Covid patients. J. Optoelectron. Commun. 2021, 3, 2. [Google Scholar]
- Thattacharya, R.; Bandyopadhyay, N.; Kalaivani, S. Real time Android app based respiration rate monitor. In Proceedings of the 2017 International Conference of Electronics, Communication and Aerospace Technology, Coimbatore, India, 20–22 April 2017; pp. 709–712. [Google Scholar]
- Jaafar, R.; Rozali, M.A.A. Estimation of breathing rate and heart rate from photoplethysmogram. In Proceedings of the 2017 6th International Conference on Electrical Engineering and Informatics (ICEEI), Langkawi, Malaysia, 25–27 November 2017; pp. 1–4. [Google Scholar]
- Singh, O.P.; El-Badawy, I.M.; Malarvili, M.B. Design and validation of a handheld capnography device for cardiopulmonary assessment based on the Arduino platform. J. Innov. Opt. Health Sci. 2021, 14, 2150015. [Google Scholar] [CrossRef]
- Telang, A.S. Mouth breathing controller-boon to twenty-first century medical era. In Advances in Automation, Signal Processing, Instrumentation, and Control; Komanapalli, V.L.N., Sivakumaran, N., Hampannavar, S., Eds.; Springer: Singapore, 2021; Volume 700, pp. 2233–2240. [Google Scholar]
- Mikha, A.S.; Aljobouri, H.K. A simplified design of CPAP device construction by using Arduino Nano for OSA patients. Design Eng. 2021, 2021, 6174–6185. [Google Scholar]
- Patel, R.; Gireesan, K.; Sengottuvel, S.; Janawadkar, M.P.; Radhakrishnan, T.S. Suppression of Baseline Wander Artifact in Magnetocardiogram Using Breathing Sensor. J. Med. Biol. Eng. 2017, 37, 554–560. [Google Scholar] [CrossRef]
- Dhia, A.; Devara, K.; Abuzairi, T.; Poespawati, N.R.; Purnamaningsih, R.W. Design of fiber optic based respiratory sensor for newborn incubator application. AIP Conf. Proc. 2018, 1933, 40018. [Google Scholar] [CrossRef] [Green Version]
- Abinayaa, B.; Kiruthikamani, G.; Saranya, B.; Gayathri, R. An intelligent monitoring device for asthmatics using Arduino. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2016, 5, 6269–6273. [Google Scholar]
- Kumar, S.L.; Swathy, M.; Vidya, M.; Poojaa, K.; Manikandan, G.; Jennifer, A.A. Wireless bio signal acquisition electrode module for EMG. In Proceedings of the 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 20–21 April 2018; pp. 1839–1844. [Google Scholar]
- Dao, D.M.; Phuoc, P.D.; Tuy, T.X.; Le, T.T. Research on reading muscle signals from the EMG sensor during knee flexion—Extension using the Arduino Uno controller. In Proceedings of the 2017 International Conference on Advanced Technologies for Communications (ATC), Quynhon City, Vietnam, 18–20 October 2017; pp. 270–273. [Google Scholar]
- Barioul, R.; Ghribi, S.F.; Kanoun, O. A low cost signal acquisition board design for myopathy’s EMG database construction. In Proceedings of the 2016 13th International Multi-Conference on Systems, Signals & Devices (SSD), Leipzig, Germany, 21–24 March 2016; pp. 274–279. [Google Scholar]
- Choi, H.-S. EMG sensor system for neck fatigue assessment using RF wireless power transmission. In Proceedings of the 2018 3rd International Conference on Computational Intelligence and Applications (ICCIA), Hong Kong, 28–30 July 2018; pp. 219–222. [Google Scholar]
- Del Toro, S.F.; Wei, Y.; Olmeda, E.; Ren, L.; Guowu, W.; Díaz, V. Validation of a Low-Cost Electromyography (EMG) System via a Commercial and Accurate EMG Device: Pilot Study. Sensors 2019, 19, 5214. [Google Scholar] [CrossRef] [Green Version]
- del Toro, S.F.; Santos-Cuadros, S.; Olmeda, E.; Álvarez-Caldas, C.; Díaz, V.; San Román, J.L. Is the use of a low-cost sEMG sensor valid to measure muscle fatique? Sensors 2019, 19, 3204. [Google Scholar] [CrossRef] [Green Version]
- Muqeet, A. Real-time monitoring of electromyography (EMG) using IoT and ThingSpeak. Sci. Technol. Dev. 2019, 8, 9–13. [Google Scholar]
- Venugopal, R.B.; Rajalakshmi, T.; Suresh, A.; Raj, S. EMG based signal to control home appliances by partially paralyzed people. In Proceedings of the 2020 International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, India, 28–30 July 2020; pp. 422–425. [Google Scholar]
- Taşar, B.; Kaya, T.; Gulten, A. Control of robotic hand simulator via human hand motion analysis based on EMG. In Proceedings of the 2014 22nd Signal Processing and Communications Applications Conference (SIU), Trabzon, Turkey, 23–25 April 2014; pp. 389–392. [Google Scholar] [CrossRef]
- Falih, A.D.I.; Dharma, W.A.; Sumpeno, S. Classification of EMG signals from forearm muscles as automatic control using Naive Bayes. In Proceedings of the 2017 International Seminar on Intelligent Technology and Its Applications (ISITIA), Surabaya, Indonesia, 28–29 August 2017; pp. 346–351. [Google Scholar]
- Wu, H.C.; Dyson, M.; Nazarpour, K. Real-time myoelectric control with an Arduino. In Proceedings of the 2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Glasgow, UK, 23–25 November 2020; pp. 1–2. [Google Scholar]
- Stanek, K.; Barnhart, N.; Zhu, Y. Control of a Robotic Prosthetic Hand Using an EMG Signal Based Counter. In Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition, Pittsburgh, PA, USA, 9–15 November 2018. [Google Scholar]
- Champaty, B.; Dubey, P.; Sahoo, S.; Ray, S.S.; Pal, K.; Anis, A. Development of wireless EMG control system for rehabilitation devices. In Proceedings of the 2014 International Conference on Magnetics, Machines & Drives, Kerala, India, 24–26 July 2014; pp. 1–4. [Google Scholar]
- Mundra, A.; Mundra, S.; Mathur, S.; Sachdev, A.; Kumar, A. Gesture recognition based on EMG signals: A comparative study. Int. J. Adv. Sci. Technol. 2019, 28, 236–246. [Google Scholar]
- Borisov, I.I.; Borisova, O.V.; Krivosheev, S.V.; Oleynik, R.V.; Reznikov, S.S. Prototyping of EMG-Controlled Prosthetic Hand with Sensory System * *This work was supported by the Government of the Russian Federation, Grant 074-U01. IFAC-PapersOnLine 2017, 50, 16027–16031. [Google Scholar] [CrossRef]
- Wu, H.; Dyson, M.; Nazarpour, K. Arduino-Based Myoelectric Control: Towards Longitudinal Study of Prosthesis Use. Sensors 2021, 21, 763. [Google Scholar] [CrossRef]
- Ganesan, Y.; Gobee, S.; Durairajah, V. Development of an Upper Limb Exoskeleton for Rehabilitation with Feedback from EMG and IMU Sensor. Procedia Comput. Sci. 2015, 76, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Rahmatilla, A.; Rahma, O.N.; Amin, M.; Wicaksana, S.I.; Ain, K.; Rulaningtyas, R. Post-stroke rehabilitation exosceleton movement control using EMG signal. Int. J. Adv. Sci. Eng. Inform. Technol. 2018, 8, 616–621. [Google Scholar] [CrossRef] [Green Version]
- Bauer, W.; Kawala-Janik, A. Implementation of bi-fractional filtering on the Arduino Uno hardware platform. In Theory and Applications of Non-Integer Order Systems; Babiarzk, A., Czornik, A., Klamka, J., Niezabitowski, M., Eds.; Springer: Cham, Switzerland, 2016; Volume 407, pp. 419–428. [Google Scholar]
- Honda, K.; Kudoh, S.N. Air brain: The easy telemetric system with smartphone for EEG signal and human behavior. In Proceedings of the BodyNets ’13: 8th International Conference on Body Area Networks, Boston, MA, USA, 30 September–2 October 2013; pp. 343–346. [Google Scholar]
- Mirza, I.A.; Tripathy, A.; Chopra, S.; D’Sa, M.; Rajagopalan, K.; D’Souza, A.; Sharma, N. Mind-controlled wheelchair using an EEG headset and Arduino microcontroller. In Proceedings of the 2015 International Conference on Technologies for Sustainable Development (ICTSD), Mumbai, India, 4–6 February 2015; pp. 1–5. [Google Scholar]
- Gargava, P.; Sindwani, K.; Soman, S. Controlling an arduino robot using Brain Computer Interface. In Proceedings of the 3rd International Conference on Reliability, Infocom Technologies and Optimization, Noida, India, 8–10 October 2014; pp. 1–5. [Google Scholar]
- Chandra Mohan, M.; Purushothaman, M. Design and fabrication of prosthetic human hand using EEG and force sensor with Arduino micro controller. In Proceedings of the 2017 Third International Conference on Science Technology Engineering & Management (ICONSTEM), Chennai, India, 23–24 March 2017; pp. 1083–1086. [Google Scholar]
- Kline, A.; Desai, J. SIMULINK® based robotic hand control using Emotiv™ EEG headset. In Proceedings of the 2014 40th Annual Northeast Bioengineering Conference (NEBEC), Boston, MA, USA, 25–27 April 2014; pp. 1–2. [Google Scholar]
- Turnip, A.; Hidayat, T.; Kusumandari, D.E. Development of brain-controlled wheelchair supported by raspicam image processing based Raspberry Pi. In Proceedings of the 2017 2nd International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology (ICACOMIT), Jakarta, Indonesia, 23 October 2017; pp. 7–11. [Google Scholar]
- Madona, P.; Mujiono, R.R.; Wijaya, Y.P. Controlling the direction of wheelchair movement using Raspberry-Pi based brain signals. In Proceedings of the 2019 2nd International Conference on Applied Engineering (ICAE), Batam, Indonesia, 2–3 October 2019; pp. 1–4. [Google Scholar]
- OpenEEG. Available online: http://openeeg.sourceforge.net/doc/ (accessed on 13 December 2021).
- Saptono, D.; Wahyudi, B.; Irawan, B. Design of EEG signal acquisition system using Arduino MEGA1280 and EEG analyzer. MATEC Web Conf. 2016, 75, 04003. [Google Scholar] [CrossRef] [Green Version]
- Pari-Larico, S.; Llerena-Urday, B.; Fernández del Carpio, Á.; Rosas-Paredes, K.; Esquicha-Tejada, J. Evaluation of brain attention levels using Arduino and Neurosky Mindwave EEG according to age and sex. In Proceedings of the International Congress on Educational and Technology in Sciences 2019, Arequipa, Perú, 10–12 December 2019. [Google Scholar]
- Mahajan, R.; Bansal, D. Real time EEG based cognitive brain computer interface for control applications via Arduino interfacing. Proc. Computer Sci. 2017, 115, 812–820. [Google Scholar] [CrossRef]
- Dabas, D.; Lakhani, M.A.; Sharma, B. Classification of EEG signals for hand gripping motor imagery and hardware representation of neural states using Arduino-based LED sensors. In Proceedings of the International Conference on Artificial Intelligence and Applications, New Delhi, India, 6–7 February 2020; Bansal, P., Tushir, M., Balas, V., Srivastava, R., Eds.; Springer: Singapore, 2020; Volume 1164, pp. 213–224. [Google Scholar]
- Rashid, N.; Iqbal, J.; Javed, A.; Tiwana, M.I.; Khan, U.S. Design of embedded system for multivariate classification of finger and thumb movements using EEG signals for control of upper limb prosthesis. BioMed Res. Int. 2018, 2018, 2695106. [Google Scholar] [CrossRef]
- Abu Kasim, M.A.; Low, C.Y.; Ayub, M.A.; Che Zakaria, N.A.; Mohd Salleh, M.H.; Johar, K.; Hamli, H. User-friendly LabVIEW GUI for prosthetic hand control using Emotiv EEG headset. Proc. Computer Sci. 2017, 105, 276–281. [Google Scholar] [CrossRef]
- Pratama, S.H.; Rahmadhani, A.; Bramana, A.; Oktivasari, P.; Handayani, N.; Haryanto, F.; Khotimah, S.N.S. The development of Arduino-based low-cost wireless modular device for brainwave acquisition. IOP Conf. Series J. Phys. Conf. Series 2019, 1248, 012035. [Google Scholar] [CrossRef]
- Jaffrin, M.Y.; Morel, H. Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods. Med. Eng. Phys. 2008, 30, 1257–1269. [Google Scholar] [CrossRef] [PubMed]
- Bolton, M.P.; Ward, L.C.; Khan, A.; Campbell, I.; Nightingale, P.; Dewit, O.; Elia, M. Sources of error in bioimpedance spectroscopy. Physiol. Meas. 1998, 19, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Ain, K.; Purwanti, E.; Rulaningtyas, R.; Hairiyah, N.A. The linear regression method of the RC circuit for electrical impedance characterization. J. Phys. Conf. Series 2021, 1816, 012027. [Google Scholar] [CrossRef]
- Winasis, G.; Riyadi, M.A.; Prakoso, T. Design of integrated bioimpedance analysis and body mass index for users with special needs. In Proceedings of the 2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI), Yogyakarta, Indonesia, 1–2 October 2020; pp. 181–186. [Google Scholar]
- Coates, J.; Chipperfield, A.; Clough, G. Wearable multimodal skin sensing for the diabetic foot. Electronics 2016, 5, 45. [Google Scholar] [CrossRef] [Green Version]
- Patil, A.S.; Ghongade, R.B. Design of bioimpedance spectrometer. In Proceedings of the 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Jaipur, India, 21–24 September 2016; pp. 2724–2728. [Google Scholar]
- Ain, K.; Wibowo, R.A.; Soelistiono, S.; Muniroh, L.; Ariwanto, B. Design and development of a low-cost Arduino-based electrical BioImpedance Spectrometer. J. Med. Signals Sens. 2020, 10, 125–133. [Google Scholar]
- Ain, K.; Chandra, F.; Rulaningtyas, R. Development of multi-frequency electrical impedance device based on AD9850 module. AIP Conf. Proc. 2020, 2314, 030001. [Google Scholar]
- Ain, K.; Soelistiono, S.; Wibowo, R.A.; Muniroh, L.; Anggono, T.; Puspita Sari, W.W. Design and development of device to measure body fat using multi-frequency bio-impedance method. J. Phys. Conf. Series 2018, 1120, 012043. [Google Scholar] [CrossRef]
- Apátiga, D.; Suárez, K.; Ramírez-Barrios, M.; Dell’Osa, A.H. Wireless connection of bioimpedance measurement circuits based-on AD5933: A state of the art. J. Phys. Conf. Series 2021, 2008, 012007. [Google Scholar] [CrossRef]
- Harves, J.R.; Mendelson, Y. A portable sensor for skin bioimpedance measurements. Int. J. Sens. Sens. Netw. 2019, 7, 1–8. [Google Scholar]
- Ching, C.T.-S.; Chen, J.-H. A non-invasive, bioimpedance-based 2-dimensional imaging system for detection and localization of pathological epithelial tissues. Sens. Actuators B Chem. 2015, 206, 319–326. [Google Scholar] [CrossRef]
- Mansor, H.; Shukor, M.H.A.; Meskam, S.S.; Rusli, N.Q.A.M.; Zamery, N.S. Body temperature measurement for remote health monitoring system. In Proceedings of the 2013 IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA), Kuala Lumpur, Malaysia, 25–27 November 2013; pp. 1–5. [Google Scholar]
- Zakaria, N.A.; Saleh, F.N.B.M.; Razak, M.A.A. IoT (internet of things) based infant body temperature monitoring. In Proceedings of the 2018 2nd International Conference on BioSignal Analysis, Processing and Systems (ICBAPS), Kuching, Malaysia, 24–26 July 2018; pp. 148–153. [Google Scholar]
- Caya, M.V.C.; Cruz, F.R.G.; Linsangan, N.B.; Catipon, M.A.M.D.; Monje, P.I.T.; Tan, H.K.R.; Chung, W.-Y. Basal body temperature measurement using e-textile. In Proceedings of the 2017 IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Manila, Philippines, 1–3 December 2017; pp. 1–4. [Google Scholar]
- Miah, M.A.; Kabir, M.H.; Tanveer, M.S.; Akhand, M.A. Continuous heart rate and body temperature monitoring system using Arduino UNO and Android device. In Proceedings of the 2015 2nd International Conference on electrical Information and Communication Technologies (EICT), Khulna, Bangladesh, 10–12 December 2015; pp. 183–188. [Google Scholar]
- Thomas, S.S.; Saraswat, A.; Shashwat, A.; Bharti, V. Sensing heart beat and body temperature digitally using Arduino. In Proceedings of the 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), Odisha, India, 3–4 October 2016; pp. 1721–1724. [Google Scholar]
- Yassin, F.M.; Sani, N.A.; Chin, S.N. Analysis of heart rate and body temperature from the wireless monitoring system using Arduino. J. Phys. Conf. Series 2019, 1358, 012041. [Google Scholar] [CrossRef]
- Gupta, S.; Talwariya, A.; Singh, P. Development of Arduino-based compact heart pulse and body temperature monitoring embedded system for better performance. In Performance Management of Integrated Systems and Its Applications in Software Engineering; Pant, M., Sharma, T.K., Basterrech, S., Banerjee, C., Eds.; Springer: Singapore, 2019; pp. 189–197. [Google Scholar]
- Rahimoon, A.A.; Abdullah, M.N.; Taib, I. Design of a contactless body temperature measurement system using Arduino. Indones. J. Electr. Eng. Comput. Sci. 2020, 19, 1251–1258. [Google Scholar] [CrossRef]
- Perkasa, R.; Wahyuni, R.; Melyanti, R.; Irawan, Y. Light control using human body temperature based on Arduino Uno and PIR (passive infrared receiver) sensor. J. Robot. Control 2021, 2, 307–310. [Google Scholar] [CrossRef]
- Alcoran Alvarez, G.A.; Garcia, M.B.; Unabia Alvarez, D. Automated social distancing gate with non–contact body temperature monitoring using Arduino Uno. Int. Res. J. Eng. Technol. 2020, 7, 4351–4356. [Google Scholar]
- Sinha, A.; Pavithra, M.; Sutharshan, K.R.; Sibashini, M. A MATLAB based on-line polygraph test using galvanic skin resistance and heart rate measurement. Aust. J. Basic Appl. Sci. 2013, 7, 153–157. [Google Scholar]
- Apostolidis, H.; Tsiatsos, T. Using sensors to detect student’s emotion in adaptive learning environment. In Proceedings of the Second International Conference on Innovative Developments in ICT, Sofia, Bulgaria, 25–27 July 2011; pp. 60–65. [Google Scholar]
- Yang, Y.-S.; Pan, C.-T.; Ho, W.-H. Sensor-based remote temperature and humidity monitoring device embedded in wheelchair cushion. Sens. Mater. 2018, 30, 1807–1814. [Google Scholar] [CrossRef]
- Rahman, M.S.; Choi, C.H.; Kim, Y.P.; Kim, S.Y.; Choi, J.W. A low-cost wet diaper detector based on smart phone and BLE sensor. Int. J. Appl. Res. 2017, 12, 9074–9077. [Google Scholar]
- Sattar, H.; Bajwa, I.S.; ul Amin, R.; Muhammad, J.; Mushtaq, M.F.; Kazmi, R.; Akram, M.; Ashraf, M.; Shafi, U. Smart wound hydration monitoring using biosensors and fuzzy inference system. Wirel. Commun. Mobile Comput. 2019, 2019, 8059629. [Google Scholar] [CrossRef] [Green Version]
- Nivetha, K.; Ramya, N.; Thendral, R.; Gopikrishnan, A. Blood glucose measurement by sweat using Arduino. J. Eng. Sci. Res. Appl. 2018, 4, 10–17. [Google Scholar]
- Benito-Lopez, F.; Coyle, S.; Byrne, R.; Smeaton, A.; O’Connor, N.E.; Diamond, D. Pumpless wearable microfluidic device for real time pH sweat monitoring. Proc. Chem. 2009, 1, 1103–1106. [Google Scholar] [CrossRef] [Green Version]
- Curto, V.C.; Coyle, S.; Byrne, R.; Angelov, N.; Diamond, D.; Benito-Lopez, F. Concept and development of an autonomous wearable micro-fluidic platform for real time pH sweat analysis. Sens. Actuators B Chem. 2012, 175, 263–270. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.C.; Zhang, X.D.; Tian, B.H.; Zhang, H.Y.; Yu, W.; Wang, M. Wearable sweat detector device design for health monitoring and clinical diagnosis. IOP Conf. Series Earth Environ. Sci. 2017, 69, 012137. [Google Scholar] [CrossRef]
- Sood, V.; Choudhary, M.; Malay, A.; Patel, R. Noninvasive gluco pulse watch. In Proceedings of the International Conference on Advanced Computing, Networking and Informatics; Nagar, A., Mohapatra, D.P., Chaki, N., Eds.; Springer: Cham, Switzerland, 2018; pp. 321–327. [Google Scholar]
- Arami, A.; Martins, N.V.; Aminian, K. Locally linear neuro-fuzzy estimate of the prosthetic knee angle and its validation in a robotic simulator. IEEE Sens. J. 2015, 15, 6271–6278. [Google Scholar] [CrossRef] [Green Version]
- Kuncoro, C.B.D.; Luo, W.-J.; Kuan, Y.-D. Wireless photoplethysmography sensor for continuous blood pressure biosignal shape acquisition. J. Sens. 2020, 2020, 7192015. [Google Scholar] [CrossRef]
- Saxena, R.; Choudhary, S.; Singh, R.; Prakash, A. Biosignal acquisition of stress monitoring through wearable device. In Proceedings of the International Conference on Intelligent Communication, Control and Devices; Sing, R., Choudhury, S., Eds.; Springer: Cham, Switzerland, 2016; pp. 803–809. [Google Scholar]
- Minguillon, J.; Perez, E.; Lopez-Gordo, M.A.; Pelayo, F.; Sanchez-Carrion, M.J. Portable system for real-time detection of stress level. Sensors 2018, 18, 2504. [Google Scholar] [CrossRef] [Green Version]
- D’Addio, G.; Evangelista, S.; Donisi, L.; Biancardi, A.; Andreozzi, E.; Pagano, G.; Arpaia, P.; Cesarelli, M. Development of a prototype e-textile sock. In Proceedings of the 2019 41st Anuual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 1749–1752. [Google Scholar]
- Martínez-Cerveró, J.; Khalili Ardali, M.; Jaramillo-Gonzalez, A.; Wu, S.Z.; Tonin, A.; Birbaumer, N.; Chaudhary, U. Open software/hardware platform for human-computer interface based on electrooculography (EOG) signal classification. Sensors 2020, 20, 2443. [Google Scholar] [CrossRef]
- Warren, S.; DeVault, J. A biosignal acquisition and conditioning board as a cross-course senior design project. In Proceedings of the 2008 38th Annual Frontiers in Education Conference, Saratoga Springs, NY, USA, 2–25 October 2008; pp. S3C-1–S3C-6. [Google Scholar]
- Polo, A.; Narvaez, P.; Algarín, C.R. Implementation of a cost-effective didactic prototype for the acquisition of biomedical signals. Electronics 2018, 7, 77. [Google Scholar] [CrossRef] [Green Version]
- Puente, S.T.; Ùbeda, A.; Torres, F. e-Health: Biomedical instrumentation with Arduino. IFAC-PapersOnLine 2017, 50, 9156–9161. [Google Scholar] [CrossRef]
- Páris, C.; Barbosa, J.; Ferreira, E.; Gomes, A. BITalino use and applications for health, education, home automation and industry. In Proceedings of the 8th International Conference on Society and Information Technologies, Orlando, FL, USA, 21–24 March 2017; pp. 52–57. [Google Scholar]
- Ciklacandir, S.; Mulayim, N.; Sahin, S. Low cost real-time measurement of the ECG, SPO2 and temperature signals in the LabVIEW environment for biomedical technologies education. Eurasia Proc. Educ. Social Sci. 2017, 7, 162–168. [Google Scholar]
- Mulayim, N.; Ciklacandir, S.; Can, F.C.; Sahin, S. Low-cost real-time electromyography (EMG) data acquisition experimental setup for biomedical technologies education. Eurasia Proc. Educ. Social Sci. 2017, 7, 155–161. [Google Scholar]
- Kim, S.I.; Lee, J.S.; Jang, D.P.; Kim, I.Y. Development of bio-signal acquisition and processing system and its utilization for educational purposes. In Proceedings of the International Conference on the Development of Biomedical Engineering in Vietnam; Toi, V.V., Le, T.Q., Ngo, H.T., Nguyen, T.-H., Eds.; Springer: Cham, Switzerland, 2020; pp. 27–30. [Google Scholar]
Biosignal | Possibilities | Challenges |
---|---|---|
ECG and pulse | Mobile long-term measurements possible | Filtering may necessitate too much computation power, i.e., an additional laptop |
Breathing | Mobile measurements of volatile patients, e.g., with asthma | Often special sensors near the mouth necessary for a reliable measurement |
EMG | Mobile EMG measurements for myopathy patients, posture correction and controlling soft robots/prostheses etc. | Limitations of memory and power of Arduino Uno and other small boards |
EEG | Combination with commercial EEG electrode systems possible Enables controlling prosthetic hand etc. | Complicated sensors and sensor positioning Complicated interpretation of data |
Bioimpedance | Low-cost bioimpedance spectroscopy gives more information than common 50 kHz measurement | Difficult measurement setup due to high skin resistance and AC measurement Difficult interpretation of the results |
Skin temperature | Broad variety of sensors available, based on different physical principles | Skin contact must be ensured |
Moisture | Often simple sensors and measurement | More complicated sensor for wound fluid detection necessary |
Sweat analysis | Non-invasive glucose level detection of diabetic patients | Sometimes laptop needed in addition |
Didactical approaches | Raising students’ interest Toolkits available | None reported |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ehrmann, G.; Blachowicz, T.; Homburg, S.V.; Ehrmann, A. Measuring Biosignals with Single Circuit Boards. Bioengineering 2022, 9, 84. https://doi.org/10.3390/bioengineering9020084
Ehrmann G, Blachowicz T, Homburg SV, Ehrmann A. Measuring Biosignals with Single Circuit Boards. Bioengineering. 2022; 9(2):84. https://doi.org/10.3390/bioengineering9020084
Chicago/Turabian StyleEhrmann, Guido, Tomasz Blachowicz, Sarah Vanessa Homburg, and Andrea Ehrmann. 2022. "Measuring Biosignals with Single Circuit Boards" Bioengineering 9, no. 2: 84. https://doi.org/10.3390/bioengineering9020084
APA StyleEhrmann, G., Blachowicz, T., Homburg, S. V., & Ehrmann, A. (2022). Measuring Biosignals with Single Circuit Boards. Bioengineering, 9(2), 84. https://doi.org/10.3390/bioengineering9020084