COVID-19 Vaccines: An Overview of Different Platforms
Abstract
:1. Introduction
2. Vaccine Platforms
3. Vaccines Containing Non-Replicating Viral Vector
- Ad5-nCoV vaccine contains Ad5 adenovirus vector [24].
4. Vaccines Containing Viral Ribonucleic Acid
- Vaccines that contain DNA (DNA vaccines). When reaching the host cells, DNA is transcribed into messenger RNA, followed by protein synthesis [33].
- Vaccines that contain messenger RNA (mRNA). The use of mRNA helps bypass transcription and simplify the synthesis of antigens [33].
- Vaccines based on mRNA, capable of self-amplification due to the additional inclusion of nsP1-4 sequence of alphavirus protein in the original RNA, which amplifies the coding region of the antigen mRNA; another option is the use of trans-amplifying mRNA, where nsP1-4 mRNA is a separate fragment [34].
5. Vaccines Containing Viral Proteins
6. Vaccines Containing Inactivated Virus
7. Other Promising Platforms
8. Delivery of Different Types of Vaccines
9. Immunogenicity and Safety of Vaccines
10. Vaccine Selection Approaches
10.1. General Population
10.2. Pregnant Women
10.3. Children and Adolescents
10.4. Patients with a History of COVID-19
10.5. Patients with Compromised Immune System
- Which vaccines are safer for patients over 60 years and those with severe concomitant diseases?
- How will the modification of vaccines for new coronavirus strains affect their clinical use?
- Is it possible to extrapolate the results of safety assessment of the Pfizer vaccine to the Moderna vaccine?
11. Vaccination and SARS-CoV-2 Mutation
12. Booster SARS-CoV-2 Immunization
12.1. Booster Immunization Approaches
12.2. Combination and Sequential Administration of Vaccines
13. Conclusions
- VVnr is a well-developed platform; however, these vaccines are technologically difficult to produce, and their long-term effectiveness is considered questionable by some expert groups.
- Messenger RNA vaccines have proven to be a technological breakthrough during the COVID-19 pandemic, as this class of vaccines was first approved for the COVID-19 prophylaxis. They have shown good immunogenicity; however, they require special conditions for transportation and storage that lead to certain limitations on the conditions of their use.
- Inactivated vaccines are a classic platform. Despite the apparent simplicity of inactivated vaccine production, batch quality control remains a key issue for their use. The potential long-term efficacy of inactivated vaccines is also questionable.
- All common vaccines have been proven to have acceptable clinical efficacy, according to the WHO guidelines. However, it is becoming more important to consider vaccination in the following special patient groups: children and adolescents, pregnant women, the elderly, and patients with concomitant diseases, including those with impaired immunity. The use of vaccines in these groups of patients requires further research in order to provide guidelines for routine clinical practice. The effect of new SARS-CoV-2 mutations on the immunogenicity of vaccines and the long-term effectiveness of COVID-19 vaccination are also to be investigated, since it can only be established in long-term observational studies.
Author Contributions
Funding
Conflicts of Interest
References
- WHO. Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int (accessed on 22 November 2021).
- Jackson, J.K.; Weiss, M.A.; Schwarzenberg, A.B.; Nelson, R.M.; Sutter, K.M.; Sutherland, M.D. Global Economic Effects of COVID-19. 2021. Available online: https://fas.org/sgp/crs/row/R46270.pdf (accessed on 22 November 2021).
- Singh, A.S.; Takhellambam, M.C.; Singh, A.S.; Takhellambam, M.C. COVID-19 pandemic wave: A global struggle and ways to control. Arch. Community Med. Public Health 2020, 6, 179–185. [Google Scholar]
- Pandey, K.R.; Subedee, A.; Khanal, B.; Koirala, B. COVID-19 control strategies and intervention effects in resource limited settings: A modeling study. PLoS ONE 2021, 16, e0252570. [Google Scholar] [CrossRef] [PubMed]
- Farsalinos, K.; Poulas, K.; Kouretas, D.; Vantarakis, A.; Leotsinidis, M.; Kouvelas, D.; Docea, A.O.; Kostoff, R.; Gerotziafas, G.T.; Antoniou, M.N.; et al. Improved strategies to counter the COVID-19 pandemic: Lockdowns vs. primary and community healthcare. Toxicol. Rep. 2021, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Information on COVID-19 Treatment, Prevention and Research. COVID-19 Treatment Guidelines. Available online: https://www.covid19treatmentguidelines.nih.gov/ (accessed on 28 December 2021).
- NICE. Overview|COVID-19 Rapid Guideline: Managing COVID-19|Guidance|NICE. Available online: https://www.nice.org.uk/guidance/ng191 (accessed on 28 December 2021).
- COVID-19 Clinical Management: Living guidance. Available online: https://www.who.int/publications-detail-redirect/WHO-2019-nCoV-clinical-2021-1 (accessed on 28 December 2021).
- Ministry of Health of the Russian Federation. Temporary Guidelines for Prevention, Diagnosis, and Treatment of Coronavirus Disease (COVID-19). Version 14. 2022. Available online: Chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/viewer.html?pdfurl=https%3A%2F%2Fxn--80aesfpebagmfblc0a.xn--p1ai%2Fai%2Fdoc%2F1213%2Fattach%2Fvmr_COVID-19_V14_27-12-2021.pdf&clen=4411121&chunk=true (accessed on 28 December 2021).
- Coronavirus (COVID-19) Vaccinations—Statistics and Research—Our World in Data. Available online: https://ourworldindata.org/covid-vaccinations?country=RUS (accessed on 28 December 2021).
- COVID-19 Vaccine Tracker|European Centre for Disease Prevention and Control. Available online: https://vaccinetracker.ecdc.europa.eu/public/extensions/COVID-19/vaccine-tracker.html#uptake-tab (accessed on 28 December 2021).
- Statista. COVID-19 Vaccination Rate in Russia 2021. Available online: https://www.statista.com/statistics/1239299/covid-19-vaccination-rate-in-russia/ (accessed on 28 December 2021).
- Russian Federation: WHO Coronavirus Disease (COVID-19) Dashboard with Vaccination Data. Available online: https://covid19.who.int/region/euro/country/ru (accessed on 28 December 2021).
- The United Kingdom: WHO Coronavirus Disease (COVID-19) Dashboard with Vaccination Data. Available online: https://covid19.who.int/region/euro/country/gb (accessed on 28 December 2021).
- COVID-19 Vaccine Tracker and Landscape. Available online: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines (accessed on 28 December 2021).
- Vaccines—COVID19 Vaccine Tracker. Available online: https://covid19.trackvaccines.org/vaccines/approved/#vaccine-list (accessed on 28 December 2021).
- Limbach, K.J.; Paoletti, E. Non-replicating expression vectors: Applications in vaccine development and gene therapy. Epidemiol. Infect. 1996, 116, 241–256. [Google Scholar] [CrossRef] [Green Version]
- Robert-Guroff, M. Replicating and non-replicating viral vectors for vaccine development. Curr. Opin. Biotechnol. 2007, 18, 546–556. [Google Scholar] [CrossRef]
- Dicks, M.D.J.; Spencer, A.J.; Edwards, N.J.; Wadell, G.; Bojang, K.; Gilbert, S.C.; Hill, A.V.S.; Cottingham, M.G. A Novel Chimpanzee Adenovirus Vector with Low Human Seroprevalence: Improved Systems for Vector Derivation and Comparative Immunogenicity. Kremer EJ, editor. PLoS ONE 2012, 7, e40385. [Google Scholar] [CrossRef] [Green Version]
- Folegatti, P.M.; Ewer, K.J.; Aley, P.K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck , E.A.; et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020, 396, 467–478. [Google Scholar] [CrossRef]
- Bos, R.; Rutten, L.; van der Lubbe, J.E.M.; Bakkers, M.J.G.; Hardenberg, G.; Wegmann, F.; Zuijdgeest, D.; de Wilde, A.H.; Koornneef, A.; Verwilligen, A.; et al. Ad26 vector-based COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 Spike immunogen induces potent humoral and cellular immune responses. npj Vaccines 2020, 5, 1–11. [Google Scholar] [CrossRef]
- Custers, J.; Kim, D.; Leyssen, M.; Gurwith, M.; Tomaka, F.; Robertson, J.; Heijnen, E.; Condit, R.; Shukarev, G.; Heerwegh, D.; et al. Vaccines based on replication incompetent Ad26 viral vectors: Standardized template with key considerations for a risk/benefit assessment. Vaccine 2021, 39, 3081–3101. [Google Scholar] [CrossRef]
- Logunov, D.Y.; Dolzhikova, I.V.; Shcheblyakov, D.V.; Tukhvatulin, A.I.; Zubkova, O.V.; Dzharullaeva, A.S.; Kovyrshina, A.V.; Lubenets, N.L.; Grousova, D.M.; Erokhova, A.S.; et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: An interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 2021, 397, 671–681. [Google Scholar] [CrossRef]
- Nogrady, B. Mounting evidence suggests Sputnik COVID vaccine is safe and effective. Nature 2021, 595, 339–340. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Huang, J.; Zhang, Z.; Wu, J.; Zhang, J.; Hu, H.; Zhu, T.; Zhang, J.; Luo, L.; Fan, P.; et al. Safety, tolerability, and immunogenicity of an aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in adults: Preliminary report of an open-label and randomised phase 1 clinical trial. Lancet Infect. Dis. 2021. Available online: https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(21)00396-0/fulltext (accessed on 23 September 2021).
- Henao-Restrepo, A.M.; Camacho, A.; Longini, I.M.; Watson, C.H.; Edmunds, W.J.; Egger, M.; Carroll, M.W.; Dean, N.E.; Diatta, I.; Doumbia, M.; et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: Final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet 2017, 389, 505–518. [Google Scholar] [CrossRef] [Green Version]
- Steffensen, M.A.; Jensen, B.A.H.; Holst, P.J.; Bassi, M.R.; Christensen, J.P.; Thomsen, A.R. Pre-Existing Vector Immunity Does Not Prevent Replication Deficient Adenovirus from Inducing Efficient CD8 T-Cell Memory and Recall Responses. PLoS ONE 2012, 7, e34884. [Google Scholar] [CrossRef] [PubMed]
- Tatsis, N.; Ertl, H.C.J. Adenoviruses as vaccine vectors. Mol. Ther. 2004, 10, 616–629. [Google Scholar] [CrossRef]
- O’Riordan, C.R.; Lachapelle, A.; Delgado, C.; Parkes, V.; Wadsworth, S.C.; Smith, A.E.; Francis, G.E. PEGylation of Adenovirus with Retention of Infectivity and Protection from Neutralizing Antibody in Vitro and in Vivo. Hum. Gene Ther. 1999, 10, 1349–1358. [Google Scholar] [CrossRef]
- 156. PEGylated Adenoviral Vaccines. Mol. Ther. 2008, 16, S59–S60. [Google Scholar] [CrossRef]
- Leggiero, E.; Astone, D.; Cerullo, V.; Lombardo, B.; Mazzaccara, C.; Labruna, G.; Sacchetti, L.; Salvatore, F.; Croyle, M.; Pastore, L. PEGylated helper-dependent adenoviral vector expressing human Apo A-I for gene therapy in LDLR-deficient mice. Gene Ther. 2013, 20, 1124–1130. [Google Scholar] [CrossRef] [Green Version]
- Sailaja, G.; HogenEsch, H.; North, A.; Hays, J.; Mittal, S.K. Encapsulation of recombinant adenovirus into alginate microspheres circumvents vector-specific immune response. Gene Ther. 2002, 9, 1722–1729. [Google Scholar] [CrossRef]
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279. [Google Scholar] [CrossRef] [Green Version]
- Bloom, K.; van den Berg, F.; Arbuthnot, P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther. 2021, 28, 117–129. [Google Scholar] [CrossRef]
- Mallapaty, S. India’s DNA COVID vaccine is a world first—More are coming. Nature 2021, 597, 161–162. [Google Scholar] [CrossRef]
- Vogel, A.B.; Lambert, L.; Kinnear, E.; Busse, D.; Erbar, S.; Reuter, K.C.; Wicke, L.; Perkovic, M.; Beissert, T.; Haas, H.; et al. Self-Amplifying RNA Vaccines Give Equivalent Protection against Influenza to mRNA Vaccines but at Much Lower Doses. Mol. Ther. 2018, 26, 446–455. [Google Scholar] [CrossRef] [Green Version]
- Corbett, K.S.; Edwards, D.K.; Leist, S.R.; Abiona, O.M.; Boyoglu-Barnum, S.; Gillespie, R.A.; Himansu, S.; Schäfer, A.; Ziwawo, C.T.; DiPiazza, A.T.; et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 2020, 586, 567–571. [Google Scholar] [CrossRef] [PubMed]
- Sahin, U.; Muik, A.; Derhovanessian, E.; Vogler, I.; Kranz, L.M.; Vormehr, M.; Baum, A.; Pascal, K.; Quandt, J.; Maurus, D.; et al. Concurrent Human Antibody and T H 1 Type T-Cell Responses Elicited by a COVID-19 RNA Vaccine. Infectious Diseases (except HIV/AIDS); 2020 July. Available online: http://medrxiv.org/lookup/doi/10.1101/2020.07.17.20140533 (accessed on 24 September 2021).
- Crommelin, D.J.A.; Anchordoquy, T.J.; Volkin, D.B.; Jiskoot, W.; Mastrobattista, E. Addressing the Cold Reality of mRNA Vaccine Stability. J. Pharm. Sci. 2021, 110, 997–1001. [Google Scholar] [CrossRef] [PubMed]
- Kyriakidis, N.C.; López-Cortés, A.; González, E.V.; Grimaldos, A.B.; Prado, E.O. SARS-CoV-2 vaccines strategies: A comprehensive review of phase 3 candidates. NPJ Vaccines 2021, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Kisby, T.; Yilmazer, A.; Kostarelos, K. Reasons for success and lessons learnt from nanoscale vaccines against COVID-19. Nat. Nanotechnol. 2021, 16, 843–850. [Google Scholar] [CrossRef]
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector.” Simple, Blind, Placebo-Controlled, Randomized Study of the Safety, Reactogenicity and Immunogenicity of Vaccine Based on Peptide Antigens for the Prevention of COVID-19 (EpiVacCorona), In Volunteers Aged 18–60 Years (I–II Phase). 2021. Report No.: NCT04527575. Available online: https://clinicaltrials.gov/ct2/show/NCT04527575 (accessed on 22 September 2021).
- Reuters. Volunteers Break Rank to Raise Doubts in Trial of Russia’s Second COVID-19 Vaccine. 2021. Available online: https://www.reuters.com/article/us-health-coronavirus-russia-vaccine-let-idUSKBN2BI2RJ (accessed on 22 September 2021).
- Liang, Z.; Zhu, H.; Wang, X.; Jing, B.; Li, Z.; Xia, X.; Sun, H.; Yang, Y.; Zhang, W.; Shi, L.; et al. Adjuvants for Coronavirus Vaccines. Front. Immunol. 2020, 11, 2896. [Google Scholar] [CrossRef]
- Creech, C.B.; Walker, S.C.; Samuels, R.J. SARS-CoV-2 Vaccines. JAMA 2021, 325, 1318–1320. [Google Scholar] [CrossRef]
- Poland, G.A.; Ovsyannikova, I.G.; Kennedy, R.B. SARS-CoV-2 immunity: Review and applications to phase 3 vaccine candidates. Lancet 2020, 396, 1595–1606. [Google Scholar] [CrossRef]
- Gao, Q.; Bao, L.; Mao, H.; Wang, L.; Xu, K.; Yang, M.; Li, Y.; Zhu, L.; Wang, N.; Lv, Z.; et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020, 369, 77–81. [Google Scholar] [CrossRef]
- Dai, X.; Xiong, Y.; Li, N.; Jian, C. Vaccine Types. In Vaccines—The History and Future; IntechOpen: London, UK, 2019; Available online: https://www.intechopen.com/chapters/65813 (accessed on 24 September 2021).
- Lim, W.W.; Mak, L.; Leung, G.M.; Cowling, B.J.; Peiris, M. Comparative immunogenicity of mRNA and inactivated vaccines against COVID-19. Lancet Microbe 2021, 2, e423. [Google Scholar] [CrossRef]
- Cohn, L.; Delamarre, L. Dendritic Cell-Targeted Vaccines. Front. Immunol. 2014, 5, 255. [Google Scholar] [CrossRef]
- Goyvaerts, C.; Breckpot, K. Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines. J. Immunol. Res. 2015, 2015, e785634. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.U.; Kim, Y.; Kumar, S.; Seo, D.; Ashraf, M.; Bae, Y.-S. COVID-19 Vaccines (Revisited) and Oral-Mucosal Vector System as a Potential Vaccine Platform. Vaccines 2021, 9, 171. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Clinical Evaluation of New Vaccines. Available online: https://www.ema.europa.eu/en/clinical-evaluation-new-vaccines (accessed on 24 September 2021).
- World Health Organization. Guidelines on Clinical Evaluation of Vaccines: Regulatory Expectations. 2016. Available online: https://www.who.int/biologicals/expert_committee/Clinical_changes_IK_final.pdf (accessed on 21 September 2021).
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Marc, G.P.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Connors, M.; Graham, B.S.; Lane, H.C.; Fauci, A.S. SARS-CoV-2 Vaccines: Much Accomplished, Much to Learn. Ann. Intern. Med. 2021, 174, 687–690. [Google Scholar] [CrossRef] [PubMed]
- El Sahly, H.M.; Baden, L.R.; Essink, B.; Doblecki-Lewis, S.; Martin, J.M.; Anderson, E.J.; Campbell, T.B.; Clark, J.; Jackson, L.A.; Fichtenbaum, C.J.; et al. Efficacy of the mRNA-1273 SARS-CoV-2 Vaccine at Completion of Blinded Phase. N. Engl. J. Med. 2021, 385, 1774–1785. [Google Scholar] [CrossRef] [PubMed]
- Sadoff, J.; Gray, G.; Vandebosch, A.; Cárdenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Fennema, H.; Spiessens, B.; et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against COVID-19. N. Engl. J. Med. 2021, 384, 2187–2201. [Google Scholar] [CrossRef]
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef]
- Evidence Assessment: Sinopharm/BBIBP COVID-19 Vaccine. 2021. Available online: https://cdn.who.int/media/docs/default-source/immunization/sage/2021/april/2_sage29apr2021_critical-evidence_sinopharm.pdf (accessed on 26 September 2021).
- Tanriover, M.D.; Doğanay, H.L.; Akova, M.; Güner, H.R.; Azap, A.; Akhan, S.; Köse, ṣ.; Erdinç, F.ṣ.; Akalın, E.H.; Tabak, Ö.F.; et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): Interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet 2021, 398, 213–222. [Google Scholar] [CrossRef]
- Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.; Triccas, J.A.; Davenport, M.P.; et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef]
- He, Q.; Mao, Q.; Zhang, J.; Bian, L.; Gao, F.; Wang, J.; Xu, M.; Liang, Z. COVID-19 Vaccines: Current Understanding on Immunogenicity, Safety, and Further Considerations. Front. Immunol. 2021, 12, 669339. [Google Scholar] [CrossRef]
- Interim Clinical Considerations for Use of COVID-19 Vaccines|CDC. 2021. Available online: https://www.cdc.gov/vaccines/covid-19/clinical-considerations/covid-19-vaccines-us.html (accessed on 24 September 2021).
- COVID-19 Vaccines Advice. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines/advice (accessed on 28 December 2021).
- Australian Government Department of Health. Health AGD of COVID-19 Vaccination—ATAGI Clinical Guidance on COVID-19 Vaccine in Australia in 2021. 2021. Available online: https://www.health.gov.au/resources/publications/covid-19-vaccination-atagi-clinical-guidance-on-covid-19-vaccine-in-australia-in-2021 (accessed on 24 September 2021).
- Temporary Guidelines for Prevention, Diagnosis, and Treatment of Coronavirus Disease (COVID-19). Version 13. Available online: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/058/211/original/BMP-13.pdf (accessed on 14 October 2021).
- Wallace, M. The Advisory Committee on Immunization Practices’ Interim Recommendation for Use of Pfizer-BioNTech COVID-19 Vaccine in Adolescents Aged 12–15 Years—United States, May 2021. MMWR Morb. Mortal Wkly. Rep. 2021, 70, 749–752. [Google Scholar]
- Racine-Brzostek, S.E.; Yee, J.; Sukhu, A.; Qiu, Y.; Rand, S.; Barone, P.; Hao, Y.; Yang, H.S.; Meng, Q.H.; Apple, F.S.; et al. More rapid, robust and sustainable antibody responses to mRNA COVID-19 vaccine in convalescent COVID-19 individuals. JCI Insight 2021, 6, e151477. [Google Scholar] [CrossRef]
- Jamiruddin, R.; Haq, A.; Khondoker, M.U.; Ali, T.; Ahmed, F.; Khandker, S.S.; Jawad, I.; Hossain, R.; Ahmed, S.; Rahman, S.R.; et al. Antibody response to the first dose of AZD1222 vaccine in COVID-19 convalescent and uninfected individuals in Bangladesh. Expert Rev. Vaccines 2021, 20, 1561–1660. [Google Scholar] [CrossRef] [PubMed]
- Chodick, G.; Tene, L.; Rotem, R.S.; Patalon, T.; Gazit, S.; Ben-Tov, A.; Weil, C.; Goldshtein, I.; Twig, G.; Cohen, D.; et al. The effectiveness of the TWO-DOSE BNT162b2 vaccine: Analysis of real-world data. Clin. Infect. Dis. 2021, ciab438. [Google Scholar] [CrossRef]
- Roifman, C.M.; Vong, L. COVID-19 vaccination for patients with primary immunodeficiency. LymphoSign J. 2021, 8, 37–45. [Google Scholar] [CrossRef]
- National Advisory Committee on Immunization (NACI). Summary of Updated NACI COVID-19 Vaccine Statement of May 3, 2021. Available online: https://www.canada.ca/content/dam/phac-aspc/documents/services/immunization/national-advisory-committee-on-immunization-naci/recommendations-use-covid-19-vaccines/summary-updated-statement-may-3-2021/NACI-summary-janssen-en.pdf (accessed on 8 October 2021).
- Williams, T.C.; Burgers, W.A. SARS-CoV-2 evolution and vaccines: Cause for concern? Lancet Respir. Med. 2021, 9, 333–335. [Google Scholar] [CrossRef]
- Egeren, D.V.; Novokhodko, A.; Stoddard, M.; Tran, U.; Zetter, B.; Rogers, M.; Pentelute, B.L.; Carlson, J.M.; Hixon, M.; Joseph-McCarthy, D.; et al. Risk of rapid evolutionary escape from biomedical interventions targeting SARS-CoV-2 spike protein. PLoS ONE 2021, 16, e0250780. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.; Shayestehpour, M.; Mirzaei, H. The impact of spike mutated variants of SARS-CoV2 [Alpha, Beta, Gamma, Delta, and Lambda] on the efficacy of subunit recombinant vaccines. Braz. J. Infect. Dis. 2021, 25, 101606. [Google Scholar] [CrossRef] [PubMed]
- Altmann, D.M.; Boyton, R.J.; Beale, R. Immunity to SARS-CoV-2 variants of concern. Science 2021, 371, 1103–1104. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Nair, M.S.; Liu, L.; Iketani, S.; Luo, Y.; Guo, Y.; Wang, M.; Yu, J.; Zhang, B.; Kwong, P.D.; et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 2021, 593, 130–135. [Google Scholar] [CrossRef]
- WHO. Omicron Update. Available online: https://www.who.int/news/item/28-11-2021-update-on-omicron (accessed on 28 November 2021).
- Weisblum, Y.; Schmidt, F.; Zhang, F.; DaSilva, J.; Poston, D.; Lorenzi, J.C.; Muecksch, F.; Rutkowska, M.; Hoffmann, H.-H.; Michailidis, E.; et al. Escape from Neutralizing Antibodies by SARS-CoV-2 Spike Protein Variants. eLife 2020, 9, e61312. [Google Scholar] [CrossRef] [PubMed]
- Lopez Bernal, J.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Stowe, J.; Tessier, E.; Groves, N.; Dabrera, G.; et al. Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. N. Engl. J. Med. 2021, 385, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-N.; Huang, Y.; Wang, W.; Jing, Q.-L.; Zhang, C.-H.; Qin, P.-Z.; Guan, W.-J.; Gan, L.; Li, Y.-L.; Liu, W.-H.; et al. Effectiveness of inactivated SARS-CoV-2 vaccines against the Delta variant infection in Guangzhou: A test-negative case–control real-world study. Emerg. Microbes Infect. 2021, 10, 1751–1759. [Google Scholar] [CrossRef]
- Ikegame, S.; Siddiquey, M.N.A.; Hung, C.-T.; Haas, G.; Brambilla, L.; Oguntuyo, K.Y.; Kowdle, S.; Chiu, H.-P.; Stevens, C.S.; Vilardo, A.E.; et al. Neutralizing activity of Sputnik V vaccine sera against SARS-CoV-2 variants. Nat. Commun. 2021, 12, 4598. [Google Scholar] [CrossRef] [PubMed]
- Barchuk, A.; Cherkashin, M.; Bulina, A.; Berezina, N.; Rakova, T.; Kuplevatskaya, D.; Stanevich, O.; Skougarevskiy, D.; Okhotin, A. Vaccine Effectiveness against Referral to Hospital and Severe Lung Injury Associated with COVID-19: A Population-Based Case-Control Study in St. Petersburg, Russia. Epidemiology 2021. Available online: http://medrxiv.org/lookup/doi/10.1101/2021.08.18.21262065 (accessed on 11 October 2021).
- Callaway, E.; Mallapaty, S. Novavax offers first evidence that COVID vaccines protect people against variants. Nature 2021, 590, 17. [Google Scholar] [CrossRef]
- Matta, S.; Rajpal, S.; Chopra, K.K.; Arora, V.K. Covid-19 vaccines and new mutant strains impacting the pandemic. Indian J. Tuberc. 2021, 68, 171–173. [Google Scholar] [CrossRef]
- CDC. COVID-19 Vaccination. Centers for Disease Control and Prevention. 2020. Available online: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/booster-shot.html (accessed on 24 September 2021).
- Pfizer/BioNTech’s COVID-19 Vaccine Not to Require a Booster in 6–12 Months. Available online: https://www.clinicaltrialsarena.com/comment/pfizer-biontechs-covid-19-vaccine-not-expected-to-require-a-booster-in-6-12-months-variant-of-concern-specific-shot-preferred/ (accessed on 24 September 2021).
- GOV.UK. COVID-19 Vaccination: A Guide to Booster Vaccination. Available online: https://www.gov.uk/government/publications/covid-19-vaccination-booster-dose-resources/covid-19-vaccination-a-guide-to-booster-vaccination (accessed on 24 September 2021).
- European Medicines Agency. PINHO AC. ECDC and EMA Highlight Considerations for Additional Booster Doses of COVID-19 Vaccines. 2021. Available online: https://www.ema.europa.eu/en/news/ecdc-ema-highlight-considerations-additional-booster-doses-covid-19-vaccines (accessed on 27 September 2021).
- Jecker, N.S. Are COVID-19 Boosters Ethical, with Half the World Waiting for a First Shot? A Bioethicist Weighs in The Conversation. Available online: http://theconversation.com/are-covid-19-boosters-ethical-with-half-the-world-waiting-for-a-first-shot-a-bioethicist-weighs-in-167606 (accessed on 27 September 2021).
- Our World in Data. COVID-19 Data Explorer. Available online: https://ourworldindata.org/coronavirus-data-explorer (accessed on 28 December 2021).
- Daily COVID-19 Vaccine Doses Administered per 100 People. Our World in Data. Available online: https://ourworldindata.org/grapher/daily-covid-vaccination-doses-per-capita (accessed on 28 December 2021).
- Ritchie, H.; Mathieu, E.; Rodés-Guirao, L.; Appel, C.; Giattino, C.; Ortiz-Ospina, E.; Roser, M.; Hasell, J. Coronavirus Pandemic (COVID-19). Our World in Data. 2020 March. Available online: https://ourworldindata.org/covid-vaccinations (accessed on 28 December 2021).
- Borobia, A.M.; Carcas, A.J.; Pérez Olmeda, M.T.; Castaño, L.; Jesús Bertrán, M.; García-Pérez, J.; Campins, M.; Portolés, A.; Gonzalez-Perez, M.; Morales, M.T.G.; et al. Reactogenicity and Immunogenicity of BNT162b2 in Subjects Having Received a First Dose of ChAdOx1s: Initial Results of a Randomised, Adaptive, Phase 2 Trial (CombiVacS); Social Science Research Network: Rochester, NY, USA, 2021; Report No.: ID 3854768; Available online: https://papers.ssrn.com/abstract=3854768 (accessed on 24 September 2021).
- Reuters. Factbox: Countries Weigh “Mix and Match” COVID-19 Vaccines. Reuters. 16 August 2021. Available online: https://www.reuters.com/world/middle-east/countries-weigh-mix-match-covid-19-vaccines-2021-05-24/ (accessed on 24 September 2021).
Platform | Vaccine Name | Manufacturer | No. of Countries, Where a Vaccine Was Approved |
---|---|---|---|
VVnr | Ad26.COV2.S | Janssen, Beerse, Belgium | 106 |
Sputnik V | Gamaleya National Center of Epidemiology and Microbiology, Moscow, Russian Federation | 74 | |
Sputnik Light | 24 | ||
AZD1222, Vaxzevria | Oxford University/AstraZeneca, Södertälje, Sweden | 137 | |
AZD1222, Covishield | Serum Institute of India, Pune, India (based on AstraZeneca technology) | 47 | |
Ad5-nCoV, Convidecia | CanSino, Tianjin, People’s Republic of China | 10 | |
RNA | BNT162b2, Comirnaty | Pfizer/Biontech, Mainz, Germany | 137 |
mRNA-1273, Spikevax | Moderna, Cambridge, MA, USA | 85 | |
TAK-919 | Takeda, Tokyo, Japan (based on Moderna technology) | 1 | |
PS | CIGB-66, Abdala | Cuban Center for Genetic Engineering and Biotechnology, Havana, Republic of Cuba | 6 |
EpiVacCorona | “Vector”, National Research Center for Virology and Biotechnology, Novosibirsk, Russian Federation | 4 | |
MVC-COV1901 | Medigen, Taipei, Taiwan | 2 | |
ZF2001 | Anhui Zhifei Longcom, Beijing, People’s Republic of China | 3 | |
Corbevax | Biological E Limited, Hyderabad, India | 1 | |
Aurora-CoV (EpiVacCorona-N) | “Vector”, National Research Center for Virology and Biotechnology, Novosibirsk, Russian Federation | 1 | |
Soberana 02 | Instituto Finlay de Vacunas Cuba, Havana, Republic of Cuba | 4 | |
Soberana Plus | 1 | ||
Recombinant SARS-CoV-2 Vaccine (CHO Cell, NVSI-06-08) | National Vaccine and Serum Institute, Beijing, People’s Republic of China | 1 | |
Nuvaxovid (NVX-CoV2373) | Novavax, Gaithersburg, USA | 32 | |
Razi Cov Pars | Razi Vaccine and Serum Research Institute, Karaj, Iran | 1 | |
COVOVAX (Novavax formulation) | Serum Institute of India, Pune, India | 3 | |
SpikoGen, COVAX-19 | Vaxine/CinnaGen Co., Tehran, Iran | 1 | |
IV | Covaxin | Bharat Biotech, Hyderabad, India | 13 |
KoviVac | Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russian Federation | 3 | |
QazVac | Research Institute for Biological Safety Problems, Guardeyskiy, Republic of Kazakhstan | 2 | |
KCONVAC (Vero Cells), KconecaVac | Minhai Biotechnology Co., Beijing, People’s Republic of China | 2 | |
COVIran Barekat, COVID-19 Inactivated Vaccine | Shifa Pharmed Industrial Co, Karaj, Iran | 1 | |
Covilo, BBIBP-CorV (Vero Cells) | Sinopharm (Beijing), People’s Republic of China | 88 | |
Inactivated (Vero Cells) | Sinopharm (Wuhan), People’s Republic of China | 2 | |
CoronaVac | Sinovac, Beijing, People’s Republic of China | 53 | |
Turkovac | Health Institutes of Turkey, Istanbul, Turkey | 1 | |
FAKHRAVAC (MIVAC) | Organization of Defensive Innovation and Research, Tehran, Iran | 1 | |
DNA | ZyCoV-D | Zydus Cadila, Ahmedabad, India | 1 |
Vaccine | Type | Dose Regimen | Prevention of Symptomatic Infection, % (95% CI) | Prevention of Severe Infection, % (95% CI) | Main Adverse Events |
---|---|---|---|---|---|
BNT162b2 [55,56] | mRNA | 2 doses, 3-week interval | 95.0 (90.3–97.6) | 88.9 (20.1–99.7) | Pain, erythema, and swelling at the injection site Weakness, myalgia, chills |
mRNA-1273 [57] | mRNA | 2 doses, 4-week interval | 93.2 (91.0–94.8) | 98.2 (92.8–99.6) | Pain, erythema, and swelling at the injection site Axillary lymph node swelling and tenderness Fever, headache, weakness, myalgia, chills, nausea/vomiting |
Ad26.COV2.S [58] | VV | Single dose | 66.5 (55.5–75.1) | 85.4 (54.2–96.9) | Pain, erythema, and swelling at the injection site Weakness, myalgia, chills |
ChAdOx1 nCoV-19 [59] | VV | 2 doses, 4-week interval | 67.1 (52.3–77.3) | – | Pain, erythema, and swelling at the injection site Weakness, myalgia, chills |
Sputnik V [21] | VV | 2 doses, 3-week interval | 91.1 (83.8–95.1) | 100 (94.4–100) | Pain, erythema, and swelling at the injection site Weakness, myalgia, chills |
BBIBP-CorV [60] | IV | 2 doses, 4-week interval | 78.1 (64.9–86.3) | – | Pain, erythema, and swelling at the injection site Fever, headache, cough |
CoronaVac [61] | IV | 2 doses, 4-week interval | 83.5 (65.4–92.1) | – | Pain, erythema, and swelling at the injection site Weakness, myalgia, nausea, chills |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kudlay, D.; Svistunov, A. COVID-19 Vaccines: An Overview of Different Platforms. Bioengineering 2022, 9, 72. https://doi.org/10.3390/bioengineering9020072
Kudlay D, Svistunov A. COVID-19 Vaccines: An Overview of Different Platforms. Bioengineering. 2022; 9(2):72. https://doi.org/10.3390/bioengineering9020072
Chicago/Turabian StyleKudlay, Dmitry, and Andrey Svistunov. 2022. "COVID-19 Vaccines: An Overview of Different Platforms" Bioengineering 9, no. 2: 72. https://doi.org/10.3390/bioengineering9020072
APA StyleKudlay, D., & Svistunov, A. (2022). COVID-19 Vaccines: An Overview of Different Platforms. Bioengineering, 9(2), 72. https://doi.org/10.3390/bioengineering9020072