PMMA-Cement-PLIF Is Safe and Effective as a Single-Stage Posterior Procedure in Treating Pyogenic Erosive Lumbar Spondylodiscitis—A Single-Center Retrospective Study of 73 Cases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Demographics
2.2. Surgical Procedure
2.3. Statistics
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WBC | White blood cell counting |
CCI | Charlson Comorbidity Index |
CRP | C-reactive protein |
CT | Computed tomography |
MRI | Magnetic resonance imaging |
References
- Saeed, K.; Esposito, S.; Ascione, T.; Bassetti, M.; Bonnet, E.; Carnelutti, A.; Chan, M.; Lye, D.C.; Cortes, N.; Dryden, M.; et al. Hot topics on vertebral osteomyelitis from the International Society of Antimicrobial Chemotherapy. Int. J. Antimicrob. Agents 2019, 54, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Duarte, R.M.; Vaccaro, A.R. Spinal infection: State of the art and management algorithm. Eur. Spine J. 2013, 22, 2787–2799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarghooni, K.; Rollinghoff, M.; Sobottke, R.; Eysel, P. Treatment of spondylodiscitis. Int. Orthop. 2012, 36, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Tsiodras, S.; Falagas, M.E. Clinical assessment and medical treatment of spine infections. Clin. Orthop. Relat. Res. 2006, 444, 38–50. [Google Scholar] [CrossRef]
- Valancius, K.; Hansen, E.S.; Hoy, K.; Helmig, P.; Niedermann, B.; Bunger, C. Failure modes in conservative and surgical management of infectious spondylodiscitis. Eur. Spine J. 2013, 22, 1837–1844. [Google Scholar] [CrossRef] [Green Version]
- Boody, B.S.; Tarazona, D.A.; Vaccaro, A.R. Evaluation and Management of Pyogenic and Tubercular Spine Infections. Curr. Rev. Musculoskelet. Med. 2018, 11, 643–652. [Google Scholar] [CrossRef]
- Babouee Flury, B.; Elzi, L.; Kolbe, M.; Frei, R.; Weisser, M.; Scharen, S.; Widmer, A.F.; Battegay, M. Is switching to an oral antibiotic regimen safe after 2 weeks of intravenous treatment for primary bacterial vertebral osteomyelitis? BMC Infect. Dis. 2014, 14, 226. [Google Scholar] [CrossRef] [Green Version]
- Sobottke, R.; Seifert, H.; Fatkenheuer, G.; Schmidt, M.; Gossmann, A.; Eysel, P. Current diagnosis and treatment of spondylodiscitis. Dtsch. Arztebl. Int. 2008, 105, 181–187. [Google Scholar] [CrossRef]
- Tsai, T.T.; Yang, S.C.; Niu, C.C.; Lai, P.L.; Lee, M.H.; Chen, L.H.; Chen, W.J. Early surgery with antibiotics treatment had better clinical outcomes than antibiotics treatment alone in patients with pyogenic spondylodiscitis: A retrospective cohort study. BMC Musculoskelet. Disord. 2017, 18, 175. [Google Scholar] [CrossRef]
- Rayes, M.; Colen, C.B.; Bahgat, D.A.; Higashida, T.; Guthikonda, M.; Rengachary, S.; Eltahawy, H.A. Safety of instrumentation in patients with spinal infection. J. Neurosurg. Spine 2010, 12, 647–659. [Google Scholar] [CrossRef]
- Brau, S.A.; Delamarter, R.B.; Schiffman, M.L.; Williams, L.A.; Watkins, R.G. Vascular injury during anterior lumbar surgery. Spine J. 2004, 4, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Gruen, T.A.; McNeice, G.M.; Amstutz, H.C. Modes of failure" of cemented stem-type femoral components: A radiographic analysis of loosening. Clin. Orthop. Relat. Res. 1979, 141, 17–27. [Google Scholar] [CrossRef]
- Bridwell, K.H.; Baldus, C.; Berven, S.; Edwards, C., 2nd; Glassman, S.; Hamill, C.; Horton, W.; Lenke, L.G.; Ondra, S.; Schwab, F.; et al. Changes in radiographic and clinical outcomes with primary treatment adult spinal deformity surgeries from two years to three- to five-years follow-up. Spine 2010, 35, 1849–1854. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Lee, J.H.; Lee, J.H. A comparison of dynamic views using plain radiographs and thin-section three-dimensional computed tomography in the evaluation of fusion after posterior lumbar interbody fusion surgery. Spine J. 2013, 13, 1200–1207. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Klockner, C.; Valencia, R.; Weber, U. Alignment of the sagittal profile after surgical therapy of nonspecific destructive spondylodiscitis: Ventral or ventrodorsal method—A comparison of outcomes. Der Orthop. 2001, 30, 965–976. [Google Scholar] [CrossRef]
- Schomacher, M.; Finger, T.; Koeppen, D.; Suss, O.; Vajkoczy, P.; Kroppenstedt, S.; Cabraja, M. Application of titanium and polyetheretherketone cages in the treatment of pyogenic spondylodiscitis. Clin. Neurol. Neurosurg. 2014, 127, 65–70. [Google Scholar] [CrossRef]
- Tschoke, S.K.; Fuchs, H.; Schmidt, O.; Gulow, J.; von der Hoeh, N.H.; Heyde, C.E. Single-stage debridement and spinal fusion using PEEK cages through a posterior approach for eradication of lumbar pyogenic spondylodiscitis: A safe treatment strategy for a detrimental condition. Patient Saf. Surg. 2015, 9, 35. [Google Scholar] [CrossRef]
- Oga, M.; Arizono, T.; Takasita, M.; Sugioka, Y. Evaluation of the risk of instrumentation as a foreign body in spinal tuberculosis. Clinical and biologic study. Spine 1993, 18, 1890–1894. [Google Scholar] [CrossRef]
- Wiedenhofer, B.; Hemmer, S.; Akbar, M.; Lehner, B.; Schmidmaier, G.; Klockner, C. Gold standard for implant selection in operative therapy of spondylitis/spondylodiscitis. Der Orthop. 2012, 41, 721–726. [Google Scholar] [CrossRef]
- Klingler, J.H.; Kruger, M.T.; Sircar, R.; Kogias, E.; Scholz, C.; Volz, F.; Scheiwe, C.; Hubbe, U. PEEK cages versus PMMA spacers in anterior cervical discectomy: Comparison of fusion, subsidence, sagittal alignment, and clinical outcome with a minimum 1-year follow-up. Sci. World J. 2014, 2014, 398396. [Google Scholar] [CrossRef] [PubMed]
- Cabraja, M.; Koeppen, D.; Lanksch, W.R.; Maier-Hauff, K.; Kroppenstedt, S. Polymethylmethacrylate-assisted ventral discectomy: Rate of pseudarthrosis and clinical outcome with a minimum follow-up of 5 years. BMC Musculoskelet. Disord. 2011, 12, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, K.; Nakamae, T.; Shimbo, T.; Kanazawa, T.; Okuda, T.; Takata, H.; Hashimoto, T.; Hiramatsu, T.; Tanaka, N.; Olmarker, K.; et al. Targeted Therapy for Low Back Pain in Elderly Degenerative Lumbar Scoliosis: A Cohort Study. Spine 2016, 41, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Kiss, L.; Varga, P.P.; Szoverfi, Z.; Jakab, G.; Eltes, P.E.; Lazary, A. Indirect foraminal decompression and improvement in the lumbar alignment after percutaneous cement discoplasty. Eur. Spine J. 2019, 28, 1441–1447. [Google Scholar] [CrossRef] [PubMed]
- Pola, E. CORR Insights((R)): How Long Does Antimycobacterial Antibiotic-loaded Bone Cement Have In Vitro Activity for Musculoskeletal Tuberculosis? Clin. Orthop. Relat. Res. 2017, 475, 2805–2807. [Google Scholar] [CrossRef] [Green Version]
- Ozkan, N.; Wrede, K.; Ardeshiri, A.; Hagel, V.; Dammann, P.; Ringelstein, A.; Sure, U.; Sandalcioglu, I.E. Cervical spondylodiscitis—A clinical analysis of surgically treated patients and review of the literature. Clin. Neurol. Neurosurg. 2014, 117, 86–92. [Google Scholar] [CrossRef]
- Carragee, E.; Iezza, A. Does Acute placement of instrumentation in the treatment of vertebral osteomyelitis predispose to recurrent infection: Long-term follow-up in immune-suppressed patients. Spine 2008, 33, 2089–2093. [Google Scholar] [CrossRef]
- Bydon, M.; De la Garza-Ramos, R.; Macki, M.; Naumann, M.; Sciubba, D.M.; Wolinsky, J.P.; Bydon, A.; Gokaslan, Z.L.; Witham, T.F. Spinal instrumentation in patients with primary spinal infections does not lead to greater recurrent infection rates: An analysis of 118 cases. World Neurosurg. 2014, 82, e807–e814. [Google Scholar] [CrossRef]
- Lu, D.C.; Wang, V.; Chou, D. The use of allograft or autograft and expandable titanium cages for the treatment of vertebral osteomyelitis. Neurosurgery 2009, 64, 122–130. [Google Scholar] [CrossRef]
- Vcelak, J.; Chomiak, J.; Toth, L. Surgical treatment of lumbar spondylodiscitis: A comparison of two methods. Int. Orthop. 2014, 38, 1425–1434. [Google Scholar] [CrossRef] [Green Version]
- Schwab, F.; Patel, A.; Ungar, B.; Farcy, J.P.; Lafage, V. Adult spinal deformity-postoperative standing imbalance: How much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine 2010, 35, 2224–2231. [Google Scholar] [CrossRef] [PubMed]
- Robinson, Y.; Tschoeke, S.K.; Kayser, R.; Boehm, H.; Heyde, C.E. Reconstruction of large defects in vertebral osteomyelitis with expandable titanium cages. Int. Orthop. 2009, 33, 745–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aagaard, T.; Roed, C.; Larsen, A.R.; Petersen, A.; Dahl, B.; Skinhoj, P.; Obel, N.; Danish Staphylococcal Bacteraemia Study Group. Long-term mortality after Staphylococcus aureus spondylodiscitis: A Danish nationwide population-based cohort study. J. Infect. 2014, 69, 252–258. [Google Scholar] [CrossRef] [PubMed]
Parameter | Values |
---|---|
Female (n [%]) | 28 (38.4%) |
Average age (years) | 68.1 (SD: 12.3; range: 32–90) |
Debrided and augmented disc levels (n) | 88 |
Stabilized segments (n) | 121 |
Hospital stay (days) | 15.1 (SD: 9.2; range: 6–45) |
Previous lumbar spine operation (n [%]) | 14 (19.2%) |
Mean operation time in minutes | 166 (SD: 50: range: 60–420) |
Average ASA-Classification (median [min–max]) | 3 (SD: 0.7; range: 1–4) |
Mean blood loss (L) | 0.71 (SD: 0.51; range: 0.2–2.5) |
Mean CRP (mg/L, Normal < 5) at admission | 112 (SD: 83; range: 9–322; CI: 91–133) * |
Mean CRP (mg/L, Normal < 5) at discharge | 41 (SD: 35; range: 2–144; CI: 33–50) * |
Mean WBC (G/L, Normal range 3.0–10.5) at admission | 11.7 (SD: 4.7; range: 3.6–22.9; CI: 10.5–12.8) ** |
Mean WBC (G/L, Normal range 3.0–10.5)at discharge | 8.3 (SD: 2.6; range: 3.5–19.1; CI: 7.6–9) ** |
Mean NRS preoperatively | 5.6 (SD: 2.9; range: 0–10; CI: 5.9–6.3) *** |
Mean NRS at hospital discharge | 4.8 (SD: 2.2; range: 2–10; CI: 4.3–5.4) |
Mean NRS at last follow-up | 2.2 (SD: 2.2; range: 0–10; CI: 1.7–2.8) *** |
Preoperative segmental lordosis | 5.6 (SD: 15.6; range: −29–43; CI: 1.7–9.5) **** |
Postoperative segmental lordosis | 14.3 (SD: 14.4; range: −19–49; CI: 10.7–17.9) **** |
Preoperative lumbar lordosis | 40.4 (SD: 15.5; range: −15–70; CI: 36.5–44.2) ***** |
Postoperative lumbar lordosis | 48.8 (SD: 11.9; range: 12–72; CI: 45.8–51.8) ***** |
Grade I | Grade II | Grade III | Grade IV | |
---|---|---|---|---|
Anterior Bone regeneration | + | + | - | - |
Posterior Fusion mass | + | + | + | - +/− posterior implant failure |
Lysis around the PMMA | none | <3 mm | ≥3 mm | ≥3 mm |
Halo Ring Sign around pedicle screws (Lee et al.) | none | <1 mm | <1 mm | ≥1 mm |
Pathogen | n (%) |
Evidence of causative pathogen | 64/73 (87.7%) |
Polymicrobial infections | 3/73 (4.1%) |
Gram-positive bacteria | 44/67 (65.7%) |
Staphylococcus species | 26/67 (38.8%) |
Staphylococcus aureus | 15 (22.4%) |
Staphylococcus aureus (methicillin-resistant) | 1 (1.5%) |
Coagulase-negative staphylococcus | 9 (13.4%) |
Staphylococcus lugdunensis | 1 (1.5%) |
Streptococcus species | 13/67 (19.4%) |
Beta-hemolytic streptococci | 5 (7.5%) |
Peptostreptococci | 3 (4.5%) |
Streptococcus viridans | 2 (3.0%) |
Streptococcus bovis | 1 (1.5%) |
Streptococcus pneumonia | 1 (1.5%) |
Streptococcus sanguinis | 1 (1.5%) |
Others | 5/67 (7.5%) |
Enterococcus faecalis | 4 (6.0%) |
Actinomyces | 1 (1.5%) |
Gram-negative bacteria | 23/67 (34.3%) |
Escherichia coli | 7 (10.4%) |
Pseudomonas aeruginosa | 4 (6.0%) |
Propionibacterium acnes | 3 (4.5%) |
Morganella morganii | 2 (3.0%) |
Yersinia | 1 (1.5%) |
Enterobacter aeruginosa | 1 (1.5%) |
Campylobacter fetus | 1 (1.5%) |
Klebsiella | 1 (1.5%) |
Arcanobacterium pyogenes | 1 (1.5%) |
Alcaligenes species | 1 (1.5%) |
Corynebacterium amycolatum | 1 (1.5%) |
Lumbar Level | n (%) |
---|---|
Th12/L1 | 6 (6.8%) |
L1/2 | 7 (8.0%) |
L2/3 | 21 (23.9%) |
L3/4 | 18 (20.5%) |
L4/5 | 25 (28.4%) |
L5/S1 | 11 (12.5%) |
Total | 88 |
Ø/Patient | 1.2 |
Comorbidity (Weight CCI) | n |
---|---|
Myocardial Infarction (1) | 15 |
Congestive Heart Failure (1) | 25 |
Vascular disease (1) | 7 |
Peripheral Cerebrovascular disease (1) | 9 |
Dementia (1) | 6 |
Chronic Obstructive Pulmonary Disease (1) | 5 |
Connective Tissue disease (1) | 2 |
Peptic Ulcer disease (1) | 4 |
Diabetes Mellitus uncomplicated (1) | 18 |
Diabetes Mellitus with end-organ damage (2) | 11 |
Moderate to severe Chronic Kidney Disease (2) | 26 |
Hemiplegia (2) | 4 |
Leukemia (2) | 0 |
Malignant Lymphoma (2) | 1 |
Solid Tumor (2) | 11 |
Solid Tumor with metastatic diseases (6) | 2 |
Liver disease mild (1) | 11 |
Liver disease moderate to severe (3) | 6 |
AIDS (6) | 1 |
Mean CCI (all) | 3.3 (SD 2.7; range: 0–13; CI: 2.7–4.0) |
Mean CCI (died during follow–up; n = 9) | 7.3 (SD: 2.6; range: 5–13; CI: 5.3–9.4) (*) |
Mean CCI (survivors; n = 64) | 2.8 (SD: 2.1; range: 0–11; CI: 2.3–3.3) (*) |
Patients on hemodialysis | 7 (9.6%) |
Multi-substance abuse | 27 (37%) |
Local Revisions | n (%) |
Early local revisions < 3 months after index surgery | |
Hematoma (posterior) | 2 (2.7%) |
Psoas abscess/hematoma | 2 (2.7%) |
Second-look | 2 (2.7%) |
Dural tear with fistula | 1 (1.4%) |
Late local revisions ≥ 3 months after index surgery | |
Local infection in continuity with an adjacent segment with the same pathogen six months later | 1 (1.4%) |
Non-Local Revisions | n (%) |
Spondylodiscitis of another level due to different microorganisms (13, 17, and 36 months postoperatively) | 3 (4.1%) |
Adjacent fracture due to fall | 3 (4.1%) |
Adjacent segment degeneration | 3 (4.1%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deml, M.C.; Cattaneo, E.N.; Bigdon, S.F.; Sebald, H.-J.; Hoppe, S.; Heini, P.; Benneker, L.M.; Albers, C.E. PMMA-Cement-PLIF Is Safe and Effective as a Single-Stage Posterior Procedure in Treating Pyogenic Erosive Lumbar Spondylodiscitis—A Single-Center Retrospective Study of 73 Cases. Bioengineering 2022, 9, 73. https://doi.org/10.3390/bioengineering9020073
Deml MC, Cattaneo EN, Bigdon SF, Sebald H-J, Hoppe S, Heini P, Benneker LM, Albers CE. PMMA-Cement-PLIF Is Safe and Effective as a Single-Stage Posterior Procedure in Treating Pyogenic Erosive Lumbar Spondylodiscitis—A Single-Center Retrospective Study of 73 Cases. Bioengineering. 2022; 9(2):73. https://doi.org/10.3390/bioengineering9020073
Chicago/Turabian StyleDeml, Moritz Caspar, Emmanuelle N. Cattaneo, Sebastian Frederick Bigdon, Hans-Jörg Sebald, Sven Hoppe, Paul Heini, Lorin Michael Benneker, and Christoph Emanuel Albers. 2022. "PMMA-Cement-PLIF Is Safe and Effective as a Single-Stage Posterior Procedure in Treating Pyogenic Erosive Lumbar Spondylodiscitis—A Single-Center Retrospective Study of 73 Cases" Bioengineering 9, no. 2: 73. https://doi.org/10.3390/bioengineering9020073
APA StyleDeml, M. C., Cattaneo, E. N., Bigdon, S. F., Sebald, H. -J., Hoppe, S., Heini, P., Benneker, L. M., & Albers, C. E. (2022). PMMA-Cement-PLIF Is Safe and Effective as a Single-Stage Posterior Procedure in Treating Pyogenic Erosive Lumbar Spondylodiscitis—A Single-Center Retrospective Study of 73 Cases. Bioengineering, 9(2), 73. https://doi.org/10.3390/bioengineering9020073