Nosocomial Infections and Role of Nanotechnology
Abstract
:1. Introduction
2. Indian Scenario
3. Nano Strategies Combating Nosocomial Infections
3.1. Nanoparticles Based Molecular Beacons
3.2. Nanoparticles Formulated with Drugs and Antibiotics-Nano Bactericidal
3.3. Nanotechnology in the Development of Drug Delivery Systems (Nano-DDS)
3.4. Surface Modifications to Control Biofilm-Associated Infections
Study | Outcome of Study | Reference |
---|---|---|
In-vivo study of different nanostructured surfaces | ||
Effect of nanoporous features on titanium screw implants in rat femurs. Features were created using anodizing process. | No sign of infection in 28 days’ test over nano-porous surfaces. A sign of infection was found around un-anodized nano-smooth titanium implants. | [81] |
Effect of nano-roughness on silicon nitride material implant in rat skull. | Studies were conducted for 28 days’ test with or without bacteria. No sign of infection was observed on the nano-roughened surface while significant P. aeruginosa was observed on the smooth silicon nitride material implant. | [81] |
Analyzing antimicrobial and antibiofilm properties of ZnO nanorods decorated with graphene nanoplatelets against dental pathogens. | Cell viability assay and Filed Emission-SEM analysis showed the attainment of high killing rates of S. mutans cells and visible physical damages over the cell surfaces due to nanorods. Safranin assay showed a 30% reduction in biofilm development. | [82] |
Studies on various surface modification | ||
Silver plasma immersion ion implantation (Ag-PIII) over the implant surface leads to the embedment of AgNPs over the surface. | Bactericidal efficacy against relevant bacterial species was shown as well as promoted osteogenesis both in vitro and in vivo. A 99% reduction in viability for S. aureus was observed. | [83] |
Coating of modified Nano TiO2 on a solid surface to create an antimicrobial film over it. | Light fall on a coated surface generates the electron-hole pairs which promoted the death of microbial cells. The study showed inhibition of E. coli, S. aureus, and P. aeruginosa strains. This result proposes a promising, long-lasting, and effective technique against the nosocomial environment. | [84] |
Titanium substrate surface engineered with Chitosan for functional Ti-based orthopedic implants. | A chitosan-lauric acid (Chi-LA) conjugate showed a 95% and 93% antibacterial efficacy against S. aureus and P. aeruginosa over 1 week as well as the modified surface-enhanced biological functions of osteoblasts and concurrently reduced bacterial adhesion. | [85] |
AgNP/poly(DL-lactic-co-glycolic acid) (PLGA)-coated stainless steel alloy (SNPSA) as a potential antimicrobial implant material. | In vivo experiments showed that after 8-weeks no bacteria (S. aureus and P. aeruginosa) and minimal inflammatory cells were found in tissue surrounding the implant. SNPSA exhibited strong bactericidal and osteoinductive properties. | [86] |
Antifouling Coating studies | ||
Creating an inert polymer brush layer on the surface using polyethylene glycol (PEG). | The surface reduced the level of adhesion of P. aeruginosa by 2–4 orders of magnitude up to 5 h. | [87] |
Titanium surfaces were modified with poly(methacrylic acid) (P(MAA)). | MAA reduced adhesion of S. aureus and S. epidermidis by 50%. | [88] |
Titanium Nanotubes anodized with silver nitrate to provide antimicrobial efficacy. | The study showed that P. aeruginosa viability was decreased one thousand-fold on the nanotubes while supporting osteoblast cell adhesion. | [89] |
Created nanotube array over Ti substrate. Measured the antimicrobial and osteogenic properties. | Smaller nanotubes supported better adhesion of osteogenic cells while maintaining the opposite trend in S. epidemidis adhesion. | [90] |
Created densely packed vertical titania nanocolumns on Ti6A14V surface. | The arrangement of these columns had minimal effect on the attachment of osteoblasts while significantly reducing the biofilm formation of multiple clinical S. aureus strains. | [91] |
Zinc loaded titania nanotube was used to prevent infection and enhance osseointegration. | Zn-loaded nanotubes increased osseointegration in vivo in rodent tibial insert model and inhibited S. aureus growth. | [92] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forder, A.A. A brief history of infection control-past and present. S. Afr. Med. J. 2007, 97, 1161–1164. [Google Scholar]
- Available online: https://www.optimus-ise.com/historical/history-of-hospital-infections/ (accessed on 29 August 2021).
- Selwyn, S. Changing patterns in hospital infection. Nurs. Times 1972, 68, 643–646. [Google Scholar]
- Voidazan, S.; Albu, S.; Toth, R.; Grigorescu, B.; Rachita, A.; Moldovan, I. Healthcare Associated Infections—A New Pathology in Medical Practice? Int. J. Environ. Res. 2020, 17, 760. [Google Scholar] [CrossRef] [Green Version]
- CDC/NHSN Surveillance Definitions for Specific Types of Infections. IOP Publishing CDC Website. Available online: https://www.cdc.gov/nhsn/pdfs/pscmanual/17pscnosinfdef_current.pdf (accessed on 14 September 2021).
- Septimus, E.J.; Moody, J. Prevention of device-related healthcare-associated infections. F1000Research 2016, 5, 65. [Google Scholar] [CrossRef] [Green Version]
- Amaro, F.; Morón, Á.; Díaz, S.; Martín-González, A.; Gutiérrez, J.C. Metallic Nanoparticles—Friends or Foes in the Battle against Antibiotic-Resistant Bacteria? Microorganisms 2021, 9, 364. [Google Scholar] [CrossRef]
- Danasekaran, R.; Mani, G.; Annadurai, K. Prevention of healthcare-associated infections: Protecting patients, saving lives. Int. J. Community Med. Public Health 2014, 1, 67–68. [Google Scholar] [CrossRef]
- Gastmeier, P.; Kampf, G.; Wischnewski, N.A.; Hauer, T.; Schulgen, G.; Schumacher, M.; Rüden, H. Prevalence of nosocomial infections in representative German hospitals. J. Hosp. Infect. 1998, 38, 37–49. [Google Scholar] [CrossRef]
- Nicholls, T.M.; Morris, A.J. Nosocomial infection in Auckland Healthcare hospitals. N. Z. Med. J. 1997, 110, 314–316. [Google Scholar] [PubMed]
- World Health Organization Library. Report on the Burden of Endemic Health Care-Associated Infection Worldwide; WHO: Geneva, Switzerland, 2011; ISBN 9789241501507. Available online: https://apps.who.int/iris/handle/10665/80135 (accessed on 29 August 2021).
- Khan, H.A.; Baig, F.K.; Mehboob, R. Nosocomial infections: Epidemiology, prevention, control and surveillance. Asian Pac. J. Trop. Biomed. 2017, 7, 478–482. [Google Scholar] [CrossRef]
- World Health Organization Health Care-Associated Infections, Fact Sheet. 2019. Available online: http://www.who.int/gpsc/country_work/gpsc_ccisc_fact_sheet_en.pdf (accessed on 8 December 2019).
- Allegranzi, B.; Nejad, S.B.; Combescure, C.; Graafmans, W.; Attar, H.; Donaldson, L.; Pittet, D. Burden of endemic health-care-associated infection in developing countries: Systematic review and meta-analysis. Lancet 2011, 377, 228–241. [Google Scholar] [CrossRef]
- Zarb, P.; Coignard, B.; Griskeviciene, J.; Muller, A.; Vankerckhoven, V.; Weist, K.; Goossens, M.M.; Varenberg, S.; Hokins, S.; Catry, B.; et al. The European Centre for Disease Prevention and Control (ECDC) pilot point prevalence survey of healthcare-associated infections and antimicrobial use. Eurosurveillance 2012, 17, 20316. [Google Scholar] [CrossRef] [PubMed]
- Hassan, K.A.; Aftab, A.; Riffat, M. Nosocomial infections and their control strategies. Asian Pac. J. Trop. Biomed. 2015, 5, 505–509. [Google Scholar]
- Chiang, S.R.; Chuang, Y.C.; Tang, H.J.; Chen, C.C.; Chen, C.H.; Lee, N.Y.; Chou, C.H.; Ko, W.C. Intratracheal colistin sulfate for BALB/c mice with early pneumonia caused by carbapenem-resistant Acinetobacter baumannii. Crit. Care Med. 2009, 37, 2590–2595. [Google Scholar] [CrossRef] [PubMed]
- Lawley, T.D.; Clare, S.; Deakin, L.J.; Goulding, D.; Yen, J.L.; Raisen, C.; Brandt, C.; Lovell, J.; Cooke, F.; Clark, T.G.; et al. Use of purified Clostridium difficile spores to facilitate evaluation of health care disinfection regimens. Appl. Environ. Microbiol. 2010, 76, 6895–6900. [Google Scholar] [CrossRef] [Green Version]
- Eaton, K.A.; Friedman, D.I.; Francis, G.J.; Tyler, J.S.; Young, V.B.; Haeger, J.; Abu-Ali, G.; Whittam, T.S. Pathogenesis of renal disease due to enterohemorrhagic Escherichia coli in germ-free mice. Infect. Immun. 2008, 76, 3054–3063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.; del Pilar Rodriguez-Torres, M.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [Green Version]
- Ramasubramanian, V.; Iyer, V.; Sewlikar, S.; Desai, A. Epidemiology of healthcare acquired infection—An Indian perspective on surgical site infection and catheter related blood stream infection. IJBAMR 2014, 3, 46–63. [Google Scholar]
- Reddy, B.R.; Vani, J.; Gade, P.S.; Kurkure, S.V. Trends in surgical site infections in general surgery at a tertiary hospital. J. Med. Allied Sci. 2012, 2, 19–22. [Google Scholar]
- Singh, S.; Chakravarthy, M.; Rosenthal, V.D.; Myatra, S.N.; Dwivedy, A.; Bagarsrawala, I.; Munshi, N.; Shah, S.; Panigrahi, B.; Sood, S.; et al. Surgical site infection rates in six cities of India: Findings of the International Nosocomial Infection Control Consortium (INICC). Int. Health 2015, 7, 354–359. [Google Scholar] [CrossRef] [Green Version]
- Rosenthal, V.D.; Gupta, D.; Rajhans, P.; Myatra, S.N.; Muralidharan, S.; Mehta, Y.; Kharbanda, M.; Rodrigues, C.; Dwivedy, A.; Shah, S.; et al. Six-year multicenter study on short-term peripheral venous catheters-related bloodstream infection rates in 204 intensive care units of 57 hospitals in 19 cities of India: International Nosocomial Infection Control Consortium (INICC) findings. Am. J. Infect. Control 2020, 48, 1001–1008. [Google Scholar] [CrossRef]
- Venkataraman, R.; Divatia, J.V.; Ramakrishnan, N.; Chawla, R.; Amin, P.; Gopal, P.; Chaudhry, D.; Zirpe, K.; Abraham, B. Multicenter observational study to evaluate epidemiology and resistance patterns of common intensive care unit-infections. Indian J Crit. Care Med. 2018, 22, 20–26. [Google Scholar] [CrossRef]
- Saravu, K.; Preethi, V.; Kumar, R.; Guddattu, V.; Shastry, A.B.; Mukhopadhyay, C. Determinants of ventilator associated pneumonia and its impact on prognosis: A tertiary care experience. Indian J. Crit. Care Med. 2013, 17, 337–342. [Google Scholar] [CrossRef]
- Saravu, K.; Prasad, M.; Eshwara, V.K.; Mukhopadhyay, C. Clinico-microbiological profile and outcomes of nosocomial sepsis in an Indian tertiary care hospital—A prospective cohort study. Pathog. Glob. Health 2015, 109, 228–235. [Google Scholar] [CrossRef] [Green Version]
- Chaudhury, A.; Rani, A.S.; Kalawat, U.; Sumant, S.; Verma, A.; Venkataramana, B. Antibiotic resistance & pathogen profile in ventilator-associated pneumonia in a tertiary care hospital in India. Indian J. Med. Res. 2016, 144, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Kamath, S.; Mallaya, S.; Shenoy, S. Nosocomial infections in neonatal intensive care units: Profile, risk factor assessment and antibiogram. Indian J. Pediatr. 2010, 77, 37–39. [Google Scholar] [CrossRef]
- Kumar, S.; Shankar, B.; Arya, S.; Deb, M.; Chellani, H. Healthcare associated infections in neonatal intensive care unit and its correlation with environmental surveillance. J. Infect. Public Health 2018, 11, 275–279. [Google Scholar] [CrossRef]
- Mehta, A.; Rosenthal, V.D.; Mehta, Y.; Chakravarthy, M.; Todi, S.K.; Sen, N.; Sahu, S.; Gopinath, R.; Rodrigues, C.; Kapoor, P.; et al. Device-associated nosocomial infection rates in intensive care units of seven Indian cities—Findings of the international nosocomial infection control consortium (INICC). J. Hosp. Infect. 2007, 67, 168–174. [Google Scholar] [CrossRef]
- Habibi, S.; Wig, N.; Agarwal, S.; Sharma, S.K.; Lodha, R.; Pandey, R.M.; Kapil, A. Epidemiology of nosocomial infections in medicine intensive care unit at a tertiary care hospital in northern India. Trop. Dr. 2008, 38, 233–235. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Sen, P.; Gaind, R.; Verma, P.K.; Gupta, P.; Suri, P.R.; Nagpal, S.; Rai, A.K. Prospective surveillance of device-associated health care–associated infection in an intensive care unit of a tertiary care hospital in New Delhi, India. Am. J. Infect. Control 2018, 46, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Biswal, M.; Dhaliwal, N.; Mahesh, R.; Appannanavar, S.B.; Gautam, V.; Ray, P.; Gupta, A.K.; Taneja, N. Point prevalence surveys of healthcare-associated infections and use of indwelling devices and antimicrobials over three years in a tertiary care hospital in India. J. Hosp. Infect. 2014, 86, 272–274. [Google Scholar] [CrossRef]
- Singh, S.; Pandya, Y.; Patel, R.; Paliwal, M.; Wilson, A.; Trivedi, S. Surveillance of device-associated infections at a teaching hospital in rural Gujarat-India. Indian J. Med. Microbiol. 2010, 28, 342–347. [Google Scholar] [CrossRef]
- Bhadade, R.; Harde, M.; DeSouza, R.; More, A.; Bharmal, R. Emerging trends of nosocomial pneumonia in intensive care unit of a tertiary care public teaching hospital in Western India. Ann. Afr. Med. 2017, 16, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Nair, V.; Sahni, A.K.; Sharma, D.; Grover, N.; Shankar, S.; Chakravarty, A.; Patrikar, S.; Methe, K.; Jaiswal, S.S.; Dalal, S.S.; et al. Point prevalence & risk factor assessment for hospital-acquired infections in a tertiary care hospital in Pune, India. Indian J. Med. Res. 2017, 145, 824–832. [Google Scholar] [CrossRef]
- Rattan, A.; Bhujwala, R.A.; Kumar, R.; Safaya, A.N. Organization of infection control program. J. Acad. Hosp. Adm. 1992, 4, 21–25. [Google Scholar]
- Chandy, S.J.; Michael, J.S.; Veeraraghavan, B.; Abraham, O.C.; Bachhav, S.S.; Kshirsagar, N.A. ICMR programme on antibiotic stewardship, prevention of infection & control (ASPIC). Indian J. Med. Res. 2014, 139, 226–230. [Google Scholar]
- Antibiotic Stewardship and Prevention of Infection in Communities. Available online: http://www.aspic.in/article/second-annual-meeting-aspic-club-network-held-kottayam-India (accessed on 10 October 2021).
- Prakash, S.S.; Rajshekar, D.; Cherian, A.; Sastry, A.S. Care bundle approach to reduce device-associated infections in a tertiary care teaching hospital, South India. J. Lab. Physicians 2017, 9, 273–278. [Google Scholar] [CrossRef]
- Mathur, P. Prevention of healthcare-associated infections in low-and middle-income countries: The ‘bundle approach’. Indian J. Med. Microbiol. 2018, 36, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Brusaferro, S.; Arnoldo, L.; Cattani, G.; Fabbro, E.; Cookson, B.; Gallagher, R.; Hartemann, P.; Holt, J.; Kalenic, S.; Popp, W.; et al. Harmonizing and supporting infection control training in Europe. J. Hosp. Infect. 2015, 89, 351–356. [Google Scholar] [CrossRef]
- Pegram, A.; Bloomfield, J. Infection prevention and control. Nurs. Stand. 2015, 29, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.C.; Diwan, V.; Joshi, R.; Sharma, M.; Pathak, A.; Shah, H.; Tamhankar, A.J.; Stålsby Lundborg, C. “How can the patients remain safe, if we are not safe and protected from the infections”? A qualitative exploration among health-care workers about challenges of maintaining hospital cleanliness in a resource limited tertiary setting in rural India. Int. J. Environ. Res. Public Health 2018, 15, 1942. [Google Scholar] [CrossRef] [Green Version]
- Suchitra, J.B.; Devi, N.L. Impact of education on knowledge, attitudes and practices among various categories of health care workers on nosocomial infections. Indian J. Med. Microbiol. 2007, 25, 181–187. [Google Scholar] [CrossRef]
- Goyal, M.; Chaudhry, D. Impact of educational and training programs on knowledge of healthcare students regarding nosocomial infections, standard precautions and hand hygiene: A study at tertiary care hospital. Indian J. Crit. Care Med. 2019, 23, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, S. Strengthening infection prevention and control and systematic surveillance of healthcare associated infections in India. BMJ 2017, 358. [Google Scholar] [CrossRef] [Green Version]
- Nanotechnology in Medical Applications: The Global Market. 2017. Available online: https://www.bccresearch.com/market-research/healthcare/nanotechnology-medical-applications-market.html (accessed on 5 October 2021).
- Expansion of Healthcare-Acquired Infection Control Market to 2023. 2018. Available online: https://www.globenewswire.com/en/news-release/2018/10/10/1619048/0/en/Expansion-of-Healthcare-Acquired-Infection-Control-Market-to-2023.html (accessed on 20 August 2021).
- Drexler, K.E. Molecular engineering: An approach to the development of general capabilities for molecular manipulation. Proc. Natl. Acad. Sci. USA 1981, 78, 5275–5278. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Smitha, M.S.; Singh, S.P. The role of nanotechnology in combating multi-drug resistant bacteria. J. Nanosci. Nanotechnol. 2014, 14, 4745–4756. [Google Scholar] [CrossRef] [PubMed]
- Pandit, S.; Gaska, K.; Kádár, R.; Mijakovic, I. Graphene-Based Antimicrobial Biomedical Surfaces. ChemPhysChem 2021, 22, 250–263. [Google Scholar] [CrossRef]
- Pandit, S.; Cao, Z.; Mokkapati, V.R.; Celauro, E.; Yurgens, A.; Lovmar, M.; Westerlund, F.; Sun, J.; Mijakovic, I. Vertically aligned graphene coating is bactericidal and prevents the formation of bacterial biofilms. Adv. Mater. Interfaces 2018, 5, 1701331. [Google Scholar] [CrossRef]
- Bregnocchi, A.; Zanni, E.; Uccelletti, D.; Marra, F.; Cavallini, D.; De Angelis, F.; De Bellis, G.; Bossù, M.; Ierardo, G.; Polimeni, A.; et al. Graphene-based dental adhesive with anti-biofilm activity. J. Nanobiotechnol. 2017, 15, 89. [Google Scholar] [CrossRef]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Feng, C.; Liu, Y.; Wang, S.; Liu, F. Highly sensitive and rapid bacteria detection using molecular beacon–Au nanoparticles hybrid nanoprobes. Biosens. Bioelectron. 2014, 57, 133–138. [Google Scholar] [CrossRef]
- Raj, V.; Vijayan, A.N.; Joseph, K. Cysteine capped gold nanoparticles for naked eye detection of E. coli bacteria in UTI patients. Sens. Biosens. Res. 2015, 5, 33–36. [Google Scholar] [CrossRef] [Green Version]
- Mocan, T.; Matea, C.T.; Pop, T.; Mosteanu, O.; Buzoianu, A.D.; Puja, C.; Lancu, C.; Mocan, L. Development of nanoparticle-based optical sensors for pathogenic bacterial detection. J. Nanobiotechnol. 2017, 15, 25. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wang, J.; Li, M.; Qu, X.; Zhang, K.; Rong, Z.; Xiao, R.; Wang, S. A rapid SERS method for label-free bacteria detection using polyethylenimine-modified Au-coated magnetic microspheres and Au@ Ag nanoparticles. Analyst 2016, 141, 6226–6238. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Yang, D.; Ivleva, N.P.; Mircescu, N.E.; Niessner, R.; Haisch, C. SERS detection of bacteria in water by in situ coating with Ag nanoparticles. Anal. Chem. 2014, 86, 1525–1533. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Li, L.; Ho, P.L.; Mak, G.C.; Gu, H.; Xu, B.J. Combining fluorescent probes and biofunctional magnetic nanoparticles for rapid detection of bacteria in human blood. Adv. Mater. 2006, 18, 3145–3148. [Google Scholar] [CrossRef]
- Shimanovich, U.; Gedanken, A. Nanotechnology solutions to restore antibiotic activity. J. Mater. Chem. 2016, 4, 824–833. [Google Scholar] [CrossRef] [PubMed]
- Panáček, A.; Smékalová, M.; Večeřová, R.; Bogdanová, K.; Röderová, M.; Kolář, M.; Kilianová, M.; Hradilová, Š.; Froning, J.P.; Havrdová, M.; et al. Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae. Colloids Surf. B Biointerfaces 2016, 142, 392–399. [Google Scholar] [CrossRef]
- Roy, A.S.; Parveen, A.; Koppalkar, A.R.; Prasad, M.A. Effect of nano-titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus aureus. J. Biomater. Nanobiotechnol. 2010, 1, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Shahverdi, A.R.; Fakhimi, A.; Shahverdi, H.R.; Minaian, S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 168–171. [Google Scholar] [CrossRef]
- Chmielewska, S.J.; Skłodowski, K.; Depciuch, J.; Deptuła, P.; Piktel, E.; Fiedoruk, K.; Kot, P.; Paprocka, P.; Fortunka, K.; Wollny, T.; et al. Bactericidal properties of rod-, peanut-, and star-shaped gold nanoparticles coated with ceragenin CSA-131 against multidrug-resistant bacterial strains. Pharmaceutics 2021, 13, 425. [Google Scholar] [CrossRef]
- Qing, G.; Zhao, X.; Gong, N.; Chen, J.; Li, X.; Gan, Y.; Wang, Y.; Zhang, Z.; Zhang, Y.; Guo, W.; et al. Thermo-responsive triple-function nanotransporter for efficient chemo-photothermal therapy of multidrug-resistant bacterial infection. Nat. Commun. 2019, 10, 4336. [Google Scholar] [CrossRef] [Green Version]
- Paramanantham, P.; Siddhardha, B.; Sb, S.L.; Sharan, A.; Alyousef, A.A.; Al Dosary, M.S.; Arshad, M.; Syed, A. Antimicrobial photodynamic therapy on Staphylococcus aureus and Escherichia coli using malachite green encapsulated mesoporous silica nanoparticles: An in vitro study. PeerJ. 2019, 7, e7454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranghar, S.; Sirohi, P.; Verma, P.; Agarwal, V. Nanoparticle-based drug delivery systems: Promising approaches against infections. Braz. Arch. Biol. Technol. 2014, 57, 209–222. [Google Scholar] [CrossRef]
- Ramos, M.A.; Da Silva, P.B.; Spósito, L.; De Toledo, L.G.; Bonifácio, B.V.; Rodero, C.F.; Dos Santos, K.C.; Chorilli, M.; Bauab, T.M. Nanotechnology-based drug delivery systems for control of microbial biofilms: A review. Int. J. Nanomed. 2018, 13, 1179. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.T.; Li, W.; Meng, G.; Wang, P.; Liao, W. Strategies for transporting nanoparticles across the blood–brain barrier. Biomater. Sci. 2016, 4, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Khatoon, Z.; McTiernan, C.D.; Suuronen, E.J.; Mah, T.F.; Alarcon, E.I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 2018, 4, e01067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Vora, J.; Nadhe, S.B.; Wadhwani, S.A.; Shedbalkar, U.U.; Chopade, B.A. Antibacterial activities of bacteriagenic silver nanoparticles against nosocomial Acinetobacter baumannii. J. Nanosci. Nanotechnol. 2018, 18, 3806–3815. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Huang, K.; Li, H.H.; Lu, Y.G.; Zheng, D.L. Antibacterial properties of functionalized gold nanoparticles and their application in oral biology. J. Nanomater. 2020, 2020, 5616379. [Google Scholar] [CrossRef]
- Raphel, J.; Holodniy, M.; Goodman, S.B.; Heilshorn, S.C. Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomaterials 2016, 84, 301–314. [Google Scholar] [CrossRef] [Green Version]
- Fisher, L.E.; Hook, A.L.; Ashraf, W.; Yousef, A.; Barrett, D.A.; Scurr, D.J.; Chen, X.; Smith, E.F.; Fay, M.; Parmenter, C.D.; et al. Biomaterial modification of urinary catheters with antimicrobials to give long-term broad spectrum antibiofilm activity. J. Control. Release 2015, 202, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Lackner, P.; Beer, R.; Broessner, G.; Helbok, R.; Galiano, K.; Pleifer, C.; Pfausler, B.; Brenneis, C.; Huck, C.; Engelhardt, K.; et al. Efficacy of silver nanoparticles-impregnated external ventricular drain catheters in patients with acute occlusive hydrocephalus. Neurocrit. Care 2008, 8, 360–365. [Google Scholar] [CrossRef]
- Taheri, S.; Vasilev, K.; Majewski, P. Silver nanoparticles: Synthesis, antimicrobial coatings, and applications for medical devices. Recent Pat. Mater. Sci. 2015, 8, 166–175. [Google Scholar] [CrossRef]
- Ramasamy, M.; Lee, J. Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. BioMed Res. Int. 2016, 2016, 1851242. [Google Scholar] [CrossRef] [Green Version]
- El Zowalaty, M.E.; Al Thani, A.A.; Webster, T.J.; El Zowalaty, A.E.; Schweizer, H.P.; Nasrallah, G.K.; Marei, H.E.; Ashour, H.M. Pseudomonas aeruginosa: Arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol. 2015, 10, 1683–1706. [Google Scholar] [CrossRef]
- Zanni, E.; Chandraiahgari, C.R.; De Bellis, G.; Montereali, M.R.; Armiento, G.; Ballirano, P.; Polimeni, A.; Sarto, M.S.; Uccelletti, D. Zinc oxide nanorods-decorated graphene nanoplatelets: A promising antimicrobial agent against the cariogenic bacterium Streptococcus mutans. Nanomaterials 2016, 6, 179. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Qiao, Y.; Liu, X.; Lu, T.; Cui, T.; Meng, F.; Chu, P.K. Electron storage mediated dark antibacterial action of bound silver nanoparticles: Smaller is not always better. Acta Biomater. 2013, 9, 5100–5110. [Google Scholar] [CrossRef] [PubMed]
- Dholiya, K. Innovative, long-lasting and eco-friendly surface decontamination approach using modified Titania based on nanotechnology. Health Technol. 2021, 11, 389–393. [Google Scholar] [CrossRef]
- Zhao, L.; Hu, Y.; Xu, D.; Cai, K. Surface functionalization of titanium substrates with chitosan–lauric acid conjugate to enhance osteoblasts functions and inhibit bacteria adhesion. Colloids Surf. B Biointerfaces 2014, 119, 115–125. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, Z.; Zara, J.N.; Hsu, C.; Soofer, D.E.; Lee, K.S.; Siu, R.K.; Miller, L.S.; Zhang, X.; Carpenter, D.; et al. The antimicrobial and osteoinductive properties of silver nanoparticle/poly(DL-lactic-co-glycolic acid)-coated stainless steel. Biomaterials 2012, 33, 8745–8756. [Google Scholar] [CrossRef]
- Kingshott, P.; Wei, J.; Bagge-Ravn, D.; Gadegaard, N.; Gram, L. Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion. Langmuir 2003, 19, 6912–6921. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, Z.; Zhu, X.; Kang, E.T.; Neoh, K.G. Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion. Biomaterials 2008, 29, 4751–4759. [Google Scholar] [CrossRef]
- Das, K.; Bose, S.; Bandyopadhyay, A.; Karandikar, B.; Gibbins, B.L. Surface coatings for improvement of bone cell materials and antimicrobial activities of Ti implants. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 87, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Ni, J.; Zheng, K.; Shen, Y.; Wang, X.; He, G.; Jin, S.; Tang, T. Dual effects and mechanism of TiO2 nanotube arrays in reducing bacterial colonization and enhancing C3H10T1/2 cell adhesion. Int. J. Nanomed. 2013, 8, 3093–3105. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo-Barba, I.; García-Martín, J.M.; Álvarez, R.; Palmero, A.; Esteban, J.; Pérez-Jorge, C.; Arcos, D.; Vallet-Regí, M. Nanocolumnar coatings with selective behavior towards osteoblast and Staphylococcus aureus proliferation. Acta Biomater. 2015, 15, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xiong, W.; Zhang, C.; Gao, B.; Guan, H.; Cheng, H.; Fu, J.; Li, F. Enhanced osseointegration and antibacterial action of zinc-loaded titania-nanotube-coated titanium substrates: In vitro and in vivo studies. J. Biomed. Mater. Res. A 2014, 102, 3939–3950. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J. Analysis and Policy Observatory Tackling Drug-Resistance Infections Globally: Final Report and Recommendations; Government of the United Kingdom: London, UK, 2016. Available online: https://apo.org.au/node/63983 (accessed on 5 November 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ananda, T.; Modi, A.; Chakraborty, I.; Managuli, V.; Mukhopadhyay, C.; Mazumder, N. Nosocomial Infections and Role of Nanotechnology. Bioengineering 2022, 9, 51. https://doi.org/10.3390/bioengineering9020051
Ananda T, Modi A, Chakraborty I, Managuli V, Mukhopadhyay C, Mazumder N. Nosocomial Infections and Role of Nanotechnology. Bioengineering. 2022; 9(2):51. https://doi.org/10.3390/bioengineering9020051
Chicago/Turabian StyleAnanda, Thripthi, Ankita Modi, Ishita Chakraborty, Vishwanath Managuli, Chiranjay Mukhopadhyay, and Nirmal Mazumder. 2022. "Nosocomial Infections and Role of Nanotechnology" Bioengineering 9, no. 2: 51. https://doi.org/10.3390/bioengineering9020051
APA StyleAnanda, T., Modi, A., Chakraborty, I., Managuli, V., Mukhopadhyay, C., & Mazumder, N. (2022). Nosocomial Infections and Role of Nanotechnology. Bioengineering, 9(2), 51. https://doi.org/10.3390/bioengineering9020051