Differentiating Human Pluripotent Stem Cells to Cardiomyocytes Using Purified Extracellular Matrix Proteins
Abstract
:1. Introduction
2. hESC- and iPSC-CM Differentiation Protocols and Limitations
2.1. Overview of Protocols
2.2. Protocol Limitations
3. Using the Extracellular Matrix to Improve hESC- and iPSC-CM Differentiation
3.1. Overview: Expression of ECM Proteins and Integrins in the Human Heart
3.2. Laminins
3.3. Collagens
3.4. Fibronectin
3.5. Vitronectin
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Materials and Methods
Appendix A.1.1. iPSC Culture and iPSC-CM Differentiation
Appendix A.1.2. ECM Materials and Preparation
References
- Thomson, J.A.; Itskovitz-Eldor, J.; Shapiro, S.S.; Waknitz, M.A.; Swiergiel, J.J.; Marshall, V.S.; Jones, J.M. Embryonic Stem Cell Lines Derived from Human Blastocysts. Science 1998, 282, 1145–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S.; Jaffe, R.B. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 2008, 131, 861–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Vodyanik, M.A.; Smuga-Otto, K.; Antosiewicz-Bourget, J.; Frane, J.L.; Tian, S.; Nie, J.; Jonsdottir, G.A.; Ruotti, V.; Stewart, R.; et al. Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. Science 2008, 318, 1917. [Google Scholar] [CrossRef]
- Zhang, J.; Gregorich, Z.R.; Tao, R.; Kim, G.C.; Lalit, P.A.; Carvalho, J.L.; Markandeya, Y.; Mosher, D.F.; Palecek, S.P.; Kamp, T.J. Cardiac Differentiation of Human Pluripotent Stem Cells Using Defined Extracellular Matrix Proteins Reveals Essential Role of Fibronectin. eLife 2022, 11, e69028. [Google Scholar] [CrossRef]
- Sung, T.C.; Liu, C.H.; Huang, W.L.; Lee, Y.C.; Kumar, S.S.; Chang, Y.; Ling, Q.D.; Hsu, S.T.; Higuchi, A. Efficient Differentiation of Human ES and IPS Cells into Cardiomyocytes on Biomaterials under Xeno-Free Conditions. Biomater. Sci. 2019, 7, 5467–5481. [Google Scholar] [CrossRef]
- Burridge, P.W.; Matsa, E.; Shukla, P.; Lin, Z.C.; Churko, J.M.; Ebert, A.D.; Lan, F.; Diecke, S.; Huber, B.; Mordwinkin, N.M.; et al. Chemically Defined Generation of Human Cardiomyocytes. Nat. Methods 2014, 11, 855–860. [Google Scholar] [CrossRef] [Green Version]
- Karbassi, E.; Fenix, A.; Marchiano, S.; Muraoka, N.; Nakamura, K.; Yang, X.; Murry, C.E. Cardiomyocyte Maturation: Advances in Knowledge and Implications for Regenerative Medicine. Nat. Rev. Cardiol. 2020, 17, 341–359. [Google Scholar] [CrossRef]
- Yang, X.; Pabon, L.; Murry, C.E. Engineering Adolescence: Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Circ. Res. 2014, 114, 511–523. [Google Scholar] [CrossRef] [Green Version]
- Kamakura, T.; Makiyama, T.; Sasaki, K.; Yoshida, Y.; Wuriyanghai, Y.; Chen, J.; Hattori, T.; Ohno, S.; Kita, T.; Horie, M.; et al. Ultrastructural Maturation of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes in a Long-Term Culture. Circ. J. 2013, 77, 1307–1314. [Google Scholar] [CrossRef] [Green Version]
- Dias, T.P.; Pinto, S.N.; Santos, J.I.; Fernandes, T.G.; Fernandes, F.; Diogo, M.M.; Prieto, M.; Cabral, J.M.S. Biophysical Study of Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Structural Maturation during Long-Term Culture. Biochem. Biophys. Res. Commun. 2018, 499, 611–617. [Google Scholar] [CrossRef]
- Yap, L.; Wang, J.W.; Moreno-Moral, A.; Chong, L.Y.; Sun, Y.; Harmston, N.; Wang, X.; Chong, S.Y.; Öhman, M.K.; Wei, H.; et al. In Vivo Generation of Post-Infarct Human Cardiac Muscle by Laminin-Promoted Cardiovascular Progenitors. Cell Rep. 2019, 26, 3231–3245.e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lian, X.; Zhang, J.; Azarin, S.M.; Zhu, K.; Hazeltine, L.B.; Bao, X.; Hsiao, C.; Kamp, T.J.; Palecek, S.P. Directed Cardiomyocyte Differentiation from Human Pluripotent Stem Cells by Modulating Wnt/β-Catenin Signaling under Fully Defined Conditions. Nat. Protoc. 2013, 8, 162–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, L.M.; Carpenter, M.K. Characterization and Culture of Human Embryonic Stem Cells. Nat. Biotechnol. 2005, 23, 699–708. [Google Scholar] [CrossRef]
- Kleinman, H.K.; McGarvey, M.L.; Liotta, L.A.; Robey, P.G.; Tryggvason, K.; Martin, G.R. Isolation and Characterization of Type IV Procollagen, Laminin, and Heparan Sulfate Proteoglycan from the EHS Sarcoma. Biochemistry 1982, 21, 6188–6193. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Inokuma, M.S.; Denham, J.; Golds, K.; Kundu, P.; Gold, J.D.; Carpenter, M.K. Feeder-Free Growth of Undifferentiated Human Embryonic Stem Cells. Nat. Biotechnol. 2001, 19, 971–974. [Google Scholar] [CrossRef]
- Ludwig, T.E.; Levenstein, M.E.; Jones, J.M.; Berggren, W.T.; Mitchen, E.R.; Frane, J.L.; Crandall, L.J.; Daigh, C.A.; Conard, K.R.; Piekarczyk, M.S.; et al. Derivation of Human Embryonic Stem Cells in Defined Conditions. Nat. Biotechnol. 2006, 24, 185–187. [Google Scholar] [CrossRef]
- Rowland, T.J.; Blaschke, A.J.; Buchholz, D.E.; Hikita, S.T.; Johnson, L.V.; Clegg, D.O. Differentiation of Human Pluripotent Stem Cells to Retinal Pigmented Epithelium in Defined Conditions Using Purified Extracellular Matrix Proteins. Tissue Eng. Regen. Med. 2012, 7, 642–653. [Google Scholar] [CrossRef]
- Gong, J.; Sagiv, O.; Cai, H.; Tsang, S.H.; del Priore, L.V. Effects of Extracellular Matrix and Neighboring Cells on Induction of Human Embryonic Stem Cells into Retinal or Retinal Pigment Epithelial Progenitors. Exp. Eye Res. 2008, 86, 957–965. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.Y.; Chen, Y.H.; Zhang, T.; Liu, S.J.; Bai, X.Y.; Huang, X.Y.; Jiang, M.; Sun, X.D. Improvement of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium Cell Adhesion, Maturation, and Function through Coating with Truncated Recombinant Human Vitronectin. Int. J. Ophthalmol. 2021, 14, 1160–1167. [Google Scholar] [CrossRef]
- Sorkio, A.; Hongisto, H.; Kaarniranta, K.; Uusitalo, H.; Juuti-Uusitalo, K.; Skottman, H. Structure and Barrier Properties of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells Are Affected by Extracellular Matrix Protein Coating. Tissue Eng. Part A 2014, 20, 622–634. [Google Scholar] [CrossRef]
- Frantz, C.; Stewart, K.M.; Weaver, V.M. The Extracellular Matrix at a Glance. J. Cell Sci. 2010, 123, 4195–4200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnans, C.; Chou, J.; Werb, Z. Remodelling the Extracellular Matrix in Development and Disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 786–801. [Google Scholar] [CrossRef] [PubMed]
- Kozlowski, M.T.; Crook, C.J.; Ku, H.T. Towards Organoid Culture without Matrigel. Commun. Biol. 2021, 4, 1387. [Google Scholar] [CrossRef]
- Padhi, A.; Nain, A.S. ECM in Differentiation: A Review of Matrix Structure, Composition and Mechanical Properties. Ann. Biomed. Eng. 2020, 48, 1071–1089. [Google Scholar] [CrossRef] [PubMed]
- Amin, D.R.; Sink, E.; Narayan, S.P.; Abdel-Hafiz, M.; Mestroni, L.; Pena, B. Nanomaterials for Cardiac Tissue Engineering. Molecules 2020, 25, 5189. [Google Scholar] [CrossRef] [PubMed]
- Pena, B.; Laughter, M.; Jett, S.; Rowland, T.; Taylor, M.R.G.; Mestroni, L.; Park, D. Injectable Hydrogels for Cardiac Tissue Engineering. Macromol. Biosci. 2018, 18, 1800079. [Google Scholar] [CrossRef] [PubMed]
- Suh, T.C.; Amanah, A.Y.; Gluck, J.M. Electrospun Scaffolds and Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Cardiac Tissue Engineering Applications. Bioengineering 2020, 7, 105. [Google Scholar] [CrossRef]
- Cho, S.; Lee, C.; Skylar-Scott, M.A.; Heilshorn, S.C.; Wu, J.C. Reconstructing the Heart Using IPSCs: Engineering Strategies and Applications. J. Mol. Cell Cardiol. 2021, 157, 56–65. [Google Scholar] [CrossRef]
- Arai, K.; Kitsuka, T.; Nakayama, K. Scaffold-Based and Scaffold-Free Cardiac Constructs for Drug Testing. Biofabrication 2021, 13, 042001. [Google Scholar] [CrossRef]
- Pushp, P.; Nogueira, D.E.S.; Rodrigues, C.A.V.; Ferreira, F.C.; Cabral, J.M.S.; Gupta, M.K. A Concise Review on Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Personalized Regenerative Medicine. Stem. Cell Rev. Rep. 2021, 17, 748–776. [Google Scholar] [CrossRef] [PubMed]
- Chin, I.L.; Hool, L.; Choi, Y.S. A Review of in Vitro Platforms for Understanding Cardiomyocyte Mechanobiology. Front. Bioeng. Biotechnol. 2019, 7, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sacchetto, C.; Vitiello, L.; de Windt, L.J.; Rampazzo, A.; Calore, M. Modeling Cardiovascular Diseases with Hipsc-Derived Cardiomyocytes in 2d and 3d Cultures. Int. J. Mol. Sci. 2020, 21, 3404. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.L.; Xue, Q.; Xu, X.H.; Hu, F.; Shao, H. Recent Progress in Induced Pluripotent Stem Cell-Derived 3D Cultures for Cardiac Regeneration. Cell Tissue Res. 2021, 384, 231–240. [Google Scholar] [CrossRef]
- Smith, A.S.T.; Macadangdang, J.; Leung, W.; Laflamme, M.A.; Kim, D.-H. Human IPSC-Derived Cardiomyocytes and Tissue Engineering Strategies for Disease Modeling and Drug Screening. Biotechnol. Adv. 2017, 35, 77–94. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.H.; Helms, H.R.; Nakayama, K.H. Decellularization Strategies for Regenerating Cardiac and Skeletal Muscle Tissues. Front. Bioeng. Biotechnol. 2022, 10, 831300. [Google Scholar] [CrossRef]
- Zhang, J.; Klos, M.; Wilson, G.F.; Herman, A.M.; Lian, X.; Raval, K.K.; Barron, M.R.; Hou, L.; Soerens, A.G.; Yu, J.; et al. Extracellular Matrix Promotes Highly Efficient Cardiac Differentiation of Human Pluripotent Stem Cells: The Matrix Sandwich Method. Circ. Res. 2012, 111, 1125–1136. [Google Scholar] [CrossRef]
- Sun, X.; Nunes, S.S. Bioengineering Approaches to Mature Human Pluripotent Stem Cell-Derived Cardiomyocytes. Front. Cell Dev. Biol. 2017, 5, 19. [Google Scholar] [CrossRef] [Green Version]
- Funakoshi, S.; Fernandes, I.; Mastikhina, O.; Wilkinson, D.; Tran, T.; Dhahri, W.; Mazine, A.; Yang, D.; Burnett, B.; Lee, J.; et al. Generation of Mature Compact Ventricular Cardiomyocytes from Human Pluripotent Stem Cells. Nat. Commun. 2021, 12, 3155. [Google Scholar] [CrossRef]
- Kehat, I.; Kenyagin-Karsenti, D.; Snir, M.; Segev, H.; Amit, M.; Gepstein, A.; Livne, E.; Binah, O.; Itskovitz-Eldor, J.; Gepstein, L. Human Embryonic Stem Cells Can Differentiate into Myocytes with Structural and Functional Properties of Cardiomyocytes. J. Clin. Investig. 2001, 108, 407–414. [Google Scholar] [CrossRef]
- Higuchi, A.; Suresh Kumar, S.; Ling, Q.D.; Alarfaj, A.A.; Munusamy, M.A.; Murugan, K.; Hsu, S.T.; Benelli, G.; Umezawa, A. Polymeric Design of Cell Culture Materials That Guide the Differentiation of Human Pluripotent Stem Cells. Prog. Polym. Sci. 2017, 65, 83–126. [Google Scholar] [CrossRef]
- Zhang, J.; Wilson, G.F.; Soerens, A.G.; Koonce, C.H.; Yu, J.; Palecek, S.P.; Thomson, J.A.; Kamp, T.J. Functional Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells. Circ. Res. 2009, 104, 30–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, N.; Liu, Z.; Chen, Z.; Wang, J.; Chen, T.; Zhao, X.; Ma, Y.; Qin, L.; Kang, J.; Wei, B.; et al. Ascorbic Acid Enhances the Cardiac Differentiation of Induced Pluripotent Stem Cells through Promoting the Proliferation of Cardiac Progenitor Cells. Cell Res. 2012, 22, 219–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kattman, S.J.; Witty, A.D.; Gagliardi, M.; Dubois, N.C.; Niapour, M.; Hotta, A.; Ellis, J.; Keller, G. Stage-Specific Optimization of Activin/Nodal and BMP Signaling Promotes Cardiac Differentiation of Mouse and Human Pluripotent Stem Cell Lines. Cell Stem. Cell. 2011, 8, 228–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Branco, M.A.; Cotovio, J.P.; Rodrigues, C.A.V.; Vaz, S.H.; Fernandes, T.G.; Moreira, L.M.; Cabral, J.M.S.; Diogo, M.M. Transcriptomic Analysis of 3D Cardiac Differentiation of Human Induced Pluripotent Stem Cells Reveals Faster Cardiomyocyte Maturation Compared to 2D Culture. Sci. Rep. 2019, 9, 9229. [Google Scholar] [CrossRef] [Green Version]
- Branco, M.A.; Cabral, J.M.S.; Diogo, M.M. From Human Pluripotent Stem Cells to 3d Cardiac Microtissues: Progress, Applications and Challenges. Bioengineering 2020, 7, 92. [Google Scholar] [CrossRef]
- Vukicevic, S.; Kleinman, H.K.; Luyten, F.P.; Roberts, A.B.; Roche, N.S.; Reddi, A.H. Identification of Multiple Active Growth Factors in Basement Membrane Matrigel Suggests Caution in Interpretation of Cellular Activity Related to Extracellular Matrix Components. Exp. Cell Res. 1992, 202, 1–8. [Google Scholar] [CrossRef]
- Herron, T.J.; da Rocha, A.M.; Campbell, K.; Ponce-Balbuena, D.; Willis, B.C.; Guerrero-Serna, G.; Liu, Q.; Klos, M.; Musa, H.; Zarzoso, M.; et al. Extracellular Matrix Mediated Maturation of Human Pluripotent Stem Cell Derived Cardiac Monolayer Structure and Electrophysiological Function. Circ. Arrhythm. Electrophysiol. 2016, 9, e003638. [Google Scholar] [CrossRef] [Green Version]
- Frisch, S.; Ruoslahti, E. Integrins and Anoikis. Curr. Opin. Cell Biol. 1997, 9, 701–706. [Google Scholar] [CrossRef]
- Danen, E.; Sonnnenberg, A. Integrins in Regulation of Tissue Development and Function. J. Pathol. 2003, 200, 471–480. [Google Scholar] [CrossRef]
- Ruoslahti, E. Integrins. J. Clin. Investig. 1991, 87, 1–5. [Google Scholar] [CrossRef]
- Rowland, T.J.; Miller, L.M.; Blaschke, A.J.; Doss, E.L.; Bonham, A.J.; Hikita, S.T.; Johnson, L.V.; Clegg, D.O. Roles of Integrins in Human Induced Pluripotent Stem Cell Growth on Matrigel and Vitronectin. Stem. Cells Dev. 2009, 19, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Vuoristo, S.; Virtanen, I.; Takkunen, M.; Palgi, J.; Kikkawa, Y.; Rousselle, P.; Sekiguchi, K.; Tuuri, T.; Otonkoski, T. Laminin Isoforms in Human Embryonic Stem Cells: Synthesis, Receptor Usage and Growth Support. J. Cell Mol. Med. 2009, 13, 2622–2633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyazaki, T.; Futaki, S.; Hasegawa, K.; Kawasaki, M.; Sanzen, N.; Hayashi, M.; Kawase, E.; Sekiguchi, K.; Nakatsuji, N.; Suemori, H. Recombinant Human Laminin Isoforms Can Support the Undifferentiated Growth of Human Embryonic Stem Cells. Biochem. Biophys. Res. Commun. 2008, 375, 27–32. [Google Scholar] [CrossRef]
- Assou, S.; le Carrour, T.; Tondeur, S.; Ström, S.; Gabelle, A.; Marty, S.; Nadal, L.; Pantesco, V.; Réme, T.; Hugnot, J.-P.; et al. A Meta-Analysis of Human Embryonic Stem Cells Transcriptome Integrated into a Web-Based Expression Atlas. Stem. Cells 2007, 25, 961–973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braam, S.R.; Zeinstra, L.; Litjens, S.; Ward-van Oostwaard, D.; van den Brink, S.; van Laake, L.; Lebrin, F.; Kats, P.; Hochstenbach, R.; Passier, R.; et al. Recombinant Vitronectin Is a Functionally Defined Substrate That Supports Human Embryonic Stem Cell Self-Renewal via AVB5 Integrin. Stem. Cells 2009, 26, 2257–2265. [Google Scholar] [CrossRef] [PubMed]
- Yap, L.; Tay, H.G.; Nguyen, M.T.X.; Tjin, M.S.; Tryggvason, K. Laminins in Cellular Differentiation. Trends Cell Biol. 2019, 29, 987–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guyette, J.P.; Charest, J.M.; Mills, R.W.; Jank, B.J.; Moser, P.T.; Gilpin, S.E.; Gershlak, J.R.; Okamoto, T.; Gonzalez, G.; Milan, D.J.; et al. Bioengineering Human Myocardium on Native Extracellular Matrix. Circ. Res. 2016, 118, 56–72. [Google Scholar] [CrossRef] [Green Version]
- Moyes, K.W.; Sip, C.G.; Obenza, W.; Yang, E.; Horst, C.; Welikson, R.E.; Hauschka, S.D.; Folch, A.; Laflamme, M.A. Human Embryonic Stem Cell-Derived Cardiomyocytes Migrate in Response to Gradients of Fibronectin and Wnt5a. Stem. Cells Dev. 2013, 22, 2315–2325. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, N.; Yokoyama, F.; Nomizu, M. Functional Sites in the Laminin Alpha Chains. Connect Tissue Res. 2005, 46, 142–152. [Google Scholar] [CrossRef]
- Krissansen, G.W.; Danen, E.H. Integrin Superfamily. In eLS; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Dipersio, C.M.; Shah, S.; Hynes, R.O. A3Aβ1 Integrin Localizes to Focal Contacts in Response to Diverse Extracellular Matrix Proteins. J. Cell Sci. 1995, 108, 2321–2336. [Google Scholar] [CrossRef]
- Humphries, J.D.; Byron, A.; Humphries, M.J. Integrin Ligands at a Glance. J. Cell Sci. 2006, 119, 3901–3903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.D.; Yoon, C.S.; Kim, H.; Rah, B.J. Expression of Extracellular Matrix Components Fibronectin and Laminin in the Human Fetal Heart. Cell Struct. Funct. 1999, 24, 19–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, M.L.; Givens, S.; Santosh, N.; Iacovino, M.; Kyba, M.; Ogle, B.M. Laminin 411 Mediates Endothelial Specification via Multiple Signaling Axes That Converge on β-Catenin. Stem. Cell Rep. 2022, 17, 569–583. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Matsukawa, H.; Sawada, K.; Kaneko, R.; Ishino, F. In Vitro Generation of Human Embryonic Stem Cell-Derived Heart Organoids Possessing Physiological Ion Currents. bioRxiv 2022. [Google Scholar] [CrossRef]
- van Laake, L.W.; van Donselaar, E.G.; Monshouwer-Kloots, J.; Schreurs, C.; Passier, R.; Humbel, B.M.; Doevendans, P.A.; Sonnenberg, A.; Verkleij, A.J.; Mummery, C.L. Extracellular Matrix Formation after Transplantation of Human Embryonic Stem Cell-Derived Cardiomyocytes. Cell. Mol. Life Sci. 2010, 67, 277–290. [Google Scholar] [CrossRef] [Green Version]
- Rodin, S.; Antonsson, L.; Niaudet, C.; Simonson, O.E.; Salmela, E.; Hansson, E.M.; Domogatskaya, A.; Xiao, Z.; Damdimopoulou, P.; Sheikhi, M.; et al. Clonal Culturing of Human Embryonic Stem Cells on Laminin-521/E-Cadherin Matrix in Defined and Xeno-Free Environment. Nat. Commun. 2014, 5, 3195. [Google Scholar] [CrossRef] [Green Version]
- Bowers, S.L.K.; Baudino, T.A. Cardiac Myocyte-Fibroblast Interactions and the Coronary Vasculature. J. Cardiovasc. Transl. Res. 2012, 5, 783–793. [Google Scholar] [CrossRef]
- Lopez, C.A.; Al-Siddiqi, H.H.A.A.; Purnama, U.; Iftekhar, S.; Bruyneel, A.A.N.; Kerr, M.; Nazir, R.; da Luz Sousa Fialho, M.; Malandraki-Miller, S.; Alonaizan, R.; et al. Physiological and Pharmacological Stimulation for in Vitro Maturation of Substrate Metabolism in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Sci. Rep. 2021, 11, 7802. [Google Scholar] [CrossRef]
- Depalma, S.J.; Davidson, C.D.; Stis, A.E.; Helms, A.S.; Baker, B.M. Microenvironmental Determinants of Organized IPSC-Cardiomyocyte Tissues on Synthetic Fibrous Matrices. Biomater. Sci. 2021, 9, 93–107. [Google Scholar] [CrossRef]
- Kaiser, N.J.; Kant, R.J.; Minor, A.J.; Coulombe, K.L.K. Optimizing Blended Collagen-Fibrin Hydrogels for Cardiac Tissue Engineering with Human IPSC-Derived Cardiomyocytes. ACS Biomater. Sci. Eng. 2019, 5, 887–899. [Google Scholar] [CrossRef]
- Zhang, W.; Kong, C.W.; Tong, M.H.; Chooi, W.H.; Huang, N.; Li, R.A.; Chan, B.P. Maturation of Human Embryonic Stem Cell-Derived Cardiomyocytes (HESC-CMs) in 3D Collagen Matrix: Effects of Niche Cell Supplementation and Mechanical Stimulation. Acta Biomater. 2017, 49, 204–217. [Google Scholar] [CrossRef] [PubMed]
- Saari, J.; Siddique, F.; Korpela, S.; Mäntylä, E.; Ihalainen, T.O.; Kaukinen, K.; Aalto-Setälä, K.; Lindfors, K.; Juuti-Uusitalo, K. Toward Xeno-Free Differentiation of Human Induced Pluripotent Stem Cell-Derived Small Intestinal Epithelial Cells. Int. J. Mol. Sci. 2022, 23, 1312. [Google Scholar] [CrossRef] [PubMed]
- Kogut, I.; Roop, D.R.; Bilousova, G. Differentiation of Human Induced Pluripotent Stem Cells into a Keratinocyte Lineage. Methods Mol. Biol. 2014, 1195, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Atchison, L.; Abutaleb, N.O.; Snyder-Mounts, E.; Gete, Y.; Ladha, A.; Ribar, T.; Cao, K.; Truskey, G.A. IPSC-Derived Endothelial Cells Affect Vascular Function in a Tissue-Engineered Blood Vessel Model of Hutchinson-Gilford Progeria Syndrome. Stem. Cell Rep. 2020, 14, 325–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qosa, H.; Ribeiro, A.J.S.; Hartman, N.R.; Volpe, D.A. Characterization of a Commercially Available Line of IPSC Hepatocytes as Models of Hepatocyte Function and Toxicity for Regulatory Purposes. J. Phamacological. Toxicol. Methods 2021, 110, 107083. [Google Scholar] [CrossRef] [PubMed]
- Clyman, R.I.; Mauray, F.; Kramer, R.H. Beta 1 and Beta 3 Integrins Have Different Roles in the Adhesion and Migration of Vascular Smooth Muscle Cells on Extracellular Matrix. Exp. Cel. Res. 1992, 200, 272–284. [Google Scholar] [CrossRef]
- Felding-Habermann, B.; Cheresh, D.A. Vitronectin and Its Receptors. Curr. Opin. Cell Biol. 1993, 5, 864–868. [Google Scholar] [CrossRef]
- Schvartz, I.; Seger, D.; Shaltiel, S. Vitronectin. Int. J. Biochem. Cell Biol. 1999, 31, 539–544. [Google Scholar] [CrossRef]
- Hashem, S.I.; Murphy, A.N.; Divakaruni, A.S.; Klos, M.L.; Nelson, B.C.; Gault, E.C.; Rowland, T.J.; Perry, C.N.; Gu, Y.; Dalton, N.D.; et al. Impaired Mitophagy Facilitates Mitochondrial Damage in Danon Disease. J. Mol. Cell Cardiol. 2017, 108, 86–94. [Google Scholar] [CrossRef]
α Integrin Subunits Expressed * | β Integrin Subunits Expressed * | Primary ECM Integrin Ligand † |
---|---|---|
α3 | β1 | Laminin-211, -213, -221, -311, -321, -323, -332, -411, -421, -511, -521, -523; collagen IV; fibronectin; thrombospondin-1 |
α5 | β1 | Fibronectin; fibrinogen; osteopontin |
α6 | β1 | Laminin-111, -121, -211, -213, -221, -311, -321, -323, -332, -411, -421, -511, -521, -523 |
α7 | β1 | Laminin-111, -121, -211, -213, -221, |
α8 | β1 | Fibronectin; Vitronectin |
αV | β1 | Vitronectin; fibronectin; fibrinogen; osteopontin |
β5 | Vitronectin; osteopontin |
Substrate | Purity of CMs Generated | CM Maturity Status | References |
---|---|---|---|
Laminin-111 | ≈80% without overlay; ≈0% with laminin-111 overlay; ≈80% with fibronectin overlay | Immature | [4,11] |
Laminin-211 | Unsupportive alone (requires laminin-521) | Not reported | [11] |
Laminin-221 | Unsupportive alone (requires laminin-521) | Not reported | [11] |
Laminin-332 | Not reported | Not reported | Supplementary Figure S1 |
Laminin-511 | 31%; ≈85% | Not reported | [5,6] |
Laminin-521 | ≈30–50%; ≈60%; ≈85% | Not reported | [4,6] |
Laminin-521 + 211 | ≈30–50% | Not reported | [11] |
Laminin-521 + 221 | ≈80–90% | Relatively mature following a maturation process | [11]; Supplementary Figure S1 |
Collagen I | Unsupportive | Not reported | [5] |
Collagen IV | ≈0–15% with collagen IV overlay | Immature | [4,47] |
Fibronectin | 36%; ≈80% with fibronectin overlay | Immature | [4,5,47] |
Vitronectin | 22%; ≈20–40%; ≈85% with cell adhesion issues | Not reported | [5,6] |
Synthemax (vitronectin peptide) | 97%; ≈90% with cell adhesion issues | Relatively mature; 60% expressing MLC2V after 60 days | [5,6] |
Matrigel | 20% alone or 70% with Matrigel overlay; 73%; ≈85%; 80–98% | Mature following maturation period | [4,5,6,12,47] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barnes, A.M.; Holmstoen, T.B.; Bonham, A.J.; Rowland, T.J. Differentiating Human Pluripotent Stem Cells to Cardiomyocytes Using Purified Extracellular Matrix Proteins. Bioengineering 2022, 9, 720. https://doi.org/10.3390/bioengineering9120720
Barnes AM, Holmstoen TB, Bonham AJ, Rowland TJ. Differentiating Human Pluripotent Stem Cells to Cardiomyocytes Using Purified Extracellular Matrix Proteins. Bioengineering. 2022; 9(12):720. https://doi.org/10.3390/bioengineering9120720
Chicago/Turabian StyleBarnes, Ashlynn M., Tessa B. Holmstoen, Andrew J. Bonham, and Teisha J. Rowland. 2022. "Differentiating Human Pluripotent Stem Cells to Cardiomyocytes Using Purified Extracellular Matrix Proteins" Bioengineering 9, no. 12: 720. https://doi.org/10.3390/bioengineering9120720
APA StyleBarnes, A. M., Holmstoen, T. B., Bonham, A. J., & Rowland, T. J. (2022). Differentiating Human Pluripotent Stem Cells to Cardiomyocytes Using Purified Extracellular Matrix Proteins. Bioengineering, 9(12), 720. https://doi.org/10.3390/bioengineering9120720