Layer-Specific Damage Modeling of Porcine Large Intestine under Biaxial Tension
Abstract
:1. Introduction
2. Materials and Methods
2.1. Equibiaxial Tensile Specimen Preparation
2.2. Test Protocol
2.3. Multilayer Passive Anisotropic Strain Energy Function
2.4. Anisotropic Hyperelastic Stress Calculation
2.5. Nonlinear Damage Constitutive Model
2.6. Damage Evolution
2.7. Numerical Simulations
3. Results
3.1. Equibiaxial Tensile Experiments
3.2. Damage Based Anisotropic Intestine Mechanics
3.3. Damage Parameter Estimation
3.4. Numerical Simulation of the Biaxial Tension
4. Discussion
4.1. Large Intestine Mechanical Behavior
4.2. Damage Evolution of the Intestine Layers
4.3. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Jones, B.V.; Begley, M.; Hill, C.; Gahan, C.G.M.; Marchesi, J.R. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl. Acad. Sci. USA. 2008, 105, 13580–13585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quigley, E.M.M. Gut bacteria in health and disease. Gastroenterol. Hepatol. NY 2013, 9, 560–569. [Google Scholar]
- Bhattarai, A.; Kowalczyk, W.; Tran, T.N. A literature review on large intestinal hyperelastic constitutive modeling. Clin. Biomech. 2021, 88, 105445. [Google Scholar] [CrossRef] [PubMed]
- Sokolis, D.P.; Sassani, S.G. Microstructure-based constitutive modeling for the large intestine validated by histological observations. J. Mech. Behav. Biomed. Mater. 2013, 21, 149–166. [Google Scholar] [CrossRef] [PubMed]
- Franz, M.; Saeed, S.; Stephany, S.; Longtu, C.; Bin, F.; David, M.P. The heterogeneous morphology of networked collagen in distal colon and rectum of mice quantified via nonlinear microscopy. J. Mech. Behav. Biomed. Mater. 2021, 113, 104116. [Google Scholar]
- Viacheslav, I.E.; Ilia, V.S.; Edward, V.P.; Andrey, O.B.; Robert, A.T. Mechanical properties of the human gastrointestinal tract. J. Biomech. 2002, 35, 1417–1425. [Google Scholar]
- Holzapfel, G.A.; Ogden, R.W. On planar biaxial tests for anisotropic nonlinearly elastic solids. A continuum mechanical framework. Math. Mech. Solids. 2009, 14, 474–489. [Google Scholar] [CrossRef]
- Nováček, V.; Tran, T.N.; Klinge, U.; Tolba, R.H.; Staat, M.; Bronson, D.G.; Miesse, A.M.; Whiffen, J.; Turquier, F. Finite element modelling of stapled colorectal end-to-end anastomosis: Advantages of variable height stapler design. J. Biomech. 2012, 45, 2693–2697. [Google Scholar] [CrossRef]
- Gong, X.; Xu, X.; Lin, S.; Cheng, Y.; Tong, J.; Li, Y. Alterations in biomechanical properties and microstructure of colon wall in early-stage experimental colitis. Exp. Ther. Med. 2017, 14, 995–1000. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhao, J.; Nakaguchi, T.; Gregersen, H. Biomechanical changes in oxazolone-induced colitis in BALB/C mice. J. Biomech. 2009, 42, 811–817. [Google Scholar] [CrossRef]
- Stewart, D.C.; Berrie, D.; Li, J.; Liu, X.; Rickerson, C.; Mkoji, D.; Iqbal, A.; Tan, S.; Doty, A.L.; Glover, S.C.; et al. Quantitative assessment of intestinal stiffness and associations with fibrosis in human inflammatory bowel disease. PLoS ONE 2018, 13, e0200377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kachanov, L.M. Time of the rupture process under creep conditions. Isv. Akad. Nauk. SSR. Otd. Tekh. Nauk. 1958, 8, 26–31. [Google Scholar]
- Li, W. Damage models for soft tissues: A survey. J. Med. Biol. Eng. 2016, 36, 285–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balzani, D.; Schröder, J.; Gross, D. Simulation of discontinuous damage incorporating residual stresses in circumferentially overstretched atherosclerotic arteries. Acta. Biomater. 2006, 2, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Calvo, B.; Peña, E.; Martinez, M.A.; Doblaré, M. An uncoupled directional damage model for fibred biological soft tissues. Formulation and computational aspects. Int. J. Numer. Meth. Eng. 2006, 69, 2036–2057. [Google Scholar] [CrossRef]
- Volokh, K.Y. Prediction of arterial failure based on a microstructural bi-layer fiber–matrix model with softening. J. Biomech. 2008, 41, 447–453. [Google Scholar] [CrossRef]
- Peña, E.; Peña, J.; Doblaré, M. On the Mullins effect and hysteresis of fibered biological materials: A comparison between continuous and discontinuous damage models. Int. J. Solids. Struct. 2009, 46, 1727–1735. [Google Scholar] [CrossRef] [Green Version]
- Ehret, A.E.; Itskov, M. Modeling of anisotropic softening phenomena: Application to soft biological tissues. Int. J. Plast. 2009, 25, 901–919. [Google Scholar] [CrossRef]
- Martins, P.; Jorge, R.M.; Santos, A.; Santos, L.; Mascarenhas, T.; Calvo, B. Mechanical characterization and constitutive modelling of the damage process in rectus sheath. J. Mech. Behav. Biomed. Mater. 2012, 8, 111–122. [Google Scholar] [CrossRef]
- Comellas, E.; Bellomo, F.J.; Oller, S. A generalized finite-strain damage model for quasi-incompressible hyperelasticity using hybrid formulation. Int. J. Numer. Meth. Engng. 2015, 105, 781–800. [Google Scholar] [CrossRef] [Green Version]
- Noble, C.; Smulders, N.; Green, N.H.; Lewis, R.; Carré, M.J.; Franklin, S.E.; MacNeil, S.; Taylor, Z.A. Creating a model of diseased artery damage and failure from healthy porcine aorta. J. Mech. Behav. Biomed. Mater. 2016, 60, 378–393. [Google Scholar] [CrossRef] [PubMed]
- Simo, J.C. On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects. Comput. Methods. Appl. Mech. 1987, 60, 153–173. [Google Scholar] [CrossRef]
- Watters, D.A.; Smith, A.N.; Eastwood, M.A.; Anderson, K.C.; Elton, R.A.; Mugerwa, J.W. Mechanical properties of the colon: Comparison of the features of the African and European colon in vitro. Gut 1985, 26, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Pan, E.; Chakravarthula, S.S.; Han, F.; Liang, J.; Gudlavalleti, S. Measurement of mechanical properties of rectal wall. J. Mater. Sci. Mater. Med. 2005, 16, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Ciarletta, P.; Dario, P.; Tendick, F.; Micera, S. Hyperelastic model of anisotropic fiber reinforcements within intestinal walls for applications in medical robotics. Int. J. Robotics. Res. 2009, 28, 1279–1288. [Google Scholar] [CrossRef]
- Bellini, C.; Glass, P.; Sitti, M.; Di Martino, E.S. Biaxial mechanical modeling of the small intestine. J. Mech. Behav. Biomed. Mater. 2011, 4, 1727–1740. [Google Scholar] [CrossRef]
- Howes, M.K.; Hardy, W.N. Dynamic material properties of the post-mortem human colon. In Proceedings of the International Research Council on Biomechanics of Injury (IRCOBI), Gothenburg, Sweden, 11–13 September 2013; pp. 124–132. [Google Scholar]
- Carniel, E.L.; Gramigna, V.; Fontanella, C.G.; Stefanini, C.; Natali, A.N. Constitutive formulations for the mechanical investigation of colonic tissues. J. Biomed. Mater. Res. A 2014, 102, 1243–1254. [Google Scholar] [CrossRef]
- Christensen, M.B.; Oberg, K.; Wolchok, J.C. Tensile properties of the rectal and sigmoid colon: A comparative analysis of human and porcine tissue. SpringerPlus 2015, 4, 142. [Google Scholar] [CrossRef] [Green Version]
- Patel, B.; Chen, H.; Ahuja, A.; Krieger, J.F.; Noblet, J.; Chabers, S.; Kassab, G.S. Constitutive modeling of the passive inflation-extension behavior of the swine colon. J. Mech. Behav. Biomed. Mater. 2018, 77, 176–186. [Google Scholar] [CrossRef]
- Mossalou, D.; Masson, C.; Afquir, S.; Baqué, P.; Arnoux, P.J.; Bége, T. Mechanical effects of load speed on the human colon. J. Biomech. 2019, 91, 102–108. [Google Scholar] [CrossRef]
- Siri, S.; Maier, F.; Chen, L.; Santos, S.; Pierce, D.M.; Feng, B. Differential biomechanical properties of mouse distal colon and rectum innervated by the splanchnic and pelvic afferents. Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 316, G473–G481. [Google Scholar] [CrossRef] [PubMed]
- Bini, F.; Desideri, M.; Pica, A.; Novelli, S.; Marinozzi, F. 3D constitutive model of the rat large intestine: Estimation of the material parameters of the single layers. In Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering; Ateshian, G.A., Myers, K.M., Tavares, J.M.R.S., Eds.; CMBBE 2019. Lecture Notes in Computational Vision and Biomechanics; Springer Nature: Cham, Switzerland, 2020; Volume 36, pp. 608–623. [Google Scholar]
- Puértolas, S.; Peña, E.; Herrera, A.; Ibarz, E.; Garcia, L. A comparative study of hyperelastic constitutive models for colonic tissue fitted to multiaxial experimental testing. J. Mech. Behav. Biomed. Mater. 2020, 102, 103507. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, A.; Horbach, A.J.; Staat, M.; Kowalczyk, W.; Tran, T.N. Virgin passive colon biomechanics and a literature review of active contraction constitutive models. Biomechanics 2022, 2, 138–157. [Google Scholar] [CrossRef]
- Nagaraja, S.; Leichsenring, K.; Ambati, M.; De Lorenzis, L.; Böl, M. On a phase-field approach to model fracture of small intestine walls. Acta. Biomater. 2021, 130, 317–331. [Google Scholar] [CrossRef]
- Siri, S.; Maier, F.; Santos, S.; Pierce, D.M.; Feng, B. Load-bearing function of the colorectal submucosa and its relevance to visceral nociception elicited by mechanical stretch. Am. J. Physiol. Gastrointet. Liver Physiol. 2019, 317, G349–G358. [Google Scholar] [CrossRef]
- Holzapfel, G.A.; Gasser, T.C.; Ogden, R.W. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 2000, 61, 1–48. [Google Scholar] [CrossRef]
- Feng, B.; Maier, F.; Siri, S.; Pierce, D.M. Quantifying the collagen-network morphology in mouse distal colon and rectum via nonlinear microscopy. In Proceedings of the Biomedical Engineering Society 2019 Annual Fall Meeting, Philadelphia, PA, USA, 12–16 October 2019; pp. 16–19. [Google Scholar]
- Flory, P.J. Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 1961, 57, 829–838. [Google Scholar] [CrossRef]
- Weisbecker, H.; Pierce, D.M.; Regitnig, P.; Holzapfel, G.A. Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening. J. Mech. Behav. Biomed. Mater. 2012, 12, 93–106. [Google Scholar] [CrossRef]
- Rubod, C.; Brieu, M.; Cosson, M.; Rivaux, G.; Clay, J.C.; de Landsheere, L.; Gabriel, B. Biomechanical properties of human pelvic organs. Urology 2012, 79, 968.e17–968.e22. [Google Scholar] [CrossRef]
- Chen, Z.W.; Joli, P.; Feng, Z.Q.; Rahim, M.; Pirró, N.; Bellemare, M.E. Female patient-specific finite element modeling of palvic organ prolapse (POP). J. Biomech. 2015, 48, 238–245. [Google Scholar] [CrossRef]
- Bhattarai, A.; Staat, M. Modelling of soft connective tissues to investigate pelvic floor dysfunctions. Comput. Math. Methods. Med. 2018, 2018, 9518076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sokolis, D.P.; Orfanidis, I.K.; Peroulis, M. Biomechanical testing and material characterization for the rat large intestine: Regional dependence of material parameters. Physiol. Meas. 2011, 32, 1969–1982. [Google Scholar] [CrossRef] [PubMed]
- Fung, Y.C.; Fronek, K.; Patitucci, P. Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. 1979, 237, H620–H631. [Google Scholar] [CrossRef] [PubMed]
- Gasser, T.C.; Ogden, R.W.; Holzapfel, G.A. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 2006, 3, 15–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holzapfel, G.A.; Niestrawska, J.A.; Ogden, R.W.; Reinisch, A.J.; Schriefl, A.J. Modelling nonsymmetric collagen fibre dispersion in arterial walls. J. R. Soc. Interface 2015, 12, 20150188. [Google Scholar] [CrossRef] [Green Version]
- Federico, S.; Gasser, T.C. Nonlinear elasticity of biological tissues with statistical fiber orientation. J. R. Soc. Interface 2010, 7, 955–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Driessen, N.J.B.; Bouten, C.V.C.; Baaijens, F.P.T. A structural constitutive model for collagenous cardiovascular tissue incorporating the angular fiber distribution. J. Biomech. Eng. 2005, 127, 494–503. [Google Scholar] [CrossRef]
- Rodríguez, J.F.; Cacho, F.; Bea, J.A.; Doblaré, M. A stochastic-structurally based three-dimensional finite-strain damage model for fibrous soft tissue. J Mech. Phys. Solids. 2006, 54, 864–886. [Google Scholar] [CrossRef]
- Holzapfel, G.A.; Ogden, R.W. An arterial constitutive model accounting for collagen content and cross-linking. J. Mech. Phys. Solids 2020, 136, 103682. [Google Scholar] [CrossRef]
- Latorre, M.; Romero, X.; Montáns, F.J. The relevance of transverse deformation effects in modeling soft biological tissues. Int. J. Solids. Struct. 2016, 99, 57–70. [Google Scholar] [CrossRef]
- Lemaitre, J. A Course on Damage Mechanics; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Cesar de Sa, J.M.A.; Andrade, F.X.C.; Andrade Pires, F.M. Theoretical and numerical issues on ductile failure prediction—An overview. Comp. Meth. Mater. Sci. 2010, 10, 279–293. [Google Scholar]
- Andrade, F.X.C.; Vogler, M.; Cesar de Sa, J.M.A.; Andrade Pires, F.M. User-defined nonlocal models in LS-DYNA. In Proceedings of the 8th European LS-DYNA Users Conference, Strasbourg, France, 23–24 May 2011. [Google Scholar]
- Menzel, A.; Sprave, L. Continuum damage mechanics—modelling and simulation. In Constitutive Modelling of Solid Continua; Solid Mechanics and Its Applications; Merodio, J., Ogden, R., Eds.; Springer: Cham, Switzerland, 2020; Volume 262, pp. 231–256. [Google Scholar]
No. | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(MPa) | (MPa) | (MPa) | (MPa) | (MPa) | (MPa) | (MPa) | (MPa) | (MPa) | |||||
S1 | 0.0001 | 0.0030 | 10.6781 | 0.0068 | 13.3155 | 0.1149 | 0.0073 | 0.0110 | 0.0169 | 0.0624 | 0.0125 | 0.9793 | 0.9377 |
S2 | 0.0001 | 0.0138 | 0.6804 | 0.0002 | 7.4843 | 0.1241 | 0.0083 | 0.2236 | 0.0387 | 0.0379 | 0.0089 | 0.9931 | 0.9852 |
S3 | 0.0001 | 0.0096 | 4.1802 | 0.0094 | 7.0591 | 0.1439 | 0.0118 | 0.0257 | 0.0346 | 0.0750 | 0.0224 | 0.9855 | 0.9824 |
S4 | 0.0001 | 0.0272 | 0.0144 | 0.0055 | 2.9810 | 0.2308 | 0.0278 | 0.2921 | 0.0461 | 0.1302 | 0.0738 | 0.9873 | 0.9775 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhattarai, A.; May, C.A.; Staat, M.; Kowalczyk, W.; Tran, T.N. Layer-Specific Damage Modeling of Porcine Large Intestine under Biaxial Tension. Bioengineering 2022, 9, 528. https://doi.org/10.3390/bioengineering9100528
Bhattarai A, May CA, Staat M, Kowalczyk W, Tran TN. Layer-Specific Damage Modeling of Porcine Large Intestine under Biaxial Tension. Bioengineering. 2022; 9(10):528. https://doi.org/10.3390/bioengineering9100528
Chicago/Turabian StyleBhattarai, Aroj, Charlotte Anabell May, Manfred Staat, Wojciech Kowalczyk, and Thanh Ngoc Tran. 2022. "Layer-Specific Damage Modeling of Porcine Large Intestine under Biaxial Tension" Bioengineering 9, no. 10: 528. https://doi.org/10.3390/bioengineering9100528
APA StyleBhattarai, A., May, C. A., Staat, M., Kowalczyk, W., & Tran, T. N. (2022). Layer-Specific Damage Modeling of Porcine Large Intestine under Biaxial Tension. Bioengineering, 9(10), 528. https://doi.org/10.3390/bioengineering9100528