Recent Advances in Natural Materials for Corneal Tissue Engineering
Abstract
:1. Cornea Structure and Clinical Motivations for Engineered Therapies
2. Engineering a Cornea Mimetic: Mechanical Properties and Biomaterial Structure
2.1. Natural Biopolymer-Based Hydrogels as Cornea Mimics
2.1.1. Silk Fibroin Hydrogels
2.1.2. Collagen-Based Hydrogels
Natural Base Material (s) | Novelty | Research Model | Ref. | ||
---|---|---|---|---|---|
Material Characterization | Cells for In Vitro Evaluation | In Vivo or Ex Vivo Studies | |||
Epithelium | |||||
Silk fibroin | Production of transparent silk hydrogels with tunable mechanical properties using organic solvents and metal ions | –Mechanical properties –Morphology –Transparency | –Human CEpCs –Human dermal fibroblasts | -- | [47] |
Collagen/gelatin/alginate | Three-dimensional printing human CEpCs laden constructs with tunable degradation based on varying inclusion of sodium citrate | –Degradation –Morphology –Transparency | –Human CEpCs | -- | [51] |
Collagen | Methacrylation of collagen for improved flexibility | –Degradation –Mechanical properties –Spectroscopy | –Human CEpCs –Murine CPCs | -- | [52] |
Gelatin | Injectable, photocurable gelatin system, consisting of acrylated gelatin and thiolated gelatin, with tunable mechanical, biodegradation, and biological properties | –Degradation –Mechanical properties –Morphology –Spectroscopy –Transparency | –L929 murine fibroblasts | –Focal corneal injury in NZW rabbits | [67] |
Chitosan | Thermosensitive chitosan-gelatin hydrogels releasing stromal cell derived factor-1 alpha | –Morphology | –Rat LESCs –Rat MSCs | –Alkali burn-injury in SD rats | [30] |
Stroma | |||||
Silk fibroin | PVA/silk/nano-hydroxyapatite hydrogels with structurally enhancing genipin crosslinking | –Degradation –Mechanical properties –Morphology | –Human CFs | -- | [48] |
Collagen | Three-dimensional printed collagen-I based bio-ink with varied amounts of methacrylated collagen and sodium alginate | –Mechanical properties –Morphology –Transparency | –Human CKs | -- | [53] |
Collagen | Bio-orthogonally crosslinked hyaluronate-collagen hydrogel | –Degradation –Mechanical properties –Morphology –Transparency | –Human CEpCs | –Anterior lamellar keratoplasty in NZW rabbits | [54] |
Collagen | 3D printable collagen/agarose | –Mechanical properties –Transparency | –Human CKs | -- | [55] |
Gelatin | Gelatin/ascorbic acid cryogels | –Degradation –Mechanical properties –Morphology –Spectroscopy | –Rabbit CKs | –Anterior lamellar keratoplasty in NZW rabbits | [68] |
GelMA | Visible light cross-linkable | –Degradation –Mechanical properties | –Human CFs | –Half thickness stromal defect in NZW rabbits | [69] |
GelMA | Three-dimensional printed using stereolithography | –Morphology –Transparency | –Human CSCs | -- | [70] |
GelMA | GelMA hydrogel with PCL-PEG scaffold support | –Mechanical properties –Transparency | –Rat LSSCs | –Intrastromal keratoplasty in SD Rats | [71] |
GelMA | Hybrid Cellularized GelMA and decellularized bovine corneal ECM | –Degradation –Mechanical properties –Spectroscopy –Transparency | –Bovine CKs | -- | [72] |
GelMA | Three-dimensional printed with organized, encapsulated keratocytes | –Degradation –Mechanical properties –Morphology –Spectroscopy –Transparency | –Human CKs | -- | [73] |
Bacterial Cellulose | Composite Bacterial cellulose and PVA | –Morphology –Transparency | –Human CSCs | –Intrastromal keratoplasty in NZW rabbits | [31] |
Endothelium | |||||
GelMA | Nanopatterning and hybrid crosslinking for improved monolayers | –Degradation –Mechanical properties –Morphology –Spectroscopy | –Human CEnCs | –Anterior keratoplasty in NZW rabbits | [74] |
HA | Porous HA hydrogel as endothelial cell sheet delivery system | –Degradation –Morphology | –Rabbit CEnCs | –Endothelial scrape wound in NZW rabbits | [32] |
Poly-ε-lysine | Porous hydrogel for expansion of corneal endothelial cells with improved expansion when ECM proteins were adsorbed to the surface | –Mechanical properties –Transparency –Contact angle | –Human CEnCs (HCEC-12) –Porcine CEnCs | [21] | |
Full Thickness | |||||
Collagen | Bottom-up assemblies of decellularized porcine corneal sheets and human CSC laden collagen gel layers with human CEpCs seeded at top surface | –Degradation –Transparency | –Human CSCs –Human CEpCs | –Ex vivo porcine anterior lamellar keratoplasty model | [57] |
Collagen + Laminin | Laser assisted bioprinting with collagen and laminin-based inks | –Degradation –Morphology | –Human LESCs –Human ASCs | -- | [58] |
Collagen-like peptides | Collagen-like peptides/PEG/fibrinogen liquid hydrogel matrix that gels spontaneously at body temperature | –Mechanical properties –Transparency | –Human CEpCs | –Epithelial perforation wound in NZW rabbits –Anterior lamellar keratoplasty in Gottingen mini pigs | [59] |
Collagen | Dual-layered collagen vitrigel with synthetic Bowman’s membrane and stromal layer. Contains ECM microparticles | –Degradation –Mechanical properties –Morphology –Transparency | –Rabbit CFs | –Anterior lamellar keratoplasty in NZW rabbits | [60] |
Collagen | In situ forming collagen gels crosslinked with PEG-NHS have tunable transparency, degradation, and stiffness | –Degradation –Mechanical properties –Transparency | –Human CEpCs –Human LSSCs | –Keratectomy in NZW rabbits | [61] |
Decellularized Porcine cornea | Thermoresponsive in situ forming hydrogel | –Mechanical properties –Morphology –Transparency | –Human CEpCs –Human MSCs | -- | [33] |
2.1.3. Gelatin and GelMA Based Hydrogels
2.2. Films and Non-Hydrogel-Based Scaffolds as Cornea Mimics
2.2.1. Silk Fibroin Films
Materials | Novelty | Research Model | Ref | ||
---|---|---|---|---|---|
Material Characterization | In Vitro Cell Studies | In Vivo or Ex Vivo Studies | |||
Epithelium | |||||
Silk fibroin | Optimization of silk fibroin, poly-D-lysine coated silk fibroin, RGD modified silk fibroin, and poly-D-lysine blended silk fibroin films for human corneal epithelium growth | –Spectroscopy | –Human CEpCs | -- | [102] |
Silk fibroin | Silk films with nanotopography and extracellular proteins | –Morphology | –Murine CEpCs –Rabbit CEpCs | –Corneal epithelium debridement in C57BL/6 mice | [89] |
Silk fibroin | Silk film with tunable stiffness and cellular effects | –Mechanical properties –Morphology | –Human CEpCs | -- | [82] |
Silk fibroin | Various silk film surface features of various pitch and width dimensions ranging from the micro- to nanoscale | –Morphology | –Human CEpCs | -- | [103] |
Silk fibroin | Hybrid silk/PU electrospun mat for corneal epithelial differentiation of conjunctiva-derived MSC | –Mechanical properties –Morphology | –Human MSCs | -- | [84] |
Silk fibroin | Fabrication and biocompatibility of electroconductive silk/PEDOT/PSS composites | –Degradation –Mechanical properties –Spectroscopy –Transparency | –Human CEpCs | -- | [90] |
Silk fibroin | PEG modified silk membranes as a carrier for limbal epithelial stem cells transplantation | –Morphology | –Rabbit LESCs | –Limbal stem cell deficiency NZW rabbit model | [91] |
Collagen | Collagen/chondroitin sulfate film with high moisture capacity | –Mechanical properties –Spectroscopy –Transparency | –Human CEpCs | -- | [104] |
Collagen | Collagen film with micro-rough surface | –Morphology | -- | –Lamellar keratoplasty in NZW rabbits | [105] |
Chitosan/gelatin/HA | Carboxymethyl chitosan/gelatin/HA membrane as transplantation scaffold for corneal wound healing | –Transparency | –Rabbit CEpCs –Rabbit CSCs | –Alkali burn-injury in NZW rabbits | [106] |
Stroma | |||||
Silk fibroin | Contact guidance by RGD-treated silk films stacked in an orthogonally, multi-layered architecture to control the alignment and distribution of human LSSCs | –Mechanical properties –Morphology –Spectroscopy –Transparency | –Human LSSCs –Human CFs | -- | [92] |
Silk fibroin | Investigate the in vivo response and the effect of silk crystalline structure on degradation rates of silk films in rabbit multipocket corneal models | –Spectroscopy | -- | –Corneal multipocket model in NZW rabbits | [93] |
Silk fibroin | Silk film using centrifugal casting technique for corneal tissue engineering | –Mechanical properties –Morphology –Transparency | –Human CKs | -- | [83] |
Silk fibroin | Influence of surface topography and mechanical strain on keratocyte phenotype and ECM formation | –Morphology –Transparency | –Human CKs | -- | [94] |
Silk fibroin | Multi-lamellar human corneal stroma tissue in vitro by differentiating periodontal ligament stem cells towards keratocytes on an aligned silk membrane | –Morphology | –Human periodontal ligament stem cells | -- | [95] |
Silk fibroin | Corneal stromal regeneration by hybrid silk/PCL electrospun scaffold | –Degradation –Mechanical properties –Morphology –Spectroscopy –Transparency | –Human CKs | -- | [85] |
Silk/ GelMA | Transparent hybrid silk/GelMA films for cornea tissue engineering | –Degradation –Mechanical properties –Morphology –Spectroscopy –Transparency | –Human CFs | -- | [87] |
Silk/ GelMA | Double-layer film with ascorbic acid reservoir sodium alginate adhesive and anisotropic layer of micro-patterned silk nanofibrils incorporated with gelatin methacrylate for stroma tissue engineering | –Degradation –Mechanical properties –Morphology –Spectroscopy –Transparency | –Human CSCs | -- | [86] |
Collagen | Examine the influence of compositional and structural differences on keratocyte behavior | –Degradation –Morphology –Transparency | –Bovine CKs | -- | [107] |
Collagen | Pure collagen-based biomimetic 3D corneal stromal model constructed from pure electro-compacted collagen | –Degradation –Mechanical Properties –Morphology –Transparency | –Human CSCs | -- | [108] |
Decellularized bovine corneal matrix | Examine the influence of compositional and structural differences on keratocyte behavior | –Degradation –Morphology –Transparency | –Bovine CKs | -- | [107] |
Decellularized human stromal refractive lenticules | Femtosecond laser-derived human stromal lenticules decellularized with sodium dodecyl sulfate could produce transplantable biomaterial | –Morphology –Transparency | –Human CFs | –SMILE surgery in NZW rabbits | [109] |
Endothelium | |||||
Silk fibroin | Silk-based artificial endothelial graft for use in a rabbit Descemet’s membrane endothelial keratoplasty | –Mechanical Properties –Transparency | –Human CEnCs –Rabbit CEnCs | –Descemet membrane endothelial keratoplasty surgery in NZW rabbits | [96] |
Silk fibroin | Transparent ultrathin film scaffolds with nature-derived aloe vera gel and silk | –Morphology –Spectroscopy –Transparency | –Rabbit CEnCs | –Descemet’s stripping and endothelial keratoplasty in NZW rabbits | [97] |
Silk fibroin | Silk/β-Carotene films for delivery of corneal endothelial cells to replace diseased corneal endothelial cells | –Morphology –Spectroscopy –Transparency | –Rabbit CEnCs | -- | [98] |
Silk fibroin | Silk/lysophosphatidic acid films as a substrate for corneal endothelial cell delivery | –Morphology –Spectroscopy | –Rabbit CEnCs | -- | [99] |
Silk fibroin | Transparent silk/glycerol film, as a potential substrate for corneal endothelial cell regeneration | –Morphology –Spectroscopy –Transparency | –Rabbit CEnCs | -- | [100] |
Philosamia ricini silk | Non-mulberry silk for the culture of corneal endothelium | –Degradation –Mechanical properties –Morphology –Spectroscopy –Transparency | –Human CEnCs | -- | [101] |
Antheraea assamensis silk | Non-mulberry silk for the culture of corneal endothelium | –Degradation –Mechanical properties –Morphology –Spectroscopy –Transparency | –Human CEnCs | -- | [101] |
Collagen | Collagen/PLGA as a substrate for corneal endothelial cell regeneration | –Degradation –Morphology –Transparency | –Rabbit CEnCs | -- | [110] |
Full Thickness | |||||
Silk fibroin | Thin silk protein film stacks as the scaffolding to support the corneal epithelial and stromal layers, and a surrounding silk porous sponge to support neuronal growth | -- | –Human LSSC –Human CEpCs –Chicken dorsal root ganglion cells | -- | [111] |
Silk fibroin | Combining the corneal stroma and epithelium into one co-culture system, to monitor both human LSSC and human CEpC growth and differentiation into keratocytes and differentiated epithelium | -- | –Human LSSCs –Human CEpCs | -- | [112] |
Silk fibroin | Biodegradable silk fibroin-based scaffolds containing glial cell line-derived neurotrophic factor for re-epithelialization | –Degradation –Mechanical properties –Morphology | –Human CKs | –Epithelial-stromal damage in C57BL/6 J mice | [88] |
Collagen | Microgroove films as an external cue for cell responses | –Degradation –Transparency | –Rabbit CEpCs –Rabbit CKs | -- | [113] |
Collagen | Incorporation of cellulose nanocrystals into collagen films for improved mechanical properties | –Degradation –Mechanical properties –Morphology –Transparency | –Rabbit CEpCs –Rabbit CKs | -- | [114] |
Collagen | Collagen/PVAc nanofibrous electrospun scaffold suitable for cornea tissue engineering | –Mechanical properties –Morphology –Transparency | –Human CKs –Human CEpCs | -- | [115] |
Collagen | 3D hemispherical transparent scaffold with radially aligned nanofibers fabricated with the designed peg-top collector | –Mechanical properties –Morphology –Spectroscopy –Transparency | –Rabbit corneal cells | -- | [116] |
Decellularized porcine cornea | Construct a full-thickness artificial cornea substitute in vitro by coculturing limbal epithelial cell-like cells and corneal endothelial cell-like cells derived from human embryonic stem cells on scaffolds | –Mechanical properties –Transparency | –Human CEpCs –Human CFs –Human embryonic stem cells | –Penetrating keratoplasty in NZW rabbits | [117] |
Decellularized porcine cornea | Method using supercritical carbon dioxide to prepare acellular porcine cornea | –Mechanical properties –Morphology | -- | –Anterior lamellar keratoplasty in NZW rabbits | [118] |
Decellularized porcine corneal scaffolds | Decellularized corneas by formic acid, acetic acid, and citric acid treatment for corneal regeneration | –Mechanical properties –Transparency | –Human CEpCs –Rabbit CKs | –Deep anterior lamellar keratoplasty in NZW rabbits | [119] |
2.2.2. Collagen Films and Electrospun Mats
2.2.3. Decellularized Corneal Tissues
3. Engineering a Cornea Mimetic: Cell Types and Their Function
3.1. Cells for Corneal Epithelium
3.2. Cells for Corneal Stroma
3.3. Cells for Corneal Endothelium
3.4. Combining Cell Types for Partial and Full Thickness Mimics
4. Investigations of Natural Biopolymer-Based Engineered Corneas in Pre-Clinical Models
4.1. Silk Fibroin and Its Use in Pre-Clinical Models
4.2. Collagen-Based Materials in Pre-Clinical Models
4.3. Gelatin and GelMA Materials in Pre-Clinical Investigations
4.4. Decellularized Corneas
5. Outlook
Funding
Conflicts of Interest
Nomenclature
Materials | |
ECM | Extracellular matrix |
GelMA | Methacrylated gelatin |
HA | hyaluronic acid |
HEMA | poly (2-hydroxyethyl methacrylate) |
PCL | poly-ε-caprolactone |
PEG | polyethylene glycol |
PVA | polyvinyl alcohol |
PVAc | polyvinyl acetate |
Cell Types | |
ASCs | Adipose-derived stem cells |
CEnCs | Corneal endothelial cells |
CEpCs | Corneal epithelial cells |
CFs | Corneal fibroblasts |
CKs | Corneal keratocytes |
CPCs | Cardiac progenitor cells |
CSCs | Corneal stromal cells |
LESCs | Limbal epithelial stem cells |
LSSCs | Limbal stromal stem cells |
MSCs | Mesenchymal stem cells |
Markers | |
ABCG2 | ATP Binding Cassette family member G2 |
ALDH1A1 | Aldehyde Dehydrogenase 1 family member A1 |
ALDH3A1 | Aldehyde Dehydrogenase 3 family member A1 |
CD13 | Cluster of Differentiation group 13 |
CD29 | Cluster of Differentiation group 29 |
CK3 | Cytokeratin-3 |
CK8 | Cytokeratin-8 |
CK12 | Cytokeratin-12 |
CK15 | Cytokeratin-15 |
CK19 | Cytokeratin-19 |
Cx43 | Connexin-43 |
EFGR | Epidermal Growth Factor Receptor |
p63 | Tumor Protein 63 |
ZO-1 | Zonula Occludens-1 |
α SMA | alpha smooth muscle actin |
Miscellaneous | |
EDC | N-(3-Dimethylaminopropyl)-N′-ethylcarbodiamide hydrochloride |
LaBP | Laser assisted bioprinting |
NHS | N-hydroxysuccinimide |
NZW | New Zealand White |
RGD | arginine-glycine-aspartic acid |
SD | Sprague Dawley |
References
- Whitcher, J.P.; Srinivasan, M.; Upadhyay, M.P. Corneal blindness: A global perspective. Bull. World Health Organ. 2001, 79, 214–221. [Google Scholar]
- Gain, P.; Jullienne, R.; He, Z.; Aldossary, M.; Acquart, S.; Cognasse, F.; Thuret, G. Global Survey of Corneal Transplantation and Eye Banking. JAMA Ophthalmol. 2016, 134, 167–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hos, D.; Matthaei, M.; Bock, F.; Maruyama, K.; Notara, M.; Clahsen, T.; Hou, Y.; Le, V.N.H.; Salabarria, A.C.; Horstmann, J.; et al. Immune reactions after modern lamellar (DALK, DSAEK, DMEK) versus conventional penetrating corneal transplantation. Prog. Retin. Eye Res. 2019, 73, 100768. [Google Scholar] [CrossRef]
- Yu, T.; Rajendran, V.; Griffith, M.; Forrester, J.V.; Kuffova, L. High-risk corneal allografts: A therapeutic challenge. World J. Transpl. 2016, 6, 10–27. [Google Scholar] [CrossRef] [PubMed]
- Ghezzi, C.E.; Rnjak-Kovacina, J.; Kaplan, D.L. Corneal tissue engineering: Recent advances and future perspectives. Tissue Eng. Part. B Rev. 2015, 21, 278–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soh, Y.Q.; Peh, G.S.L.; Mehta, J.S. Translational issues for human corneal endothelial tissue engineering. J. Tissue Eng. Regen Med. 2017, 11, 2425–2442. [Google Scholar] [CrossRef] [PubMed]
- Cordoba, A.; Mejia, L.F.; Mannis, M.J.; Navas, A.; Madrigal-Bustamante, J.A.; Graue-Hernandez, E.O. Current Global Bioethical Dilemmas in Corneal Transplantation. Cornea 2020, 39, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Amouzegar, A.; Chauhan, S.K.; Dana, R. Alloimmunity and Tolerance in Corneal Transplantation. J. Immunol. 2016, 196, 3983–3991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sibley, D.; Hopkinson, C.L.; Tuft, S.J.; Kaye, S.B.; Larkin, D.F. Differential effects of primary disease and corneal vascularisation on corneal transplant rejection and survival. Br. J. Ophthalmol. 2020, 104, 729–734. [Google Scholar] [CrossRef]
- Vignapiano, R.; Vicchio, L.; Favuzza, E.; Cennamo, M.; Mencucci, R. Corneal Graft Rejection after Yellow Fever Vaccine: A Case Report. Ocul. Immunol. Inflamm. 2021, 1–4. [Google Scholar] [CrossRef]
- Phylactou, M.; Li, J.O.; Larkin, D.F.P. Characteristics of endothelial corneal transplant rejection following immunisation with SARS-CoV-2 messenger RNA vaccine. Br. J. Ophthalmol. 2021, 105, 893–896. [Google Scholar] [CrossRef]
- Mahdavi, S.S.; Abdekhodaie, M.J.; Mashayekhan, S.; Baradaran-Rafii, A.; Djalilian, A.R. Bioengineering Approaches for Corneal Regenerative Medicine. Tissue Eng. Regen Med. 2020, 17, 567–593. [Google Scholar] [CrossRef] [PubMed]
- Oie, Y.; Nishida, K. Corneal regenerative medicine. Regen. Ther. 2016, 5, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Schermer, A.; Galvin, S.; Sun, T.T. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J. Cell Biol. 1986, 103, 49–62. [Google Scholar] [CrossRef]
- Notara, M.; Alatza, A.; Gilfillan, J.; Harris, A.R.; Levis, H.J.; Schrader, S.; Vernon, A.; Daniels, J.T. In sickness and in health: Corneal epithelial stem cell biology, pathology and therapy. Exp. Eye Res. 2010, 90, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Notara, M.; Lentzsch, A.; Coroneo, M.; Cursiefen, C. The Role of Limbal Epithelial Stem Cells in Regulating Corneal (Lymph)angiogenic Privilege and the Micromilieu of the Limbal Niche following UV Exposure. Stem Cells Int. 2018, 2018, 8620172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meek, K.M.; Leonard, D.W. Ultrastructure of the corneal stroma: A comparative study. Biophys. J. 1993, 64, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Espana, E.M.; Birk, D.E. Composition, structure and function of the corneal stroma. Exp. Eye Res. 2020, 198, 108137. [Google Scholar] [CrossRef] [PubMed]
- Maurice, D.M. The location of the fluid pump in the cornea. J. Physiol. 1972, 221, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Bonanno, J.A. Identity and regulation of ion transport mechanisms in the corneal endothelium. Prog. Retin. Eye Res. 2003, 22, 69–94. [Google Scholar] [CrossRef]
- Kennedy, S.; Lace, R.; Carserides, C.; Gallagher, A.G.; Wellings, D.A.; Williams, R.L.; Levis, H.J. Poly-epsilon-lysine based hydrogels as synthetic substrates for the expansion of corneal endothelial cells for transplantation. J. Mater. Sci. Mater. Med. 2019, 30, 102. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; You, J.; Liu, X.; Cooper, S.; Hodge, C.; Sutton, G.; Crook, J.M.; Wallace, G.G. Biomaterials for corneal bioengineering. Biomed. Mater. 2018, 13, 032002. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Porta, N.; Fernandes, P.; Queiros, A.; Salgado-Borges, J.; Parafita-Mato, M.; Gonzalez-Meijome, J.M. Corneal biomechanical properties in different ocular conditions and new measurement techniques. ISRN Ophthalmol. 2014, 2014, 724546. [Google Scholar] [CrossRef] [Green Version]
- Knox Cartwright, N.E.; Tyrer, J.R.; Marshall, J. Age-related differences in the elasticity of the human cornea. Investig. Ophthalmol Vis. Sci. 2011, 52, 4324–4329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dias, J.; Diakonis, V.F.; Kankariya, V.P.; Yoo, S.H.; Ziebarth, N.M. Anterior and posterior corneal stroma elasticity after corneal collagen crosslinking treatment. Exp. Eye Res. 2013, 116, 58–62. [Google Scholar] [CrossRef] [Green Version]
- Last, J.A.; Thomasy, S.M.; Croasdale, C.R.; Russell, P.; Murphy, C.J. Compliance profile of the human cornea as measured by atomic force microscopy. Micron 2012, 43, 1293–1298. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, M.; Lombardo, G.; Carbone, G.; De Santo, M.P.; Barberi, R.; Serrao, S. Biomechanics of the anterior human corneal tissue investigated with atomic force microscopy. Investig. Ophthalmol. Vis. Sci. 2012, 53, 1050–1057. [Google Scholar] [CrossRef] [Green Version]
- Last, J.A.; Liliensiek, S.J.; Nealey, P.F.; Murphy, C.J. Determining the mechanical properties of human corneal basement membranes with atomic force microscopy. J. Struct. Biol. 2009, 167, 19–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meek, K.M.; Knupp, C. Corneal structure and transparency. Prog. Retin. Eye Res. 2015, 49, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Q.; Luo, C.; Lu, B.; Fu, Q.; Yin, H.; Qin, Z.; Lyu, D.; Zhang, L.; Fang, Z.; Zhu, Y.; et al. Thermosensitive chitosan-based hydrogels releasing stromal cell derived factor-1 alpha recruit MSC for corneal epithelium regeneration. Acta Biomater. 2017, 61, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Li, C.; Cai, Q.; Bao, X.; Tang, L.; Ao, H.; Liu, J.; Jin, M.; Zhou, Y.; Wan, Y.; et al. Studies on bacterial cellulose/poly(vinyl alcohol) hydrogel composites as tissue-engineered corneal stroma. Biomed. Mater. 2020, 15, 035022. [Google Scholar] [CrossRef]
- Lai, J.Y. Hyaluronic acid concentration-mediated changes in structure and function of porous carriers for corneal endothelial cell sheet delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 59, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Yazdanpanah, G.; Jiang, Y.; Jabbehdari, S.; Anwar, K.; Shen, X.; An, S.; Jalilian, E.; Omidi, M.; Rosenblatt, M.; Shokuhfar, T.; et al. Rheological and Proteomics Characterization of Thermoresponsive Hydrogel from Porcine Cornea Extracellular Matrix for Corneal Tissue Engineering Purposes. Investig. Ophthalmol. Vis. Sci. 2021, 62, 872. [Google Scholar]
- Koivusalo, L.; Karvinen, J.; Sorsa, E.; Jonkkari, I.; Valiaho, J.; Kallio, P.; Ilmarinen, T.; Miettinen, S.; Skottman, H.; Kellomaki, M. Hydrazone crosslinked hyaluronan-based hydrogels for therapeutic delivery of adipose stem cells to treat corneal defects. Mater. Sci Eng. C Mater. Biol. Appl. 2018, 85, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Rollett, A.; Kaplan, D.L. Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics. Expert Opin. Drug Deliv. 2015, 12, 779–791. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Xia, X.; Huang, W.; Lin, Y.; Xu, Q.; Kaplan, D.L. High Throughput Screening of Dynamic Silk-Elastin-Like Protein Biomaterials. Adv. Funct. Mater. 2014, 24, 4303–4310. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.X.; Xu, Q.; Hu, X.; Qin, G.; Kaplan, D.L. Tunable self-assembly of genetically engineered silk--elastin-like protein polymers. Biomacromolecules 2011, 12, 3844–3850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rockwood, D.N.; Preda, R.C.; Yucel, T.; Wang, X.; Lovett, M.L.; Kaplan, D.L. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 2011, 6, 1612–1631. [Google Scholar] [CrossRef] [PubMed]
- Partlow, B.P.; Hanna, C.W.; Rnjak-Kovacina, J.; Moreau, J.E.; Applegate, M.B.; Burke, K.A.; Marelli, B.; Mitropoulos, A.N.; Omenetto, F.G.; Kaplan, D.L. Highly tunable elastomeric silk biomaterials. Adv. Funct. Mater. 2014, 24, 4615–4624. [Google Scholar] [CrossRef]
- Applegate, M.B.; Partlow, B.P.; Coburn, J.; Marelli, B.; Pirie, C.; Pineda, R.; Kaplan, D.L.; Omenetto, F.G. Photocrosslinking of Silk Fibroin Using Riboflavin for Ocular Prostheses. Adv. Mater. 2016, 28, 2417–2420. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.W.; Tarakanova, A.; Dinjaski, N.; Wang, Q.; Xia, X.X.; Chen, Y.; Wong, J.Y.; Buehler, M.J.; Kaplan, D.L. Design of Multistimuli Responsive Hydrogels Using Integrated Modeling and Genetically Engineered Silk-Elastin-Like Proteins. Adv. Funct. Mater. 2016, 26, 4113–4123. [Google Scholar] [CrossRef] [Green Version]
- Ibanez-Fonseca, A.; Orbanic, D.; Arias, F.J.; Alonso, M.; Zeugolis, D.I.; Rodriguez-Cabello, J.C. Influence of the Thermodynamic and Kinetic Control of Self-Assembly on the Microstructure Evolution of Silk-Elastin-Like Recombinamer Hydrogels. Small 2020, 16, e2001244. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A.R.; John, P.S.; Kaplan, D.L. Corrigendum to ‘Modification of silk fibroin using diazonium coupling chemistry and the effects on hMSC proliferation and differentiation’ [Biomaterials 29 (2008) 2829–2838]. Biomaterials 2008, 29, 4260. [Google Scholar] [CrossRef]
- Serban, M.A.; Kaplan, D.L. pH-Sensitive ionomeric particles obtained via chemical conjugation of silk with poly(amino acid)s. Biomacromolecules 2010, 11, 3406–3412. [Google Scholar] [CrossRef] [Green Version]
- Stoppel, W.L.; Raia, N.; Kimmerling, E.; Wang, S.; Ghezzi, C.E.; Kaplan, D.L. 2.12 Silk Biomaterials ☆. In Comprehensive Biomaterials II; Ducheyne, P., Ed.; Elsevier: Oxford, UK, 2017; pp. 253–278. [Google Scholar]
- Raia, N.R.; Partlow, B.P.; McGill, M.; Kimmerling, E.P.; Ghezzi, C.E.; Kaplan, D.L. Enzymatically crosslinked silk-hyaluronic acid hydrogels. Biomaterials 2017, 131, 58–67. [Google Scholar] [CrossRef]
- Mitropoulos, A.N.; Marelli, B.; Ghezzi, C.E.; Applegate, M.B.; Partlow, B.P.; Kaplan, D.L.; Omenetto, F.G. Transparent, Nanostructured Silk Fibroin Hydrogels with Tunable Mechanical Properties. ACS Biomater. Sci. Eng. 2015, 1, 964–970. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Wang, Z.; Cao, H.; Hu, H.; Luo, Z.; Yang, X.; Cui, M.; Zhou, L. Genipin-crosslinked polyvinyl alcohol/silk fibroin/nano-hydroxyapatite hydrogel for fabrication of artificial cornea scaffolds-a novel approach to corneal tissue engineering. J. Biomater. Sci. Polym. Ed. 2019, 30, 1604–1619. [Google Scholar] [CrossRef] [PubMed]
- Stoppel, W.L.; Gao, A.E.; Greaney, A.M.; Partlow, B.P.; Bretherton, R.C.; Kaplan, D.L.; Black, L.D., 3rd. Elastic, silk-cardiac extracellular matrix hydrogels exhibit time-dependent stiffening that modulates cardiac fibroblast response. J. Biomed. Mater. Res. A 2016, 104, 3058–3072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raia, N.R.; Jia, D.; Ghezzi, C.E.; Muthukumar, M.; Kaplan, D.L. Characterization of silk-hyaluronic acid composite hydrogels towards vitreous humor substitutes. Biomaterials 2020, 233, 119729. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Su, X.; Xu, Y.; Kong, B.; Sun, W.; Mi, S. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Sci. Rep. 2016, 6, 24474. [Google Scholar] [CrossRef] [Green Version]
- Ravichandran, R.; Islam, M.M.; Alarcon, E.I.; Samanta, A.; Wang, S.; Lundstrom, P.; Hilborn, J.; Griffith, M.; Phopase, J. Functionalised type-I collagen as a hydrogel building block for bio-orthogonal tissue engineering applications. J. Mater. Chem. B 2016, 4, 318–326. [Google Scholar] [CrossRef] [Green Version]
- Isaacson, A.; Swioklo, S.; Connon, C.J. 3D bioprinting of a corneal stroma equivalent. Exp. Eye Res. 2018, 173, 188–193. [Google Scholar] [CrossRef]
- Chen, F.; Le, P.; Fernandes-Cunha, G.M.; Heilshorn, S.C.; Myung, D. Bio-orthogonally crosslinked hyaluronate-collagen hydrogel for suture-free corneal defect repair. Biomaterials 2020, 255, 120176. [Google Scholar] [CrossRef] [PubMed]
- Duarte Campos, D.F.; Rohde, M.; Ross, M.; Anvari, P.; Blaeser, A.; Vogt, M.; Panfil, C.; Yam, G.H.; Mehta, J.S.; Fischer, H.; et al. Corneal bioprinting utilizing collagen-based bioinks and primary human keratocytes. J. Biomed. Mater. Res. A 2019, 107, 1945–1953. [Google Scholar] [CrossRef]
- Goodarzi, H.; Jadidi, K.; Pourmotabed, S.; Sharifi, E.; Aghamollaei, H. Preparation and in vitro characterization of cross-linked collagen-gelatin hydrogel using EDC/NHS for corneal tissue engineering applications. Int. J. Biol. Macromol. 2019, 126, 620–632. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Perez, J.; Madden, P.W.; Ahearne, M. Engineering a Corneal Stromal Equivalent Using a Novel Multilayered Fabrication Assembly Technique. Tissue Eng. Part A 2020, 26, 1030–1041. [Google Scholar] [CrossRef]
- Sorkio, A.; Koch, L.; Koivusalo, L.; Deiwick, A.; Miettinen, S.; Chichkov, B.; Skottman, H. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials 2018, 171, 57–71. [Google Scholar] [CrossRef] [PubMed]
- McTiernan, C.D.; Simpson, F.C.; Haagdorens, M.; Samarawickrama, C.; Hunter, D.; Buznyk, O.; Fagerholm, P.; Ljunggren, M.K.; Lewis, P.; Pintelon, I.; et al. LiQD Cornea: Pro-regeneration collagen mimetics as patches and alternatives to corneal transplantation. Sci. Adv. 2020, 6, eaba2187. [Google Scholar] [CrossRef]
- Wang, X.; Majumdar, S.; Soiberman, U.; Webb, J.N.; Chung, L.; Scarcelli, G.; Elisseeff, J.H. Multifunctional synthetic Bowman’s membrane-stromal biomimetic for corneal reconstruction. Biomaterials 2020, 241, 119880. [Google Scholar] [CrossRef]
- Fernandes-Cunha, G.M.; Chen, K.M.; Chen, F.; Le, P.; Han, J.H.; Mahajan, L.A.; Lee, H.J.; Na, K.S.; Myung, D. In situ-forming collagen hydrogel crosslinked via multi-functional PEG as a matrix therapy for corneal defects. Sci. Rep. 2020, 10, 16671. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Merrett, K.; Griffith, M.; Fagerholm, P.; Dravida, S.; Heyne, B.; Scaiano, J.C.; Watsky, M.A.; Shinozaki, N.; Lagali, N.; et al. Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials 2008, 29, 1147–1158. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Griffith, M.; Watsky, M.A.; Forrester, J.V.; Kuffova, L.; Grant, D.; Merrett, K.; Carlsson, D.J. Properties of porcine and recombinant human collagen matrices for optically clear tissue engineering applications. Biomacromolecules 2006, 7, 1819–1828. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.I.; Kuffova, L.; Merrett, K.; Mitra, D.; Forrester, J.V.; Li, F.F.; Griffith, M. Crosslinked collagen hydrogels as corneal implants: Effects of sterically bulky vs. non-bulky carbodiimides as crosslinkers. Acta Biomater. 2013, 9, 7796–7805. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, P.; Ahearne, M. Significance of Crosslinking Approaches in the Development of Next Generation Hydrogels for Corneal Tissue Engineering. Pharmaceutics 2021, 13, 319. [Google Scholar] [CrossRef]
- Ludwig, P.E.; Huff, T.J.; Zuniga, J.M. The potential role of bioengineering and three-dimensional printing in curing global corneal blindness. J. Tissue Eng. 2018, 9, 2041731418769863. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Lu, C.; Wang, L.; Chen, M.; White, J.; Hao, X.; McLean, K.M.; Chen, H.; Hughes, T.C. Gelatin-Based Photocurable Hydrogels for Corneal Wound Repair. ACS Appl Mater. Interfaces 2018, 10, 13283–13292. [Google Scholar] [CrossRef]
- Luo, L.J.; Lai, J.Y.; Chou, S.F.; Hsueh, Y.J.; Ma, D.H. Development of gelatin/ascorbic acid cryogels for potential use in corneal stromal tissue engineering. Acta Biomater. 2018, 65, 123–136. [Google Scholar] [CrossRef]
- Shirzaei Sani, E.; Kheirkhah, A.; Rana, D.; Sun, Z.; Foulsham, W.; Sheikhi, A.; Khademhosseini, A.; Dana, R.; Annabi, N. Sutureless repair of corneal injuries using naturally derived bioadhesive hydrogels. Sci. Adv. 2019, 5, eaav1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahdavi, S.S.; Abdekhodaie, M.J.; Kumar, H.; Mashayekhan, S.; Baradaran-Rafii, A.; Kim, K. Stereolithography 3D Bioprinting Method for Fabrication of Human Corneal Stroma Equivalent. Ann. Biomed. Eng. 2020, 48, 1955–1970. [Google Scholar] [CrossRef]
- Kong, B.; Chen, Y.; Liu, R.; Liu, X.; Liu, C.; Shao, Z.; Xiong, L.; Liu, X.; Sun, W.; Mi, S. Fiber reinforced GelMA hydrogel to induce the regeneration of corneal stroma. Nat. Commun. 2020, 11, 1435. [Google Scholar] [CrossRef] [Green Version]
- Uyaniklar, M.; Gunal, G.; Tevlek, A.; Hosseinian, P.; Aydin, H.M. Hybrid Cornea: Cell Laden Hydrogel Incorporated Decellularized Matrix. ACS Biomater. Sci. Eng. 2020, 6, 122–133. [Google Scholar] [CrossRef]
- Kilic Bektas, C.; Hasirci, V. Cell loaded 3D bioprinted GelMA hydrogels for corneal stroma engineering. Biomater. Sci. 2019, 8, 438–449. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Peh, G.S.L.; Ang, H.P.; Lwin, N.C.; Adnan, K.; Mehta, J.S.; Tan, W.S.; Yim, E.K.F. Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications. Biomaterials 2017, 120, 139–154. [Google Scholar] [CrossRef] [PubMed]
- Kilic Bektas, C.; Hasirci, V. Mimicking corneal stroma using keratocyte-loaded photopolymerizable methacrylated gelatin hydrogels. J. Tissue Eng. Regen. Med. 2018, 12, e1899–e1910. [Google Scholar] [CrossRef]
- Rose, J.B.; Pacelli, S.; Haj, A.J.E.; Dua, H.S.; Hopkinson, A.; White, L.J.; Rose, F. Gelatin-Based Materials in Ocular Tissue Engineering. Materials 2014, 7, 3106–3135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilic Bektas, C.; Hasirci, V. Cell Loaded GelMA:HEMA IPN hydrogels for corneal stroma engineering. J. Mater. Sci. Mater. Med. 2019, 31, 2. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, Y.; Ferracci, G.; Zheng, J.; Cho, N.J.; Lee, B.H. Gelatin methacryloyl and its hydrogels with an exceptional degree of controllability and batch-to-batch consistency. Sci. Rep. 2019, 9, 6863. [Google Scholar] [CrossRef] [Green Version]
- Zare, M.; Bigham, A.; Zare, M.; Luo, H.; Rezvani Ghomi, E.; Ramakrishna, S. pHEMA: An Overview for Biomedical Applications. Int. J. Mol. Sci. 2021, 22, 6376. [Google Scholar] [CrossRef]
- Guo, C.; Li, C.; Kaplan, D.L. Enzymatic Degradation of Bombyx mori Silk Materials: A Review. Biomacromolecules 2020, 21, 1678–1686. [Google Scholar] [CrossRef]
- Thurber, A.E.; Omenetto, F.G.; Kaplan, D.L. In vivo bioresponses to silk proteins. Biomaterials 2015, 71, 145–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, M.G.; Luo, Y.; Teng, T.; Guaiquil, V.; Zhou, Q.; McGinn, L.; Nazzal, O.; Walsh, M.; Lee, J.; Rosenblatt, M.I. Silk Film Stiffness Modulates Corneal Epithelial Cell Mechanosignaling. Macromol. Chem. Phys. 2021, 222, 2100013. [Google Scholar] [CrossRef]
- Lee, M.C.; Kim, D.K.; Lee, O.J.; Kim, J.H.; Ju, H.W.; Lee, J.M.; Moon, B.M.; Park, H.J.; Kim, D.W.; Kim, S.H.; et al. Fabrication of silk fibroin film using centrifugal casting technique for corneal tissue engineering. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2016, 104, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Soleimanifar, F.; Mortazavi, Y.; Nadri, S.; Soleimani, M. Conjunctiva derived mesenchymal stem cell (CJMSCs) as a potential platform for differentiation into corneal epithelial cells on bioengineered electrospun scaffolds. J. Biomed. Mater. Res. A 2017, 105, 2703–2711. [Google Scholar] [CrossRef]
- Orash Mahmoud Salehi, A.; Nourbakhsh, M.S.; Rafienia, M.; Baradaran-Rafii, A.; Heidari Keshel, S. Corneal stromal regeneration by hybrid oriented poly (epsilon-caprolactone)/lyophilized silk fibroin electrospun scaffold. Int. J. Biol. Macromol. 2020, 161, 377–388. [Google Scholar] [CrossRef] [PubMed]
- Farasatkia, A.; Kharaziha, M. Robust and double-layer micro-patterned bioadhesive based on silk nanofibril/GelMA-alginate for stroma tissue engineering. Int. J. Biol Macromol. 2021, 183, 1013–1025. [Google Scholar] [CrossRef] [PubMed]
- Farasatkia, A.; Kharaziha, M.; Ashrafizadeh, F.; Salehi, S. Transparent silk/gelatin methacrylate (GelMA) fibrillar film for corneal regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 120, 111744. [Google Scholar] [CrossRef] [PubMed]
- Gavrilova, N.A.; Borzenok, S.A.; Revishchin, A.V.; Tishchenko, O.E.; Ostrovkiy, D.S.; Bobrova, M.M.; Safonova, L.A.; Efimov, A.E.; Agapova, O.I.; Agammedov, M.B.; et al. The effect of biodegradable silk fibroin-based scaffolds containing glial cell line-derived neurotrophic factor (GDNF) on the corneal regeneration process. Int. J. Biol. Macromol. 2021, 185, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Kang, K.B.; Sartaj, R.; Sun, M.G.; Zhou, Q.; Guaiquil, V.H.; Rosenblatt, M.I. Silk films with nanotopography and extracellular proteins enhance corneal epithelial wound healing. Sci. Rep. 2021, 11, 8168. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Ahearne, M. Fabrication and Biocompatibility of Electroconductive Silk Fibroin/PEDOT: PSS Composites for Corneal Epithelial Regeneration. Polymers 2020, 12, 3028. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, Y.; Yang, L.; Zeng, Y.; Gao, X.; Xu, H. Poly(ethylene glycol)-modified silk fibroin membrane as a carrier for limbal epithelial stem cell transplantation in a rabbit LSCD model. Stem Cell Res. Ther. 2017, 8, 256. [Google Scholar] [CrossRef]
- Ghezzi, C.E.; Marelli, B.; Omenetto, F.G.; Funderburgh, J.L.; Kaplan, D.L. 3D Functional Corneal Stromal Tissue Equivalent Based on Corneal Stromal Stem Cells and Multi-Layered Silk Film Architecture. PLoS ONE 2017, 12, e0169504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghezzi, C.E.; Wang, L.; Behlau, I.; Rnjak-Kovacina, J.; Wang, S.; Goldstein, M.H.; Liu, J.; Marchant, J.K.; Rosenblatt, M.I.; Kaplan, D.L. Degradation of silk films in multipocket corneal stromal rabbit models. J. Appl. Biomater. Funct. Mater. 2016, 14, e266–e276. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Chen, J.; Backman, L.J.; Malm, A.D.; Danielson, P. Surface Topography and Mechanical Strain Promote Keratocyte Phenotype and Extracellular Matrix Formation in a Biomimetic 3D Corneal Model. Adv. Healthc. Mater. 2017, 6. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhang, W.; Kelk, P.; Backman, L.J.; Danielson, P. Substance P and patterned silk biomaterial stimulate periodontal ligament stem cells to form corneal stroma in a bioengineered three-dimensional model. Stem Cell Res. Ther. 2017, 8, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vazquez, N.; Rodriguez-Barrientos, C.A.; Aznar.r-Cervantes, S.D.; Chacon, M.; Cenis, J.L.; Riestra, A.C.; Sanchez-Avila, R.M.; Persinal, M.; Brea-Pastor, A.; Fernandez-Vega Cueto, L.; et al. Silk Fibroin Films for Corneal Endothelial Regeneration: Transplant in a Rabbit Descemet Membrane Endothelial Keratoplasty. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3357–3365. [Google Scholar] [CrossRef]
- Kim do, K.; Sim, B.R.; Khang, G. Nature-Derived Aloe Vera Gel Blended Silk Fibroin Film Scaffolds for Cornea Endothelial Cell Regeneration and Transplantation. ACS Appl. Mater. Interfaces 2016, 8, 15160–15168. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.K.; Sim, B.R.; Kim, J.I.; Khang, G. Functionalized silk fibroin film scaffold using beta-Carotene for cornea endothelial cell regeneration. Colloids Surf. B Biointerfaces 2018, 164, 340–346. [Google Scholar] [CrossRef]
- Choi, J.H.; Jeon, H.; Song, J.E.; Oliveira, J.M.; Reis, R.L.; Khang, G. Biofunctionalized Lysophosphatidic Acid/Silk Fibroin Film for Cornea Endothelial Cell Regeneration. Nanomaterials 2018, 8, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.E.; Sim, B.R.; Jeon, Y.S.; Kim, H.S.; Shin, E.Y.; Carlomagno, C.; Khang, G. Characterization of surface modified glycerol/silk fibroin film for application to corneal endothelial cell regeneration. J. Biomater. Sci. Polym. Ed. 2019, 30, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, C.; Gupta, P.; Hazra, S.; Mandal, B.B. In Vitro Culture of Human Corneal Endothelium on Non-Mulberry Silk Fibroin Films for Tissue Regeneration. Transl. Vis. Sci. Technol. 2020, 9, 12. [Google Scholar] [CrossRef]
- Jia, L.; Ghezzi, C.E.; Kaplan, D.L. Optimization of silk films as substrate for functional corneal epithelium growth. J. Biomed. Mater. Res. Part B Appl. Biomater. 2016, 104, 431–441. [Google Scholar] [CrossRef]
- Kang, K.B.; Lawrence, B.D.; Gao, X.R.; Luo, Y.; Zhou, Q.; Liu, A.; Guaiquil, V.H.; Rosenblatt, M.I. Micro- and Nanoscale Topographies on Silk Regulate Gene Expression of Human Corneal Epithelial Cells. Investig. Ophthalmol. Vis. Sci. 2017, 58, 6388–6398. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, H.; Ren, L.; Xue, G.; Wang, Y. Improving the moisturizing properties of collagen film by surface grafting of chondroitin sulfate for corneal tissue engineering. J. Biomater. Sci. Polym. Ed. 2016, 27, 758–772. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Wu, M.; Ji, P.; Lv, H.; Deng, L. A collagen film with micro-rough surface can promote the corneal epithelization process for corneal repair. Int. J. Biol. Macromol. 2019, 121, 233–238. [Google Scholar] [CrossRef]
- Xu, W.; Wang, Z.; Liu, Y.; Wang, L.; Jiang, Z.; Li, T.; Zhang, W.; Liang, Y. Carboxymethyl chitosan/gelatin/hyaluronic acid blended-membranes as epithelia transplanting scaffold for corneal wound healing. Carbohydr. Polym. 2018, 192, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Aslan, B.; Guler, S.; Tevlek, A.; Aydin, H.M. Evaluation of collagen foam, poly(l-lactic acid) nanofiber mesh, and decellularized matrices for corneal regeneration. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2018, 106, 2157–2168. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, X.; You, J.; Song, Y.; Tomaskovic-Crook, E.; Sutton, G.; Crook, J.M.; Wallace, G.G. Biomimetic corneal stroma using electro-compacted collagen. Acta Biomater. 2020, 113, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Yam, G.H.; Yusoff, N.Z.; Goh, T.W.; Setiawan, M.; Lee, X.W.; Liu, Y.C.; Mehta, J.S. Decellularization of human stromal refractive lenticules for corneal tissue engineering. Sci. Rep. 2016, 6, 26339. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.Y.; Tripathy, N.; Cho, S.A.; Lee, D.; Khang, G. Collagen type I-PLGA film as an efficient substratum for corneal endothelial cells regeneration. J. Tissue Eng. Regen. Med. 2017, 11, 2471–2478. [Google Scholar] [CrossRef]
- Wang, S.; Ghezzi, C.E.; Gomes, R.; Pollard, R.E.; Funderburgh, J.L.; Kaplan, D.L. In vitro 3D corneal tissue model with epithelium, stroma, and innervation. Biomaterials 2017, 112, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gosselin, E.A.; Torregrosa, T.; Ghezzi, C.E.; Mendelsohn, A.C.; Gomes, R.; Funderburgh, J.L.; Kaplan, D.L. Multi-layered silk film coculture system for human corneal epithelial and stromal stem cells. J. Tissue Eng. Regen. Med. 2018, 12, 285–295. [Google Scholar] [CrossRef] [Green Version]
- Xiong, S.J.; Gao, H.C.; Qin, L.F.; Jia, Y.G.; Gao, M.; Ren, L. Microgrooved collagen-based corneal scaffold for promoting collective cell migration and antifibrosis. RSC Adv. 2019, 9, 29463–29473. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.; Gao, H.; Xiong, S.; Jia, Y.; Ren, L. Preparation of collagen/cellulose nanocrystals composite films and their potential applications in corneal repair. J. Mater. Sci. Mater. Med. 2020, 31, 55. [Google Scholar] [CrossRef]
- Wu, Z.; Kong, B.; Liu, R.; Sun, W.; Mi, S. Engineering of Corneal Tissue through an Aligned PVA/Collagen Composite Nanofibrous Electrospun Scaffold. Nanomaterials 2018, 8, 124. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.I.; Kim, J.Y.; Park, C.H. Fabrication of transparent hemispherical 3D nanofibrous scaffolds with radially aligned patterns via a novel electrospinning method. Sci. Rep. 2018, 8, 3424. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Du, L.; Sun, P.; Shen, L.; Zhu, J.; Pang, K.; Wu, X. Construction of tissue-engineered full-thickness cornea substitute using limbal epithelial cell-like and corneal endothelial cell-like cells derived from human embryonic stem cells. Biomaterials 2017, 124, 180–194. [Google Scholar] [CrossRef]
- Huang, Y.H.; Tseng, F.W.; Chang, W.H.; Peng, I.C.; Hsieh, D.J.; Wu, S.W.; Yeh, M.L. Preparation of acellular scaffold for corneal tissue engineering by supercritical carbon dioxide extraction technology. Acta Biomater. 2017, 58, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.J.; Wang, T.J.; Li, T.W.; Chang, Y.Y.; Sheu, M.T.; Huang, Y.Y.; Liu, D.Z. Development of Decellularized Cornea by Organic Acid Treatment for Corneal Regeneration. Tissue Eng. Part A 2019, 25, 652–662. [Google Scholar] [CrossRef] [PubMed]
- Younesi, M.; Islam, A.; Kishore, V.; Panit, S.; Akkus, O. Fabrication of compositionally and topographically complex robust tissue forms by 3D-electrochemical compaction of collagen. Biofabrication 2015, 7, 035001. [Google Scholar] [CrossRef] [Green Version]
- Sionkowska, A. Current research on the blends of natural and synthetic polymers as new biomaterials: Review. Prog. Polym. Sci. 2011, 36, 1254–1276. [Google Scholar] [CrossRef]
- Mutoji, K.N.; Sun, M.; Elliott, G.; Moreno, I.Y.; Hughes, C.; Gesteira, T.F.; Coulson-Thomas, V.J. Extracellular Matrix Deposition and Remodeling after Corneal Alkali Burn in Mice. Int. J. Mol. Sci. 2021, 22, 5708. [Google Scholar] [CrossRef]
- Ashworth, S.; Harrington, J.; Hammond, G.M.; Bains, K.K.; Koudouna, E.; Hayes, A.J.; Ralphs, J.R.; Regini, J.W.; Young, R.D.; Hayashi, R.; et al. Chondroitin Sulfate as a Potential Modulator of the Stem Cell Niche in Cornea. Front. Cell Dev. Biol. 2020, 8, 567358. [Google Scholar] [CrossRef]
- Choi, H.J.; Lee, J.J.; Kim, M.K.; Lee, H.J.; Ko, A.Y.; Kang, H.J.; Park, C.G.; Wee, W.R. Cross-reactivity between decellularized porcine corneal lamellae for corneal xenobridging and subsequent corneal allotransplants. Xenotransplantation 2014, 21, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Lynch, A.P.; Ahearne, M. Strategies for developing decellularized corneal scaffolds. Exp. Eye Res. 2013, 108, 42–47. [Google Scholar] [CrossRef]
- Ghareeb, A.E.; Lako, M.; Figueiredo, F.C. Recent Advances in Stem Cell Therapy for Limbal Stem Cell Deficiency: A Narrative Review. Ophthalmol. Ther. 2020, 9, 809–831. [Google Scholar] [CrossRef] [PubMed]
- Bosch, B.M.; Salero, E.; Nunez-Toldra, R.; Sabater, A.L.; Gil, F.J.; Perez, R.A. Discovering the Potential of Dental Pulp Stem Cells for Corneal Endothelial Cell Production: A Proof of Concept. Front. Bioeng. Biotechnol. 2021, 9, 617724. [Google Scholar] [CrossRef] [PubMed]
- Saghizadeh, M.; Kramerov, A.A.; Svendsen, C.N.; Ljubimov, A.V. Concise Review: Stem Cells for Corneal Wound Healing. Stem Cells 2017, 35, 2105–2114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanbhag, S.S.; Nikpoor, N.; Rao Donthineni, P.; Singh, V.; Chodosh, J.; Basu, S. Autologous limbal stem cell transplantation: A systematic review of clinical outcomes with different surgical techniques. Br. J. Ophthalmol. 2020, 104, 247–253. [Google Scholar] [CrossRef]
- Figueiredo, F.C.; Glanville, J.M.; Arber, M.; Carr, E.; Rydevik, G.; Hogg, J.; Okonkwo, A.; Figueiredo, G.; Lako, M.; Whiter, F.; et al. A systematic review of cellular therapies for the treatment of limbal stem cell deficiency affecting one or both eyes. Ocul. Surf. 2021, 20, 48–61. [Google Scholar] [CrossRef]
- Singh, V.; Tiwari, A.; Kethiri, A.R.; Sangwan, V.S. Current perspectives of limbal-derived stem cells and its application in ocular surface regeneration and limbal stem cell transplantation. Stem Cells Transl. Med. 2021, 10, 1121–1128. [Google Scholar] [CrossRef]
- Nosrati, H.; Alizadeh, Z.; Nosrati, A.; Ashrafi-Dehkordi, K.; Banitalebi-Dehkordi, M.; Sanami, S.; Khodaei, M. Stem cell-based therapeutic strategies for corneal epithelium regeneration. Tissue Cell 2021, 68, 101470. [Google Scholar] [CrossRef]
- Zhu, Q.; Sun, H.; Yang, D.; Tighe, S.; Liu, Y.; Zhu, Y.; Hu, M. Cellular Substrates for Cell-Based Tissue Engineering of Human Corneal Endothelial Cells. Int. J. Med. Sci. 2019, 16, 1072–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, A.; Brugnano, J.; Sun, S.; Vase, A.; Orwin, E. The development of a tissue-engineered cornea: Biomaterials and culture methods. Pediatr. Res. 2008, 63, 535–544. [Google Scholar] [CrossRef] [Green Version]
- Eghrari, A.O.; Riazuddin, S.A.; Gottsch, J.D. Overview of the Cornea: Structure, Function, and Development. Prog. Mol. Biol. Transl. Sci. 2015, 134, 7–23. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Kao, W.W.-Y. Chapter Five—Corneal Epithelial Wound Healing. In Progress in Molecular Biology and Translational Science; Hejtmancik, J.F., Nickerson, J.M., Eds.; Academic Press: Cambridge, MA, USA, 2015; Volume 134, pp. 61–71. [Google Scholar]
- Garrod, D.R. Desmosomes and hemidesmosomes. Curr. Opin. Cell Biol. 1993, 5, 30–40. [Google Scholar] [CrossRef]
- Wiley, L.; SundarRaj, N.; Sun, T.T.; Thoft, R.A. Regional heterogeneity in human corneal and limbal epithelia: An immunohistochemical evaluation. Investig. Ophthalmol. Vis. Sci. 1991, 32, 594–602. [Google Scholar]
- Osei-Bempong, C.; Figueiredo, F.C.; Lako, M. The limbal epithelium of the eye--a review of limbal stem cell biology, disease and treatment. Bioessays 2013, 35, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Dua, H.S.; Azuara-Blanco, A. Limbal stem cells of the corneal epithelium. Surv. Ophthalmol. 2000, 44, 415–425. [Google Scholar] [CrossRef]
- Kushnerev, E.; Shawcross, S.G.; Sothirachagan, S.; Carley, F.; Brahma, A.; Yates, J.M.; Hillarby, M.C. Regeneration of Corneal Epithelium With Dental Pulp Stem Cells Using a Contact Lens Delivery System. Investig. Ophthalmol. Vis. Sci. 2016, 57, 5192–5199. [Google Scholar] [CrossRef] [PubMed]
- Syed-Picard, F.N.; Du, Y.; Lathrop, K.L.; Mann, M.M.; Funderburgh, M.L.; Funderburgh, J.L. Dental pulp stem cells: A new cellular resource for corneal stromal regeneration. Stem Cells Transl. Med. 2015, 4, 276–285. [Google Scholar] [CrossRef]
- West-Mays, J.A.; Dwivedi, D.J. The keratocyte: Corneal stromal cell with variable repair phenotypes. Int. J. Biochem. Cell Biol. 2006, 38, 1625–1631. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Mienaltowski, M.J.; Birk, D.E. Regulation of corneal stroma extracellular matrix assembly. Exp. Eye Res. 2015, 133, 69–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinnamaneni, N.; Funderburgh, J.L. Concise review: Stem cells in the corneal stroma. Stem Cells 2012, 30, 1059–1063. [Google Scholar] [CrossRef] [Green Version]
- Duman, R.; Tok Cevik, M.; Gorkem Cevik, S.; Duman, R.; Perente, I. Corneal endothelial cell density in healthy Caucasian population. Saudi J. Ophthalmol. 2016, 30, 236–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zavala, J.; Lopez Jaime, G.R.; Rodriguez Barrientos, C.A.; Valdez-Garcia, J. Corneal endothelium: Developmental strategies for regeneration. Eye 2013, 27, 579–588. [Google Scholar] [CrossRef] [Green Version]
- Worner, C.H.; Olguin, A.; Ruiz-Garcia, J.L.; Garzon-Jimenez, N. Cell pattern in adult human corneal endothelium. PLoS ONE 2011, 6, e19483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourne, W.M.; Nelson, L.R.; Hodge, D.O. Central corneal endothelial cell changes over a ten-year period. Investig. Ophthalmol. Vis. Sci. 1997, 38, 779–782. [Google Scholar]
- Geroski, D.H.; Matsuda, M.; Yee, R.W.; Edelhauser, H.F. Pump function of the human corneal endothelium. Effects of age and cornea guttata. Ophthalmology 1985, 92, 759–763. [Google Scholar] [CrossRef]
- Vazin, T.; Freed, W.J. Human embryonic stem cells: Derivation, culture, and differentiation: A review. Restor. Neurol. Neurosci. 2010, 28, 589–603. [Google Scholar] [CrossRef]
- Zhang, K.; Pang, K.; Wu, X. Isolation and transplantation of corneal endothelial cell-like cells derived from in-vitro-differentiated human embryonic stem cells. Stem Cells Dev. 2014, 23, 1340–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, S.; Stewart, R.; Yung, S.; Kolli, S.; Armstrong, L.; Stojkovic, M.; Figueiredo, F.; Lako, M. Differentiation of human embryonic stem cells into corneal epithelial-like cells by in vitro replication of the corneal epithelial stem cell niche. Stem Cells 2007, 25, 1145–1155. [Google Scholar] [CrossRef]
- Stern, J.H.; Tian, Y.; Funderburgh, J.; Pellegrini, G.; Zhang, K.; Goldberg, J.L.; Ali, R.R.; Young, M.; Xie, Y.; Temple, S. Regenerating Eye Tissues to Preserve and Restore Vision. Cell Stem Cell 2018, 22, 834–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Fernandez, S.; Pineiro-Ramil, M.; Castro-Vinuelas, R.; Sanjurjo-Rodriguez, C.; Alvarez-Portela, M.; Fuentes-Boquete, I.M.; Rendal-Vazquez, E.; Díaz-Prado, S.M. Current development of alternative treatments for endothelial decompensation: Cell-based therapy. Exp. Eye Res. 2021, 207, 108560. [Google Scholar] [CrossRef]
- Mansoor, H.; Ong, H.S.; Riau, A.K.; Stanzel, T.P.; Mehta, J.S.; Yam, G.H. Current Trends and Future Perspective of Mesenchymal Stem Cells and Exosomes in Corneal Diseases. Int. J. Mol. Sci. 2019, 20, 2853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, S.; Wen, D.; Yu, Y.; Holst, P.L.; Luo, Y.; Fang, M.; Tamir, R.; Antonio, L.; Hu, Z.; Cupples, R.; et al. GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell 1996, 85, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Treanor, J.J.; Goodman, L.; de Sauvage, F.; Stone, D.M.; Poulsen, K.T.; Beck, C.D.; Gray, C.; Armanini, M.P.; Pollock, R.A.; Hefti, F.; et al. Characterization of a multicomponent receptor for GDNF. Nature 1996, 382, 80–83. [Google Scholar] [CrossRef]
- Airaksinen, M.S.; Titievsky, A.; Saarma, M. GDNF family neurotrophic factor signaling: Four masters, one servant? Mol. Cell Neurosci. 1999, 13, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Calderon-Colon, X.; Xia, Z.; Breidenich, J.L.; Mulreany, D.G.; Guo, Q.; Uy, O.M.; Tiffany, J.E.; Freund, D.E.; McCally, R.L.; Schein, O.D.; et al. Structure and properties of collagen vitrigel membranes for ocular repair and regeneration applications. Biomaterials 2012, 33, 8286–8295. [Google Scholar] [CrossRef]
- Majumdar, S.; Wang, X.; Sommerfeld, S.D.; Chae, J.J.; Athanasopoulou, E.N.; Shores, L.S.; Duan, X.; Amzel, L.M.; Stellacci, F.; Schein, O.; et al. Cyclodextrin Modulated Type I Collagen Self-Assembly to Engineer Biomimetic Cornea Implants. Adv. Funct. Mater. 2018, 28, 1804076. [Google Scholar] [CrossRef]
- Kilic Bektas, C.; Burcu, A.; Gedikoglu, G.; Telek, H.H.; Ornek, F.; Hasirci, V. Methacrylated gelatin hydrogels as corneal stroma substitutes: In vivo study. J. Biomater. Sci. Polym. Ed. 2019, 30, 1803–1821. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Zhang, Q.Y.; Huang, L.P.; Huang, K.; Xie, H.Q. Decellularized scaffold and its elicited immune response towards the host: The underlying mechanism and means of immunomodulatory modification. Biomater. Sci. 2021, 9, 4803–4820. [Google Scholar] [CrossRef]
- Chakraborty, J.; Roy, S.; Ghosh, S. Regulation of decellularized matrix mediated immune response. Biomater. Sci. 2020, 8, 1194–1215. [Google Scholar] [CrossRef] [PubMed]
- Institute of Biophysics and Cell Engineering of National Academy of Sciences of Belarus; Belarusian State Medical University. Treatment of Patients with Inflammatory-dystrophic Diseases of the Cornea Using Autologous Stem Cells. 2016. Available online: https://clinicaltrials.gov/ct2/show/NCT04484402 (accessed on 7 September 2021).
- Instituto Universitario de Oftalmobiología Aplicada (Institute of Applied Ophthalmobiology)—IOBA; University of Valladolid; Centro en Red de Medicina Regenerativa de Castilla y Leon; Red de Terapia Celular. Safety Study of Stem Cell Transplant to Treat Limbus Insufficiency Syndrome. 2012. Available online: https://clinicaltrials.gov/ct2/show/NCT01562002 (accessed on 7 September 2021).
- Gonzalez-Andrades, M.; Mata, R.; Gonzalez-Gallardo, M.D.C.; Medialdea, S.; Arias-Santiago, S.; Martinez-Atienza, J.; Ruiz-Garcia, A.; Perez-Fajardo, L.; Lizana-Moreno, A.; Garzon, I.; et al. A study protocol for a multicentre randomised clinical trial evaluating the safety and feasibility of a bioengineered human allogeneic nanostructured anterior cornea in patients with advanced corneal trophic ulcers refractory to conventional treatment. BMJ Open 2017, 7, e016487. [Google Scholar] [CrossRef] [PubMed]
- Andalusian Initiative for Advanced Therapies—Fundación Pública Andaluza Progreso y Salud; Iniciativa Andaluza en Ter-apias Avanzadas; Andalusian Network for Design; Translation of Advanced Therapies. Allogeneic Tissue Engineering (Nanostructured Artificial Human Cornea) in Patients with Corneal Trophic Ulcers in Advanced Stages, Refractory to Conventional (Ophthalmic) Treatment. 2014. Available online: https://clinicaltrials.gov/ct2/show/results/NCT01765244 (accessed on 7 September 2021).
- Zhongshan Ophthalmic Center, Sun Yat-sen University. Prospective Study of Deep Anterior Lamellar Keratoplasty Using Acellular Porcine Cornea. 2016. Available online: https://clinicaltrials.gov/ct2/show/NCT03105466 (accessed on 7 September 2021).
- Andrades, M.G.; Martinez-Atienza, J.; Campos, A.; Arias-Santiago, S.; Gallardo, C.G.; Mataix, B.; Medialdea, S.; Ruiz-Garcia, A.; Mata, R.; Cuende, N.; et al. Preliminary Results of a Multicenter Randomized Clinical Trial Evaluating the Safety and Feasibility of an Allogeneic Nanostructured Artificial Anterior Human Cornea. Cytotherapy 2017, 19, S26. [Google Scholar] [CrossRef]
- Rico-Sanchez, L.; Garzon, I.; Gonzalez-Andrades, M.; Ruiz-Garcia, A.; Punzano, M.; Lizana-Moreno, A.; Munoz-Avila, J.I.; Sanchez-Quevedo, M.D.C.; Martinez-Atienza, J.; Lopez-Navas, L.; et al. Successful development and clinical translation of a novel anterior lamellar artificial cornea. J. Tissue Eng. Regen. Med. 2019, 13, 2142–2154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoda, T. The effect of collaborative relationship between medical doctors and engineers on the productivity of developing medical devices. RD Manag. 2016, 46, 193–206. [Google Scholar] [CrossRef]
- McKay, T.B.; Ford, A.; Wang, S.; Cairns, D.M.; Parker, R.N.; Deardorff, P.M.; Ghezzi, C.E.; Kaplan, D.L. Assembly and Application of a Three-Dimensional Human Corneal Tissue Model. Curr. Protoc. Toxicol. 2019, 81, e84. [Google Scholar] [CrossRef]
Cell Type | Abbreviation | Healthy Phenotype | Common Markers |
---|---|---|---|
Corneal Epithelial Cells | CEpCs | Cobblestone Close Packed | CK3 CK12 CK15 ALDH3A1 Cx43 Involucrin p63 |
Corneal Stromal Cells | CSCs | Dendritic | Keratocan Lumican α-actinin αSMA ALDH1A1 ALDH3A1 |
Corneal Endothelial Cells | CEnCs | Hexagonally Close Packed | ZO-1 Na+/K+ ATPase |
Adipose-tissue Derived Stem Cells | ASCs | Ki67 p63 p40 CK3 | |
Mesenchymal Stem Cells | MSCs | CD13 CD29 CK3 CK8 CK12 | |
Limbal Epithelial Stem Cells or Corneal Epithelial Stem Cells | LESCs or CEpSCs | Ki67 p63 p40 CK3 ABCG2 CK19 EFGR Integrin β1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jameson, J.F.; Pacheco, M.O.; Nguyen, H.H.; Phelps, E.A.; Stoppel, W.L. Recent Advances in Natural Materials for Corneal Tissue Engineering. Bioengineering 2021, 8, 161. https://doi.org/10.3390/bioengineering8110161
Jameson JF, Pacheco MO, Nguyen HH, Phelps EA, Stoppel WL. Recent Advances in Natural Materials for Corneal Tissue Engineering. Bioengineering. 2021; 8(11):161. https://doi.org/10.3390/bioengineering8110161
Chicago/Turabian StyleJameson, Julie F., Marisa O. Pacheco, Henry H. Nguyen, Edward A. Phelps, and Whitney L. Stoppel. 2021. "Recent Advances in Natural Materials for Corneal Tissue Engineering" Bioengineering 8, no. 11: 161. https://doi.org/10.3390/bioengineering8110161
APA StyleJameson, J. F., Pacheco, M. O., Nguyen, H. H., Phelps, E. A., & Stoppel, W. L. (2021). Recent Advances in Natural Materials for Corneal Tissue Engineering. Bioengineering, 8(11), 161. https://doi.org/10.3390/bioengineering8110161