Biomechanical Investigation of the Stomach Following Different Bariatric Surgery Approaches
Abstract
1. Introduction
2. Materials and Methods
2.1. Computational Mechanical Model Definition
2.2. Computational Mechanical Model Exploitation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Arterburn, D.E.; Courcoulas, A.P. Bariatric surgery for obesity and metabolic conditions in adults. BMJ 2014, 349, g3961. [Google Scholar] [CrossRef] [PubMed]
- Brethauer, S.A.; Aminian, A.; Rosenthal, R.J.; Kirwan, J.P.; Kashyap, S.R.; Schauer, P.R. Bariatric surgery improves the metabolic profile of morbidly obese patients with Type 1 Diabetes. Diabetes Care 2014, 37, 51–53. [Google Scholar] [CrossRef] [PubMed]
- Romijn, J.A.; Corssmit, E.P.; Havekes, L.M.; Pijl, H. Gut-brain axis. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 518–521. [Google Scholar] [CrossRef] [PubMed]
- Clarke, G.D.; Davison, J.S. Mucosal receptors in the gastric antrum and small intestine of the rat with afferent fibers in the cervical vagus. J. Physiol. 1978, 284, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Page, A.J.; Martin, C.M.; Blackshaw, L.A. Vagal Mechanoreceptors and Chemoreceptors in Mouse Stomach and Esophagus. J. Neurophysiol. 2002, 87, 2095–2103. [Google Scholar] [CrossRef]
- Lyte, M.; Cryan, J.F. Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease; Springer: New York, NY, USA, 2014; ISBN 9781493908967. [Google Scholar]
- Berthoud, H.R. Vagal and hormonal gut-brain communication: From satiation to satisfaction. Neurogastroenterol. Motil. 2008, 20, 64–72. [Google Scholar] [CrossRef]
- Fox, E.A.; Phillips, R.J.; Martinson, F.A.; Baronowsky, E.A.; Powley, T.L. Vagal afferent innervation of smooth muscle in the stomach and duodenum of the mouse: Morphology and topography. J. Comp. Neurol. 2000, 428, 558–576. [Google Scholar] [CrossRef]
- Powley, T.L.; Phillips, R.J. Musings on the wanderer: What’s new in our understanding of vago-vagal reflexes? I. Morphology and topography of vagal afferents innervating the GI tract. Am. J. Physiol. Gastrointest. Liver Physiol. 2002, 283, G1217–G1225. [Google Scholar] [CrossRef]
- Holtmann, G.; Talley, N.J. The stomach-brain axis. Best Pract. Res. Clin. Gastroenterol. 2014, 28, 967–979. [Google Scholar] [CrossRef]
- Woods, S.C. Gastrointestinal Satiety Signals I. An overview of gastrointestinal signals that influence food intake. AJP Gastrointest. Liver Physiol. 2003, 286, 7G–13G. [Google Scholar] [CrossRef]
- Estimate of Bariatric Surgery Numbers, 2011–2017, American Society for Metabolic and Bariatric Surgery. Available online: https://asmbs.org/resources/estimate-of-bariatric-surgery-numbers (accessed on 23 October 2020).
- Singh, S.; de Moura, D.T.H.; Khan, A.; Bilal, M.; Ryan, M.B.; Thompson, C.C. Safety and efficacy of endoscopic sleeve gastroplasty worldwide for treatment of obesity: A systematic review and meta-analysis. Surg. Obes. Relat. Dis. 2020, 16, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Quero, G.; Fiorillo, C.; Dallemagne, B.; Mascagni, P.; Curcic, J.; Fox, M.; Perretta, S. The Causes of Gastroesophageal Reflux after Laparoscopic Sleeve Gastrectomy: Quantitative Assessment of the Structure and Function of the Esophagogastric Junction by Magnetic Resonance Imaging and High-Resolution Manometry. Obes. Surg. 2020, 2108–2117. [Google Scholar] [CrossRef] [PubMed]
- Maciejewski, M.L.; Arterburn, D.E.; Van Scoyoc, L.; Smith, V.A.; Yancy, W.S.; Weidenbacher, H.J.; Livingston, E.H.; Olsen, M.K. Bariatric surgery and long-term durability of weight loss. JAMA Surg. 2016, 151, 1046–1055. [Google Scholar] [CrossRef] [PubMed]
- Toolabi, K.; Golzarand, M.; Farid, R. Laparoscopic adjustable gastric banding: Efficacy and consequences over a 13-year period. Am. J. Surg. 2016, 212, 62–68. [Google Scholar] [CrossRef]
- Johari, Y.; Ooi, G.; Burton, P.; Laurie, C.; Dwivedi, S.; Qiu, Y.F.; Chen, R.; Loh, D.; Nottle, P.; Brown, W. Long-Term Matched Comparison of Adjustable Gastric Banding Versus Sleeve Gastrectomy: Weight Loss, Quality of Life, Hospital Resource Use and Patient-Reported Outcome Measures. Obes. Surg. 2019. [Google Scholar] [CrossRef]
- Zilberstein, B.; Santo, M.A.; Carvalho, M.H. Critical Analysis of Surgical Treatment Techniques of Morbid Obesity. Arq. Bras. Cir. Dig. 2019, 32, e1450. [Google Scholar] [CrossRef]
- Neagoe, R.; Muresan, M.; Timofte, D.; Darie, R.; Razvan, I.; Voidazan, S.; Muresan, S.; Sala, D. Long-term outcomes of laparoscopic sleeve gastrectomy—A single-center prospective observational study. Videosurgery Other Miniinvasive Tech. 2019, 14, 242–248. [Google Scholar] [CrossRef]
- Toolabi, K.; Sarkardeh, M.; Vasigh, M.; Golzarand, M.; Vezvaei, P.; Kooshki, J. Comparison of Laparoscopic Roux-en-Y Gastric Bypass and Laparoscopic Sleeve Gastrectomy on Weight Loss, Weight Regain, and Remission of Comorbidities: A 5 Years of Follow-up Study. Obes. Surg. 2019. [Google Scholar] [CrossRef]
- Abu Dayyeh, B.K.; Acosta, A.; Camilleri, M.; Mundi, M.S.; Rajan, E.; Topazian, M.D.; Gostout, C.J. Endoscopic Sleeve Gastroplasty Alters Gastric Physiology and Induces Loss of Body Weight in Obese Individuals. Clin. Gastroenterol. Hepatol. 2017, 15, 37–43.e1. [Google Scholar] [CrossRef]
- Alqahtani, A.; Al-Darwish, A.; Mahmoud, A.E.; Alqahtani, Y.A.; Elahmedi, M. Short-term outcomes of endoscopic sleeve gastroplasty in 1000 consecutive patients. Gastrointest. Endosc. 2019, 89, 1132–1138. [Google Scholar] [CrossRef]
- Hedjoudje, A.; Dayyeh, B.A.; Cheskin, L.J.; Adam, A.; Neto, M.G.; Badurdeen, D.; Morales, J.G.; Sartoretto, A.; Nava, G.L.; Vargas, E.; et al. Efficacy and Safety of Endoscopic Sleeve Gastroplasty: A Systematic Review and Meta-Analysis. Clin. Gastroenterol. Hepatol. 2019. [Google Scholar] [CrossRef]
- Li, P.; Ma, B.; Gong, S.; Zhang, X.; Li, W. Efficacy and safety of endoscopic sleeve gastroplasty for obesity patients: A meta-analysis. Surg. Endosc. 2019. [Google Scholar] [CrossRef] [PubMed]
- Linder, B.J.; Rivera, M.E.; Ziegelmann, M.J.; Elliott, D.S. Long-term Outcomes Following Artificial Urinary Sphincter Placement: An Analysis of 1082 Cases at Mayo Clinic. Urology 2015, 86, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Karachalios, T.; Tsatsaronis, C.; Efraimis, G.; Papadelis, P.; Lyritis, G.; Diakoumopoulos, G. The long-term clinical relevance of calcar atrophy caused by stress shielding in total hip arthroplasty: A 10-year, prospective, randomized study. J. Arthroplast. 2004, 19, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Phillips, R.J.; Powley, T.L. Tension and stretch receptors in gastrointestinal smooth muscle: Re-evaluating vagal mechanoreceptor electrophysiology. Brain Res. Rev. 2000, 34, 1–26. [Google Scholar] [CrossRef]
- Wang, G.J.; Tomasi, D.; Backus, W.; Wang, R.; Telang, F.; Geliebter, A.; Korner, J.; Bauman, A.; Fowler, J.S.; Thanos, P.K.; et al. Gastric distention activates satiety circuitry in the human brain. Neuroimage 2008, 39, 1824–1831. [Google Scholar] [CrossRef]
- Salmaso, C.; Toniolo, I.; Fontanella, C.G.; Da Roit, P.; Albanese, A.; Polese, L.; Stefanini, C.; Foletto, M.; Carniel, E.L. Computational Tools for the Reliability Assessment and the Engineering Design of Procedures and Devices in Bariatric Surgery. Ann. Biomed. Eng. 2020. [Google Scholar] [CrossRef]
- Natali, A.N.; Fontanella, C.G.; Carniel, E.L. Biomechanical analysis of the interaction phenomena between artificial urinary sphincter and urethral duct. Int. J. Numer. Methods Biomed. Eng. 2020, 36. [Google Scholar] [CrossRef]
- Henninger, H.B.; Reese, S.P.; Anderson, A.E.; Weiss, J.A. Validation of computational models in biomechanics. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2010, 224, 801–812. [Google Scholar] [CrossRef]
- Carniel, E.L.; Gramigna, V.; Fontanella, C.G.; Frigo, A.; Stefanini, C.; Rubini, A.; Natali, A.N. Characterization of the anisotropic mechanical behaviour of colonic tissues: Experimental activity and constitutive formulation. Exp. Physiol. 2014, 99, 759–771. [Google Scholar] [CrossRef]
- Carniel, E.L.; Albanese, A.; Fontanella, C.G.; Giovanni, P.; Prevedello, L.; Salmaso, C.; Todros, S.; Toniolo, I.; Foletto, M. Biomechanics of stomach tissues and structure in patients with obesity. J. Mech. Behav. Biomed. Mater. 2020, 103883. [Google Scholar] [CrossRef] [PubMed]
- Fontanella, C.G.; Salmaso, C.; Toniolo, I.; de Cesare, N.; Rubini, A.; De Benedictis, G.M.; Carniel, E.L. Computational Models for the Mechanical Investigation of Stomach Tissues and Structure. Ann. Biomed. Eng. 2019, 47, 1237–1249. [Google Scholar] [CrossRef] [PubMed]
- Soybel, D.I. Anatomy and physiology of the stomach. Surg. Clin. N. Am. 2005, 85, 875–894. [Google Scholar] [CrossRef] [PubMed]
- Susmallian, S.; Goitein, D.; Barnea, R.; Raziel, A. Correct evaluation of gastric wall thickness may support a change in staplers’ size when performing sleeve gastrectomy. Isr. Med. Assoc. J. 2017, 19, 351–354. [Google Scholar]
- Carniel, E.L.; Fontanella, C.G.; Polese, L.; Merigliano, S.; Natali, A.N. Computational tools for the analysis of mechanical functionality of gastrointestinal structures. Technol. Health Care 2013, 21, 271–283. [Google Scholar] [CrossRef]
- Natali, A.N.; Carniel, E.L.; Fontanella, C.G.; Frigo, A.; Todros, S.; Rubini, A.; De Benedictis, G.M.; Cerruto, M.A.; Artibani, W. Mechanics of the urethral duct: Tissue constitutive formulation and structural modeling for the investigation of lumen occlusion. Biomech. Model. Mechanobiol. 2017, 16, 439–447. [Google Scholar] [CrossRef]
- Zhao, J.; Liao, D.; Chen, P.; Kunwald, P.; Gregersen, H. Stomach stress and strain depend on location, direction and the layered structure. J. Biomech. 2008, 41, 3441–3447. [Google Scholar] [CrossRef]
- Carniel, E.L.; Frigo, A.; Fontanella, C.G.; De Benedictis, G.M.; Rubini, A.; Barp, L.; Pluchino, G.; Sabbadini, B.; Polese, L. A biomechanical approach to the analysis of methods and procedures of bariatric surgery. J. Biomech. 2017, 56, 32–41. [Google Scholar] [CrossRef]
- Patel, S.; Szomstein, S.; Rosenthal, R.J. Reasons and outcomes of reoperative bariatric surgery for failed and complicated procedures (excluding adjustable gastric banding). Obes. Surg. 2011, 21, 1209–1219. [Google Scholar] [CrossRef]
- Pinto-Bastos, A.; Conceição, E.M.; Machado, P.P.P. Reoperative Bariatric Surgery: A Systematic Review of the Reasons for Surgery, Medical and Weight Loss Outcomes, Relevant Behavioral Factors. Obes. Surg. 2017, 27, 2707–2715. [Google Scholar] [CrossRef]
- Altieri, M.S.; Yang, J.; Nie, L.; Blackstone, R.; Spaniolas, K.; Pryor, A. Rate of revisions or conversion after bariatric surgery over 10 years in the state of New York. Surg. Obes. Relat. Dis. 2018, 14, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Burton, P.R.; Brown, W.A. The mechanism of weight loss with laparoscopic adjustable gastric banding: Induction of satiety not restriction. Int. J. Obes. 2011, 35, S26–S30. [Google Scholar] [CrossRef] [PubMed]
- Weiss, R. Devices for the treatment of obesity: Will understanding the physiology of satiety unravel new targets for intervention? J. Diabetes Sci. Technol. 2008, 2, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Gilja, O.H.; Heimdal, A.; Hausken, T.; Gregersen, H.; Matre, K.; Berstad, A.; Ødegaard, S. Strain during gastric contractions can be measured using Doppler ultrasonography. Ultrasound Med. Biol. 2002, 28, 1457–1465. [Google Scholar] [CrossRef]
- Gilja, O.H. Ultrasound of the stomach—The EUROSON Lecture 2006. Ultraschall der Medizin 2007, 28, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Gregersen, H.; Gilja, O.H.; Hausken, T.; Heimdal, A.; Gao, C.; Matre, K.; Ødegaard, S.; Berstad, A. Mechanical properties in the human gastric antrum using B-mode ultrasonography and antral distension. Am. J. Physiol. Liver Physiol. 2002, 283, G368–G375. [Google Scholar] [CrossRef] [PubMed]
- Führer, D.; Zysset, S.; Stumvoll, M. Brain activity in hunger and satiety: An exploratory visually stimulated fMRI study. Obesity 2008, 16, 945–950. [Google Scholar] [CrossRef]
- Ly, H.G.; Dupont, P.; Van Laere, K.; Depoortere, I.; Tack, J.; Van Oudenhove, L. Differential brain responses to gradual intragastric nutrient infusion and gastric balloon distension: A role for gut peptides? Neuroimage 2017, 144, 101–112. [Google Scholar] [CrossRef]
- Ophir, J.; Cespedes, I.; Ponnekanti, H.; Yazdi, Y.; Li, X. Elastography: A method for imaging the elasticity in biological tissues. Ultrason. Imaging 1991, 13, 111–134. [Google Scholar] [CrossRef]
- Li, G.Y.; Cao, Y. Mechanics of ultrasound elastography. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toniolo, I.; Fontanella, C.G.; Foletto, M.; Carniel, E.L. Biomechanical Investigation of the Stomach Following Different Bariatric Surgery Approaches. Bioengineering 2020, 7, 159. https://doi.org/10.3390/bioengineering7040159
Toniolo I, Fontanella CG, Foletto M, Carniel EL. Biomechanical Investigation of the Stomach Following Different Bariatric Surgery Approaches. Bioengineering. 2020; 7(4):159. https://doi.org/10.3390/bioengineering7040159
Chicago/Turabian StyleToniolo, Ilaria, Chiara Giulia Fontanella, Mirto Foletto, and Emanuele Luigi Carniel. 2020. "Biomechanical Investigation of the Stomach Following Different Bariatric Surgery Approaches" Bioengineering 7, no. 4: 159. https://doi.org/10.3390/bioengineering7040159
APA StyleToniolo, I., Fontanella, C. G., Foletto, M., & Carniel, E. L. (2020). Biomechanical Investigation of the Stomach Following Different Bariatric Surgery Approaches. Bioengineering, 7(4), 159. https://doi.org/10.3390/bioengineering7040159