Utilization of an Industry Byproduct, Corymbia maculata Leaves, by Aspergillus terreus to Produce Lovastatin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism
2.2. Production of Lovastatin
2.3. Downstream Processing
2.4. HPLC
2.5. LC–MS
2.6. Quantification of Lovastatin in Samples
2.7. Optimization of Carbon and Nitrogen Sources
2.8. Fermentation of Eucalypt Leaves as a Carbon Source
2.9. Resistance to Lovastatin and Production of Lovastatin by Over-Producer
2.10. Effects of Solvents on Lovastatin Extraction
2.11. Statistical Analysis
3. Results
3.1. HPLC Analysis
3.2. Optimization of Carbon and Nitrogen Sources
3.3. Production of Lovastatin with Corymbia maculata Leaves as a Carbon Source
3.4. Production of Lovastatin by a Lovastatin-Resistant (Lvs-r) Strain
3.5. LC–MS Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nagar, M.R.; Titov, A.; Bhati, P. Vermicomposting of green eucalyptus leaf litter by Eisenia foetida and Eudrilus eugenia. Int. J. Environ. Agric. Biotechnol. 2017, 2, 2811–2818. [Google Scholar] [CrossRef]
- Larmour, J.S.; Whitfeld, S.J.; Harwood, C.E.; Owen, J.V. Variation in frost tolerance and seedling morphology of the spotted gums Corymbia maculata, C. variegata, C. henryi and C. citriodora. Aust. J. Bot. 2000, 48, 445–453. [Google Scholar] [CrossRef]
- Tobert, J.A. Lovastatin and beyond: The history of the HMG-CoA reductase inhibitors. Nat. Rev. Drug Discov. 2003, 2, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Endo, A. The origin of the statins. Int. Congr. Ser. 2004, 1262, 3–8. [Google Scholar] [CrossRef]
- Istvan, E. Statin inhibition of HMG-CoA reductase: A 3-dimensional view. Atheroscler. Suppl. 2003, 4, 3–8. [Google Scholar] [CrossRef]
- Dhakal, S.; Subhan, M.; Fraser, J.M.; Gardiner, K.; Macreadie, I. Simvastatin Efficiently Reduces Levels of Alzheimer’s Amyloid Beta in Yeast. Int. J. Mol. Sci. 2019, 20, 3531. [Google Scholar] [CrossRef] [Green Version]
- Subhan, M.; Faryal, R.; Macreadie, I. Exploitation of Aspergillus terreus for the Production of Natural Statins. J. Fungi. 2016, 2, 13. [Google Scholar] [CrossRef]
- Subhan, M.; Faryal, R.; Macreadie, I. Production of statins by fungal fermentation. Microbiol. Aust. 2017, 38, 70–72. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.J.; Wang, Q.J.; Jia, X.Q.; Sung, C.K. Enhanced lovastatin production by solid state fermentation of Monascus ruber. Biotechnol. Bioprocess Eng. 2005, 10, 78–84. [Google Scholar] [CrossRef]
- Samiee, S.M.; Moazami, N.; Haghighi, S.; Aziz, M.F.; Mirdamadi, S.; Bakhtiari, M.R. Screening of lovastatin production by filamentous fungi. Iran. Biomed. J. 2003, 7, 29–33. [Google Scholar]
- Valera, H.R.; Gomes, J.; Lakshmi, S.; Gururaja, R.; Suryanarayan, S.; Kumar, D. Lovastatin production by solid state fermentation using Aspergillus flavipes. Enzym. Microb. Technol. 2005, 37, 521–526. [Google Scholar] [CrossRef]
- Barrios-González, J.; Baños, J.G.; Covarrubias, A.A.; Garay-Arroyo, A. Lovastatin biosynthetic genes of Aspergillus terreus are expressed differentially in solid-state and in liquid submerged fermentation. Appl. Microbiol. Biotechnol. 2008, 79, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Balajee, S.A. Aspergillus terreus complex. Med. Mycol. 2009, 47, S42–S46. [Google Scholar] [CrossRef] [PubMed]
- Lingappa, K.; Babu, C.V.; Siddalingeshwar, K.G.; Pramod, T. Isolation, screening and rapid confirmation of lovastatin producing strains of Aspergillus terreus. Ind. J. Microbiol. 2004, 44, 133–135. [Google Scholar]
- Myburg, A.A.; Grattapaglia, D.; Tuskan, G.A.; Hellsten, U.; Hayes, R.D.; Grimwood, J.; Jenkins, J.; Lindquist, E.; Tice, H.; Bauer, D.; et al. The genome of Eucalyptus grandis. Nature 2014, 510, 356–362. [Google Scholar] [CrossRef] [Green Version]
- Lima, M.A.; Lavorente, G.B.; da Silva, H.K.; Bragatto, J.; Rezende, C.A.; Bernardinelli, O.D.; de Azevedo, E.R.; Gomez, L.D.; McQueen-Mason, S.J.; Labate, C.A.; et al. Effects of pretreatment on morphology, chemical composition and enzymatic digestibility of eucalyptus bark: A potentially valuable source of fermentable sugars for biofuel production—Part 1. Biotechnol. Biofuels 2013, 6, 75. [Google Scholar] [CrossRef] [Green Version]
- Lintern, M.; Anand, R.; Ryan, C.; Paterson, D. Natural gold particles in Eucalyptus leaves and their relevance to exploration for buried gold deposits. Nat. Commun. 2013, 4, 2614. [Google Scholar] [CrossRef]
- Nováková, L.; Vlčková, H.; Šatínský, D.; Sadílek, P.; Solichová, D.; Bláha, M.; Bláha, V.; Solich, P. Ultra high performance liquid chromatography tandem mass spectrometric detection in clinical analysis of simvastatin and atorvastatin. J. Chromatogr. B 2009, 877, 2093–2103. [Google Scholar] [CrossRef]
- Apostolou, C.; Kousoulos, C.; Dotsikas, Y.; Soumelas, G.S.; Kolocouri, F.; Ziaka, A.; Loukas, Y.L. An improved and fully validated LC–MS/MS method for the simultaneous quantification of simvastatin and simvastatin acid in human plasma. J. Pharm. Biomed. Anal. 2008, 46, 771–779. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; Zhao, Z. Fragmentation study of simvastatin and lovastatin using electrospray ionization tandem mass spectrometry. J. Mass Spect. 2001, 36, 58–70. [Google Scholar] [CrossRef]
- López, J.C.; Pérez, J.S.; Sevilla, J.F.; Fernández, F.A.; Grima, E.M.; Chisti, Y. Production of lovastatin by Aspergillus terreus: Effects of the C:N ratio and the principal nutrients on growth and metabolite production. Enzym. Microb. Technol. 2003, 33, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Mulder, K.C.; Mulinari, F.; Franco, O.L.; Soares, M.S.; Magalhães, B.S.; Parachin, N.S. Lovastatin production: From molecular basis to industrial process optimization. Biotechnol. Adv. 2015, 33, 648–665. [Google Scholar] [CrossRef] [PubMed]
- Babayi, H.; Kolo, I.; Okogun, J.I.; Ijah, U.J.J. The antimicrobial activities of methanolic extracts of Eucalyptus camaldulensis and Terminalia catappa against some pathogenic microorganisms. Biokem 2004, 16, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Thomas, L.; Larroche, C.; Pandey, A. Current developments in solid-state fermentation. Biochem. Eng. J. 2013, 81, 146–161. [Google Scholar] [CrossRef]
- Singhania, R.R.; Patel, A.K.; Soccol, C.R.; Pandey, A. Recent advances in solid-state fermentation. Biochem. Eng. J. 2009, 44, 13–18. [Google Scholar] [CrossRef]
- Baños, J.G.; Tomasini, A.; Szakács, G.; Barrios-González, J. High lovastatin production by Aspergillus terreus in solid-state fermentation on polyurethane foam: An artificial inert support. J. Biosci. Bioeng. 2009, 108, 105–110. [Google Scholar] [CrossRef]
- Kamath, P.V.; Dwarakanath, B.S.; Chaudhary, A.; Janakiraman, S. Optimization of culture conditions for maximal lovastatin production by Aspergillus terreus (KM017963) under solid state fermentation. HAYATI J. Biosci. 2015, 22, 174–180. [Google Scholar] [CrossRef] [Green Version]
- Hölker, U.; Lenz, J. Solid-state fermentation—Are there any biotechnological advantages? Curr. Opin. Microbiol. 2005, 8, 301–306. [Google Scholar]
- Suryanarayan, S. Current industrial practice in solid state fermentations for secondary metabolite production: The Biocon India experience. Biochem. Eng. J. 2003, 13, 189–195. [Google Scholar] [CrossRef]
- Nigam, V.K. Screening of different fungi for production of lovastatin. Asian J. Biomed. Pharm. Sci. 2015, 5, 24. [Google Scholar] [CrossRef]
- Huang, Z.; Xu, Y.; Li, Y.; Wang, Y. Conversion investigation for lovastatin and its derivatives by HPLC. J. Chromatogr. Sci. 2010, 48, 631–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pansuriya, R.C.; Singhal, R.S. Supercritical Fluid Extraction of Lovastatin from the Wheat Bran Obtained after Solid-State Fermentation. Food Technol. Biotechnol. 2009, 47, 159–165. [Google Scholar]
- Nidhiya, K.; Sathya, E.; Nitya, M. Extraction and purification of lovastatin from non-aflatoxigenic strains of Aspergillus flavus. Int. J. Bio-Pharma Res. 2012, 4, 916–921. [Google Scholar]
- Subhan, M.; Faryal, R.; Macreadie, I. Statin resistance in Candida glabrata. Biotechnol. Lett. 2018, 40, 1389–1394. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subhan, M.; Faryal, R.; Macreadie, I. Utilization of an Industry Byproduct, Corymbia maculata Leaves, by Aspergillus terreus to Produce Lovastatin. Bioengineering 2020, 7, 101. https://doi.org/10.3390/bioengineering7030101
Subhan M, Faryal R, Macreadie I. Utilization of an Industry Byproduct, Corymbia maculata Leaves, by Aspergillus terreus to Produce Lovastatin. Bioengineering. 2020; 7(3):101. https://doi.org/10.3390/bioengineering7030101
Chicago/Turabian StyleSubhan, Mishal, Rani Faryal, and Ian Macreadie. 2020. "Utilization of an Industry Byproduct, Corymbia maculata Leaves, by Aspergillus terreus to Produce Lovastatin" Bioengineering 7, no. 3: 101. https://doi.org/10.3390/bioengineering7030101
APA StyleSubhan, M., Faryal, R., & Macreadie, I. (2020). Utilization of an Industry Byproduct, Corymbia maculata Leaves, by Aspergillus terreus to Produce Lovastatin. Bioengineering, 7(3), 101. https://doi.org/10.3390/bioengineering7030101