Simulation of the Effect of Material Properties on Soft Contact Lens On-Eye Power
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Uniaxial Tensile Testing
2.3. Finite Element Modelling
2.4. Contact Lens Design
2.5. Light Ray Tracing
3. Statistical Analysis
3.1. Results
3.1.1. Material Properties
3.1.2. Spherical Lens Results
3.1.3. Cylindrical Lens Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Nicolson, P.C.; Vogt, J. Soft contact lens polymers: An evolution. Biomaterials 2001, 22, 3273–3283. [Google Scholar] [CrossRef]
- Musgrave, C.S.A.; Fang, F. Contact Lens Materials: A Materials Science Perspective. Materials 2019, 12, 261. [Google Scholar] [CrossRef] [PubMed]
- Strachan, J.P.F. Some principles of the optics of hydrophlllc lenses and geometrical optics applied to flexible leinses. Aust. J. Optom. 1973, 56, 25–33. [Google Scholar] [CrossRef]
- Dietze, H.H.; Cox, M.J. On- and off-eye spherical aberration of soft contact lenses and consequent changes of effective lens power. Optom. Vis. Sci. 2003, 80, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Tranoudis, I.; Efron, N. Tensile properties of soft contact lens materials. Contact Lens Anterior Eye 2004, 27, 177–191. [Google Scholar] [CrossRef]
- Kollbaum, P.S.; Bradley, A.; Thibos, L.N. Comparing the Optical Properties of Soft Contact Lenses on and off the Eye. Optom. Vis. Sci. 2013, 90, 924–936. [Google Scholar] [CrossRef]
- Siddle, J.A.; Robson, G.; Zantos, S.; Holden, B.A. The Clinical Significance of the Lens Flexure Effect. Clin. Exp. Optom. 1976, 59, 117–129. [Google Scholar]
- Kurna, S.A.; Sengör, T.; Un, M.; Aki, S. Success rates in the correction of astigmatism with toric and spherical soft contact lens fittings. Clin. Ophthalmol. 2010, 4, 959–966. [Google Scholar] [CrossRef] [Green Version]
- Müntz, A.; Subbaraman, L.N.; Sorbara, L.; Jones, L. Tear exchange and contact lenses: A review. J. Optom. 2015, 8, 2–11. [Google Scholar] [CrossRef]
- Plainis, S.; Charman, W.N. On-Eye Power Characteristics of Soft Contact Lenses. Optom. Vis. Sci. 1998, 75, 44–54. [Google Scholar] [CrossRef]
- Sarver, M.D.; Harris, M.G.; Polse, K.A. Corneal curvature and supplemental power effect of the bausch and lomb soflens® contact lens. Optom. Vis. Sci. 1975, 1952, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Janoff, L.; Dabezies, O.H., Jr. Power change induced by soft contact lens flexure. Clao J. 1983, 9, 32–38. [Google Scholar] [PubMed]
- Bauchau, O.A.; Craig, J.I. (Eds.) Euler-Bernoulli beam theory. In Structural Analysis; Springer: Dordrecht, The Netherlands, 2009; pp. 173–221. [Google Scholar]
- Young, G. Soft Lens Design and Fitting. In Contact Lens Practice, 3rd ed.; Efron, N., Ed.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Gilani, F.; Cortese, M.; Ambrósio, R.R.; Lopes, B.; Ramos, I.; Harvey, E.M.; Belin, M.W. Comprehensive anterior segment normal values generated by rotating Scheimpflug tomography. J. Cataract. Refract. Surg. 2013, 39, 1707–1712. [Google Scholar] [CrossRef] [PubMed]
- Abass, A.; Lopes, B.T.; Eliasy, A.; Wu, R.; Jones, S.; Clamp, J.; Ambrósio, R.; Elsheikh, A. Three-dimensional non-parametric method for limbus detection. PLoS ONE 2018, 13, e0207710. [Google Scholar] [CrossRef] [PubMed]
- Davis, J. Tensile Testing; ASM International: Cleveland, OH, USA, 2004. [Google Scholar]
- Sterner, O.; Aeschlimann, R.; Zürcher, S.; Lorenz, K.O.; Kakkassery, J.; Spencer, N.D.; Tosatti, S.G. Friction Measurements on Contact Lenses in a Physiologically Relevant Environment: Effect of Testing Conditions on FrictionFriction Measurements on Contact Lenses. Investig. Ophthalmol. Vis. Sci. 2016, 57, 5383–5392. [Google Scholar] [CrossRef]
- Kalogeropoulos, G.; Chang, S.; Bolton, T.; Jalbert, I. The effects of short-term lens wear and eye rubbing on the corneal epithelium. Eye Contact Lens 2009, 35, 255–259. [Google Scholar] [CrossRef]
- Yap, T.E.; Archer, T.J.; Gobbe, M.; Reinstein, D.Z. Comparison of Central Corneal Thickness Between Fourier-Domain OCT, Very High-Frequency Digital Ultrasound, and Scheimpflug Imaging Systems. J. Refract. Surg. 2016, 32, 110–116. [Google Scholar] [CrossRef]
- Zhao, J.; Wollmer, P. Surface activity of tear fluid in normal subjects. Acta Ophthalmol. Scand. 1998, 76, 438–441. [Google Scholar] [CrossRef]
- Shaw, A.J.; Collins, M.J.; Davis, B.A.; Carney, L.G. Eyelid pressure and contact with the ocular surface. Investig. Opthalmol. Vis. Sci. 2010, 51, 1911–1917. [Google Scholar] [CrossRef]
- Abass, A.; Stuart, S.; Lopes, B.T.; Zhou, D.; Geraghty, B.; Wu, R.; Jones, S.; Flux, I.; Stortelder, R.; Snepvangers, A.; et al. Simulated optical performance of soft contact lenses on the eye. PLoS ONE 2019, 14, e0216484. [Google Scholar] [CrossRef]
- Inakage, M. Caustics and specular reflection models for spherical objects and lenses. Vis. Comput. 1986, 2, 379–383. [Google Scholar] [CrossRef]
- Gray, A. Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed.; Chapman and Hall/CRC: New York, NY, USA, 1997. [Google Scholar]
- Widom, A.; Drosdoff, D. Snell’s law from an elementary particle viewpoint. Am. J. Phys. 2005, 73, 973–975. [Google Scholar]
- Wang, L.; Mahmoud, A.M.; Anderson, B.L.; Koch, D.D.; Roberts, C.J. Total corneal power estimation: Ray tracing method versus gaussian optics formula. Investig. Opthalmol. Vis. Sci. 2011, 52, 1716–1722. [Google Scholar] [CrossRef] [PubMed]
- Cunha, C.C.; Berezovsky, A.; Furtado, J.M.; Ferraz, N.N.; Fernandes, A.G.; Muñoz, S.; Watanabe, S.S.; Sacai, P.Y.; Cypel, M.; Mitsuhiro, M.H.; et al. Presbyopia and Ocular Conditions Causing Near Vision Impairment in Older Adults From the Brazilian Amazon Region. Am. J. Ophthalmol. 2018, 196, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Schiefer, U.; Kraus, C.; Baumbach, P.; Ungewiß, J.; Michels, R. Refractive errors. Dtsch. Arztebl. Int. 2016, 113, 693–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opdahl, A.; Kim, S.H.; Koffas, T.S.; Marmo, C.; Somorjai, G.A. Surface mechanical properties of pHEMA contact lenses: Viscoelastic and adhesive property changes on exposure to controlled humidity. J. Biomed. Mater. Res. 2003, 67A, 350–356. [Google Scholar] [CrossRef]
- Hall, L.A.; Young, G.; Wolffsohn, J.S.; Riley, C. The Influence of Corneoscleral Topography on Soft Contact Lens Fit. Investig. Opthalmol. Vis. Sci. 2011, 52, 6801–6806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Lens Diameter, (mm) | 13.5, 14.0, 14.5 |
Optic Zone Diameter, (mm) | 8.0 |
Base Curve, (mm) | 8.5 |
Spherical Lens Power (D) | −20.0 to 10.0 (increments of 1.0) |
Cylindrical Lens Power (D) @ 90° | −20.0 to 10.0 (increments of 1.0) |
Lens Shape Factor, | 0.75 |
Central Thickness, (mm) | 0.25 |
Edge Thickness, (mm) | 0.4 |
Material Short Name | H77p0-Clear | SiH74p5-Blue | SiH74p5-Clear | H64p0-Clear |
---|---|---|---|---|
Base material | Hydrogel | Silicone Hydrogel | Silicone Hydrogel | Hydrogel |
Material full commercial name | Contaflex Clear UV 77–Filcon II 3 | Definitive (V3) 74% Blue UV (SiH)–Filcon V3-Efrofilcon A | Definitive (V3) 74% Clear (SiH)–Filcon V3-Efrofilcon A | Contaflex Clear UV 67–Filcon II 2–Zylofilcon A |
Water Content | 77% | 74.5% | 74.5% | 64% |
Refractive Index (wet) | 1.3739 | 1.3753 | 1.3749 | 1.3920 |
Modulus of Elasticity (MPa) | 0.17 | 0.35 | 0.35 | 0.37 |
H77p0-Clear | SiH74p5-Blue | SiH74p5-Clear | H64p0-Clear | |
---|---|---|---|---|
H77p0-Clear | - | p < 0.001 | p < 0.001 | p < 0.001 |
SiH74p5-Blue | p < 0.001 | - | p = 0.449 | p < 0.001 |
SiH74p5-Clear | p < 0.001 | p = 0.449 | - | p < 0.001 |
H64p0-Clear | p < 0.001 | p < 0.001 | p < 0.001 | - |
Key: | S | Spherical | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | Cylindrical | |||||||||
Lens Power < 5 D | Lens Power ≥ 5 D | |||||||||
D = 13.5 mm | H77p0-Clear | SiH74p5-Blue | SiH74p5-Clear | H64p0-Clear | D = 13.5 mm | H77p0-Clear | SiH74p5-Blue | SiH74p5-Clear | H64p0-Clear | |
H77p0-Clear | - | C p < 0.001 | C p < 0.001 | C p < 0.001 | H77p0-Clear | - | C p = 0.997 | C p = 0.997 | C p = 0.942 | |
SiH74p5-Blue | S p = 0.006 | - | C p = 0.764 | C p = 0.246 | SiH74p5-Blue | S p = 0.992 | - | C p = 0.994 | C p = 0.943 | |
SiH74p5-Clear | S p = 0.006 | S p = 0.998 | - | C p = 0.375 | SiH74p5-Clear | S p = 0.965 | S p = 0.955 | - | C p = 0.937 | |
H64p0-Clear | S p < 0.001 | S p = 0.464 | S p = 0.474 | - | H64p0-Clear | S p = 0.877 | S p = 0.879 | S p = 0.833 | - | |
D = 14.0 mm | H77p0-Clear | SiH74p5-Blue | SiH74p5-Clear | H64p0-Clear | D = 14.0 mm | H77p0-Clear | SiH74p5-Blue | SiH74p5-Clear | H64p0-Clear | |
H77p0-Clear | - | C p = 0.043 | C p = 0.075 | C p < 0.001 | H77p0-Clear | - | C p = 0.701 | C p = 0.487 | C p = 0.278 | |
SiH74p5-Blue | S p = 0.169 | - | C p = 0.840 | C p < 0.001 | SiH74p5-Blue | S p = 0.721 | - | C p = 0.761 | C p = 0.502 | |
SiH74p5-Clear | S p = 0.180 | S p = 0.956 | - | C p <0.001 | SiH74p5-Clear | S p = 0.700 | S p = 0.977 | - | C p = 0.721 | |
H64p0-Clear | S p < 0.001 | S p < 0.001 | S p < 0.001 | - | H64p0-Clear | S p = 0.339 | S p = 0.566 | S p = 0.588 | - | |
D = 14.5 mm | H77p0-Clear | SiH74p5-Blue | SiH74p5-Clear | H64p0-Clear | D = 14.5 mm | H77p0-Clear | SiH74p5-Blue | SiH74p5-Clear | H64p0-Clear | |
H77p0-Clear | - | C p = 0.750 | C p = 0.320 | C p < 0.001 | H77p0-Clear | - | C p = 0.396 | C p = 0.319 | C p = 0.190 | |
SiH74p5-Blue | S p = 0.498 | - | C p = 0.450 | C p < 0.001 | SiH74p5-Blue | S p = 0.334 | - | C p = 0.886 | C p = 0.577 | |
SiH74p5-Clear | S p = 0.880 | S p = 0.429 | - | C p < 0.001 | SiH74p5-Clear | S p = 0.351 | S p = 0.976 | - | C p = 0.668 | |
H64p0-Clear | S p = 0.002 | S p = 0.075 | S p = 0.002 | - | H64p0-Clear | S p = 0.039 | S p = 0.228 | S p = 0.218 | - |
Lens Power < 5 D | Lens Power ≥ 5 D | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
D = 13.5 mm | H77p0-Clear | SiH74p5-Blue | SiH74p5-Clear | H64p0-Clear | D = 13.5 mm | H77p0-Clear | SiH74p5-Blue | SiH74p5-Clear | H64p0-Clear | |
Spherical | −0.9634 | −0.9698 | −0.9816 | −0.9812 | Spherical | −0.9985 | −0.998 | −0.9995 | −0.9992 | |
Cylindrical | −0.9115 | −0.9004 | −0.9594 | −0.9973 | Cylindrical | −0.9972 | −0.9986 | −0.9987 | −0.9985 | |
D = 14.0 mm | H77p0-Clear | SiH74p5-Blue | SiH74p5-Clear | H64p0-Clear | D = 14.0 mm | H77p0-Clear | SiH74p5-Blue | SiH74p5-Clear | H64p0-Clear | |
Spherical | −0.9674 | −0.9973 | −0.9987 | −0.4511 | Spherical | −0.9858 | −0.9773 | −0.975 | −0.9982 | |
Cylindrical | −0.8687 | −0.9084 | −0.9099 | −0.1359 | Cylindrical | −0.9526 | −0.9696 | −0.9657 | −0.9973 | |
D = 14.5 mm | H77p0-Clear | SiH74p5-Blue | SiH74p5-Clear | H64p0-Clear | D = 14.5 mm | H77p0-Clear | SiH74p5-Blue | SiH74p5-Clear | H64p0-Clear | |
Spherical | −0.9461 | −0.9519 | −0.9559 | −0.9142 | Spherical | −0.8342 | −0.8286 | −0.8227 | −0.9993 | |
Cylindrical | −0.7581 | −0.8186 | −0.7896 | −0.7896 | Cylindrical | −0.828 | −0.9318 | −0.9399 | −0.9978 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moore, J.; Lopes, B.T.; Eliasy, A.; Geraghty, B.; Wu, R.; White, L.; Elsheikh, A.; Abass, A. Simulation of the Effect of Material Properties on Soft Contact Lens On-Eye Power. Bioengineering 2019, 6, 94. https://doi.org/10.3390/bioengineering6040094
Moore J, Lopes BT, Eliasy A, Geraghty B, Wu R, White L, Elsheikh A, Abass A. Simulation of the Effect of Material Properties on Soft Contact Lens On-Eye Power. Bioengineering. 2019; 6(4):94. https://doi.org/10.3390/bioengineering6040094
Chicago/Turabian StyleMoore, Joshua, Bernardo T. Lopes, Ashkan Eliasy, Brendan Geraghty, Richard Wu, Lynn White, Ahmed Elsheikh, and Ahmed Abass. 2019. "Simulation of the Effect of Material Properties on Soft Contact Lens On-Eye Power" Bioengineering 6, no. 4: 94. https://doi.org/10.3390/bioengineering6040094
APA StyleMoore, J., Lopes, B. T., Eliasy, A., Geraghty, B., Wu, R., White, L., Elsheikh, A., & Abass, A. (2019). Simulation of the Effect of Material Properties on Soft Contact Lens On-Eye Power. Bioengineering, 6(4), 94. https://doi.org/10.3390/bioengineering6040094