Mechanical Response Changes in Porcine Tricuspid Valve Anterior Leaflet Under Osmotic-Induced Swelling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Biaxial Testing Protocol
2.3. Tissue Swelling Application
2.4. Data Processing
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Witzenburg, C.M.; Dhume, R.Y.; Shah, S.B.; Korenczuk, C.E.; Wagner, H.P.; Alford, P.W.; Barocas, V.H. Failure of the porcine ascending aorta: Multidirectional experiments and a unifying microstructural model. J. Biomech. Eng. 2017, 139, 031005. [Google Scholar] [CrossRef] [PubMed]
- Witzenburg, C.; Raghupathy, R.; Kren, S.M.; Taylor, D.A.; Barocas, V.H. Mechanical changes in the rat right ventricle with decellularization. J. Biomech. 2012, 45, 842–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uquillas, J.A.; Kishore, V.; Akkus, O. Effects of phosphate-buffered saline concentration and incubation time on the mechanical and structural properties of electrochemically aligned collagen threads. Biomed. Mater. 2011, 6, 035008. [Google Scholar] [CrossRef] [PubMed]
- Alkhouli, N.; Bell, J.; Tham, J.C.; Winlove, C.P.; Liversedge, N.; Welbourn, R.; Green, E.; Knight, B.; Mansfield, J.; Kos, K.; et al. The mechanical properties of human adipose tissues and their relationships to the structure and composition of the extracellular matrix. Am. J. Physiol. Metab. 2013, 305, E1427–E1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanir, Y.; Hayam, G.; Abovsky, M.; Zlotnick, A.Y.; Uretzky, G.; Nevo, E.; Ben-Haim, S.A. Effect of myocardial swelling on residual strain in the left ventricle of the rat. Am. J. Physiol.-Heart Circ. Physiol. 1996, 270, H1736–H1743. [Google Scholar] [CrossRef] [PubMed]
- Azeloglu, E.U.; Albro, M.B.; Thimmappa, V.A.; Ateshian, G.A.; Costa, K.D. Heterogeneous transmural proteoglycan distribution provides a mechanism for regulating residual stresses in the aorta. Am. J. Physiol. Circ. Physiol. 2007, 294, H1197–H1205. [Google Scholar] [CrossRef] [PubMed]
- Lanir, Y. Osmotic swelling and residual stress in cardiovascular tissues. J. Biomech. 2012, 45, 780–789. [Google Scholar] [CrossRef] [PubMed]
- Powell, T.A.; Amini, R.; Oltean, A.; Barnett, V.A.; Dorfman, K.D.; Segal, Y.; Barocas, V.H. Elasticity of the Porcine Lens Capsule as Measured by Osmotic Swelling. J. Biomech. Eng. 2010, 132, 091008. [Google Scholar] [CrossRef]
- Lai, V.K.; Nedrelow, D.S.; Lake, S.P.; Kim, B.; Weiss, E.M.; Tranquillo, R.T.; Barocas, V.H. Swelling of collagen-hyaluronic acid co-gels: An in vitro residual stress model. Ann. Biomed. Eng. 2016, 44, 2984–2993. [Google Scholar] [CrossRef]
- Guo, X.; Lanir, Y.; Kassab, G.S. Effect of osmolarity on the zero-stress state and mechanical properties of aorta. Am. J. Physiol. Circ. Physiol. 2007, 293, H2328–H2334. [Google Scholar] [CrossRef] [Green Version]
- Lanir, Y. Mechanisms of residual stress in soft tissues. J. Biomech. Eng. 2009, 131, 044506. [Google Scholar] [CrossRef] [PubMed]
- Pierce, E.L.; Sadri, V.; Ncho, B.; Kohli, K.; Shah, S.; Yoganathan, A.P. Novel in vitro test systems and insights for transcatheter mitral valve design, part I: Paravalvular leakage. Ann. Biomed. Eng. 2019, 47, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Rambod, E.; Beizai, M.; Shusser, M.; Gharib, M. A physical model describing the mechanism for formation of gaseous microbubbles in patients with mechanical heart valves. ASAIO J. 2008, 45, 133. [Google Scholar] [CrossRef]
- Leopaldi, A.M.; Vismara, R.; Lemma, M.; Valerio, L.; Cervo, M.; Mangini, A.; Contino, M.; Redaelli, A.; Antona, C.; Fiore, G.B. In vitro hemodynamics and valve imaging in passive beating hearts. J. Biomech. 2012, 45, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Amini Khoiy, K.; Biswas, D.; Decker, T.N.; Asgarian, K.T.; Loth, F.; Amini, R. Surface strains of porcine tricuspid valve septal leaflets measured in ex vivo beating hearts. J. Biomech. Eng. 2016, 138, 111006. [Google Scholar] [CrossRef]
- Amini Khoiy, K.; Asgarian, K.T.; Loth, F.; Amini, R. Dilation of tricuspid valve annulus immediately after rupture of chordae tendineae in ex-vivo porcine hearts. PLoS ONE 2018, 13, e0206744. [Google Scholar] [CrossRef] [PubMed]
- Vismara, R.; Gelpi, G.; Prabhu, S.; Romitelli, P.; Troxler, L.G.; Mangini, A.; Romagnoni, C.; Contino, M.; Van Hoven, D.T.; Lucherini, F.; et al. Transcatheter edge-to-edge treatment of functional tricuspid regurgitation in an ex vivo pulsatile heart model. J. Am. Coll. Cardiol. 2016, 68, 1024–1033. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Pham, T.; Martin, C.; McKay, R.; Primiano, C.; Hashim, S.; Kodali, S.; Sun, W. Finite element analysis of tricuspid valve deformation from multi-slice computed tomography images. Ann. Biomed. Eng. 2018, 46, 1112–1127. [Google Scholar] [CrossRef]
- Pham, T.; Sulejmani, F.; Shin, E.; Wang, D.; Sun, W. Quantification and comparison of the mechanical properties of four human cardiac valves. Acta Biomater. 2017, 54, 345–355. [Google Scholar] [CrossRef]
- Pokutta-Paskaleva, A.; Sulejmani, F.; DelRocini, M.; Sun, W. Comparative mechanical, morphological, and microstructural characterization of porcine mitral and tricuspid leaflets and chordae tendineae. Acta Biomater. 2019, 85, 241–252. [Google Scholar] [CrossRef]
- Jett, S.; Laurence, D.; Kunkel, R.; Babu, A.R.; Kramer, K.; Baumwart, R.; Towner, R.; Wu, Y.; Lee, C.-H. Biaxial mechanical data of porcine atrioventricular valve leaflets. Data Brief 2018, 21, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Laurence, D.; Ross, C.; Jett, S.; Johns, C.; Echols, A.; Baumwart, R.; Towner, R.; Liao, J.; Bajona, P.; Wu, Y.; et al. An investigation of regional variations in the biaxial mechanical properties and stress relaxation behaviors of porcine atrioventricular heart valve leaflets. J. Biomech. 2019, 83, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Rausch, M.K.; Malinowski, M.; Wilton, P.; Khaghani, A.; Timek, T.A. Engineering analysis of tricuspid annular dynamics in the beating ovine heart. Ann. Biomed. Eng. 2018, 46, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Malinowski, M.; Jazwiec, T.; Goehler, M.; Quay, N.; Bush, J.; Jovinge, S.; Rausch, M.K.; Timek, T.A. Sonomicrometry-derived 3-dimensional geometry of the human tricuspid annulus. J. Thorac. Cardiovasc. Surg. 2019, 157, 1452–1461.e1. [Google Scholar] [CrossRef] [PubMed]
- Meador, W.D.; Mathur, M.; Rausch, M.K. Tricuspid valve biomechanics: A brief review. In Advances in Heart Valve Biomechanics; Springer: Cham, Switzerland, 2018; pp. 105–114. [Google Scholar]
- Pant, A.D.; Thomas, V.S.; Black, A.L.; Verba, T.; Lesicko, J.G.; Amini, R. Pressure-induced microstructural changes in porcine tricuspid valve leaflets. Acta Biomater. 2018, 67, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Misfeld, M.; Sievers, H.-H. Heart valve macro- and microstructure. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 1421–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Combs, M.D.; Yutzey, K.E. Heart valve development. Circ. Res. 2009, 105, 408–421. [Google Scholar] [CrossRef] [PubMed]
- Hilton, R.B.; Yutzey, K.E. Heart valve structures and function in development and disease. Annu. Rev. Physiol. 2011, 73, 29–46. [Google Scholar]
- Schoen, F.J. Evolving concepts of cardiac valve dynamics. Circulation 2008, 118, 1864–1880. [Google Scholar] [CrossRef]
- Amini Khoiy, K.; Amini, R. On the biaxial mechanical response of porcine tricuspid valve leaflets. J. Biomech. Eng. 2016, 138, 104504. [Google Scholar] [CrossRef] [PubMed]
- Rezakhaniha, R.; Fonck, E.; Genoud, C.; Stergiopulos, N. Role of elastin anisotropy in structural strain energy functions of arterial tissue. Biomech. Model. Mechanobiol. 2011, 10, 599–611. [Google Scholar] [CrossRef] [PubMed]
- Amini Khoiy, K.; Abdulhai, S.; Glenn, I.C.; Ponsky, T.A.; Amini, R. Anisotropic and nonlinear biaxial mechanical response of porcine small bowel mesentery. J. Mech. Behav. Biomed. Mater. 2018, 78, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Friedman, B.J.; Lozner, E.C.; Curfman, G.D.; Herzberg, D.; Rolett, E.L. Characterization of the human right ventricular pressure-volume relation: Effect of dobutamine and right coronary artery stenosis. J. Am. Coll. Cardiol. 1984, 4, 999–1005. [Google Scholar] [CrossRef] [Green Version]
- Seward, J.B.; Tajik, A.J.; Fyfe, D.A.; Hagler, D.J.; Currie, P.J.; Chan, K.-L.; Nishimura, R.A.; Reeder, G.S.; Mair, D.D. Continuous wave doppler determination of right ventricular pressure: A simultaneous Doppler-catheterization study in 127 patients. J. Am. Coll. Cardiol. 2010, 6, 750–756. [Google Scholar]
- Lake, S.P.; Barocas, V.H. Mechanical and structural contribution of non-fibrillar matrix in uniaxial tension: A collagen-agarose co-gel Model. Ann. Biomed. Eng. 2011, 39, 1891–1903. [Google Scholar] [CrossRef]
- Rubin, L.J. Primary pulmonary hypertension. N. Engl. J. Med. 1997, 336, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Jan, N.-J.; Sigal, I.A. Collagen fiber recruitment: A microstructural basis for the nonlinear response of the posterior pole of the eye to increases in intraocular pressure. Acta Biomater. 2018, 72, 295–305. [Google Scholar] [CrossRef]
- Thomas, V.S.; Lai, V.K.; Amini, R. A Computational multi-scale approach to investigate mechanically-induced changes in tricuspid valve anterior leaflet microstructure. Acta Biomater. 2019, 94, 524–535. [Google Scholar] [CrossRef]
- Biswas, D.; Casey, D.M.; Crowder, D.C.; Steinman, D.A.; Yun, Y.H.; Loth, F. Characterization of transition to turbulence for blood in a straight pipe under steady flow conditions. J. Biomech. Eng. 2016, 138, 071001. [Google Scholar] [CrossRef]
Protocol | Radial (kPa) | Circum. (kPa) |
---|---|---|
1 | 127 | 127 |
2 | 95.25 | 127 |
3 | 127 | 95.25 |
4 | 63.5 | 127 |
5 | 127 | 63.5 |
Heart | DI-Pre | DI-Post | Control-Pre | Control-Post |
---|---|---|---|---|
1 | 424 | 924 | 269 | 299 |
2 | 391 | 627 | 237 | 325 |
3 | 314 | 662 | 342 | 393 |
4 | 259 | 490 | 312 | 350 |
5 | 246 | 467 | 287 | 284 |
6 | 317 | 548 | 233 | 259 |
7 | 254 | 482 | 287 | 284 |
8 | 332 | 416 | 223 | 226 |
9 | 337 | 614 | 246 | 251 |
10 | 299 | 599 | 223 | 228 |
11 | 322 | 609 | 348 | 378 |
12 | 350 | 548 | 343 | 396 |
13 | 224 | 1061 | 335 | 365 |
14 | 315 | 1046 | 269 | 279 |
Average | 313 | 650 | 289 | 308 |
Std. Dev. | 53 | 201 | 44 | 57 |
p-value | <0.001 | 0.002 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salinas, S.D.; Clark, M.M.; Amini, R. Mechanical Response Changes in Porcine Tricuspid Valve Anterior Leaflet Under Osmotic-Induced Swelling. Bioengineering 2019, 6, 70. https://doi.org/10.3390/bioengineering6030070
Salinas SD, Clark MM, Amini R. Mechanical Response Changes in Porcine Tricuspid Valve Anterior Leaflet Under Osmotic-Induced Swelling. Bioengineering. 2019; 6(3):70. https://doi.org/10.3390/bioengineering6030070
Chicago/Turabian StyleSalinas, Samuel D., Margaret M. Clark, and Rouzbeh Amini. 2019. "Mechanical Response Changes in Porcine Tricuspid Valve Anterior Leaflet Under Osmotic-Induced Swelling" Bioengineering 6, no. 3: 70. https://doi.org/10.3390/bioengineering6030070
APA StyleSalinas, S. D., Clark, M. M., & Amini, R. (2019). Mechanical Response Changes in Porcine Tricuspid Valve Anterior Leaflet Under Osmotic-Induced Swelling. Bioengineering, 6(3), 70. https://doi.org/10.3390/bioengineering6030070