Antimicrobial Photodynamic Therapy Protocols on Streptococcus mutans with Different Combinations of Wavelengths and Photosensitizing Dyes †
Abstract
:1. Introduction
- A photosensitizing agent that is a photosensitive molecule able to localize itself in a cell or in a target tissue;
- A light source with specific wavelengths required to activate the photosensitizing agent;
- Molecular oxygen, essential for the formation of reactive oxygen species (ROS).
2. Materials and Methods
2.1. Microbial Strain and Culture Conditions
2.2. Dyes and Laser Sources
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Butler, M.S.; Buss, A.D. Natural products—The future scaffolds for novel antibiotics? Biochem. Pharmacol. 2006, 71, 919–929. [Google Scholar] [CrossRef] [PubMed]
- Renwick, M.J.; Simpkin, V.; Mossialos, E. Targeting Innovation in Antibiotic Drug Discovery and Development: The Need for a One Health-One Europe-One World Framework; Health Policy Series and No. 45; European Observatory on Health Systems and Policies: Copenhagen, Denmark, 2016. [Google Scholar]
- Dolmans, D.F.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Knopka, K.; Goslinski, T. Photodynamic Therapy in Dentistry. J. Dent. Res. 2007, 86, 694–707. [Google Scholar] [CrossRef] [PubMed]
- Issa, M.C.A.; Manela-Azulay, M. Photodynamic Therapy: A review of the literature and image documentation. An. Bras. Dermatol. 2010, 85, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Allison, R.R.; Downie, G.H.; Cuenca RHu, X.H.; Childs, C.; Sibata, C.H. Photosensitizers in clinical PDT. Photodiagn. Photodyn. Ther. 2004, 1, 27–42. [Google Scholar] [CrossRef]
- Meisel, P.; Kocher, T. Photodinamic Therapy for periodontal disease: State of the art. J. Photochem. Photobiol. B Biol. 2005, 79, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Tyrrel, R.M.; Keise, S.M. The interaction of UV-A radiation with cultured cells. J. Photochem. Photobiol. B Biol. 1990, 4, 349–361. [Google Scholar] [CrossRef]
- Reddi, E.; Jori, G. Steady-state and time-resolved spectroscopic studies of photodynamic sensitizers, porhyrins and phthalocyanines. Rev. Chem. Intermed. 1988, 10, 241–268. [Google Scholar] [CrossRef]
- Salva, K.A. Photodynamic Therapy: Unapproved uses, dosages, or indication. Clin. Dermatol. 2002, 20, 571–581. [Google Scholar] [CrossRef]
- Kubler, A.C. Photodynamic therapy. Med. Laser Appl. 2005, 20, 37–45. [Google Scholar] [CrossRef]
- Allison, R.R.; Mota, H.C.; Sibata, C.H. Clinical PD/PDT in North America: An Historical review. Photodiagn. Photodyn. Ther. 2004, 1, 263–277. [Google Scholar] [CrossRef]
- Juzeniene, A.; Juzenas, P.; Ma, L.W.; Iani, V.; Moan, J. Effectiveness of different light sources for 5-aminolevulinic acid photodynamic therapy. Lasers. Med. Sci. 2004, 19, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Pieslinger, A.; Plaetzer, K.; Oberdanner, C.B.; Berlanda, J.; Mair, H.; Krammer, B.; Kiesslich, T. Characterization of a simple and homogenous irradiation device based on light-emitting diodes: A possible low-cost supplement to conventional light sources for photodynamic treatment. Med. Laser Appl. 2006, 21, 277–283. [Google Scholar] [CrossRef]
- Steiner, R. New laser technology and future applications. Med. Laser Appl. 2006, 21, 131–140. [Google Scholar] [CrossRef]
- Rolim, J.P.; de Melo, M.A.; Guedes, S.F.; Albuquerque-Fihlo, F.B.; de Souza, J.R.; Nogueira, N.A.; Zanin, I.C.; Rodrigues, L.K. The antimicrobial activity of photodynamic therapy against Streptococcus mutans using different photosensitizers. J. Photochem. Photobiol. B Biol. 2012, 106, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Vilela, S.F.; Junqueira, J.C.; Barbosa, J.O.; Majewski, M.; Munin, E.; Jorge, A.O. Photodynamic inactivation of Staphylococcus aureus and Escherichia coli biofilms by malachite green and phenothiazine dyes: An in vitro study. Arch. Oral. Biol. 2011, 28, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Merigo, E.; Conti, S.; Ciociola, T.; Fornaini, C.; Polonelli, L.; Lagori, G.; Manfredi, M.; Vescovi, P. Effect of different wavelengths and dyes on Candida albicans: In vivo study using Galleria mellonella as an experimental model. Photodiagn. Photodyn. Ther. 2017, 18, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Haas, R.; Baron, M.; Dortbudak, O.; Watzek, G. Lethal photosensitization, autogenous bone, and e-PTFE membrane for the treatment of perimplantitis: Preliminary results. Int. J. Oral. Maxillofac. Implant. 2000, 15, 374–382. [Google Scholar]
- Guglielmi, C.A.; Simionato, M.R.; Ramalho, K.M.; Imparato, J.C.; Pinheiro, S.L.; Luz, M.A. Clinical Use of photodynamic antimicrobial chemotherapy for the treatment of deep carious lesions. J. Biomed. Opt. 2011, 16, 088003. [Google Scholar] [CrossRef] [PubMed]
- Shibli, J.A.; Martins, M.C.; Ribeiro, F.S.; Garcia, V.G.; Nociti, F.H.; Marcantonio, E. Lethal photosensitization and guided bone regeneration in treatment of peri-implantitis: An experimental study in dogs. Clin. Oral. Implant. Res. 2006, 17, 273–281. [Google Scholar] [CrossRef]
- Hayek, R.R.; Araujo, N.S.; Gioso, M.A.; Ferreira, J.; Baptista-Sobrinho, C.A.; Yamada, A.M.; Ribeiro, M.S. Comparative study between the effects of photodynamic therapy and conventional therapy on microbial reduction in ligature-induced peri-implantitis in dogs. J. Periodontol. 2005, 76, 1275–1281. [Google Scholar] [CrossRef]
- Matsui, R.; Cvitkovitch, D. Acid tolerance mechanisms utilized by Streptococcus mutans. Future Microbiol. 2010, 5, 403–417. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, G.; Shankar, A.A. Toluidine blue: A review of its chemistry and clinical utility. J. Oral. Maxillofac. Pathol. 2012, 16, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.F.; Borges, A.; Freitas, C.F.; Hioka, N.; Mikcha, J.M.G.; Simões, M. Antimicrobial Photodynamic Inactivation Mediated by Rose Bengal and Erythrosine Is Effective in the Control of Food-Related Bacteria in Planktonic and Biofilm States. Molecules 2018, 23, 2288. [Google Scholar] [CrossRef] [PubMed]
- Kunwar, A.; Barik, A.; Priyadarsini, K.I.; Pandey, R. Absorption and fluorescence studies of curcumin bound to liposome and living cells. BARC Newsl. 2007, 285, 213. [Google Scholar]
- Song, J.; Choi, B.; Jin, E.J.; Yoon, Y.; Choi, K.H. Curcumin suppresses Streptococcus mutans adherence to human tooth surfaces and extracellular matrix proteins. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 1347–1352. [Google Scholar] [CrossRef]
- Adiwidjaja, J.; McLachlan, A.J.; Boddy, A.V. Curcumin as a clinically-promising anti-cancer agent: Pharmacokinetics and drug interactions. Expert Opin. Drug Metab. Toxicol. 2017, 13, 953–972. [Google Scholar] [CrossRef]
- Willenbacher, E.; Khan, S.Z.; Mujica, S.C.A.; Trapani, D.; Hussain, S.; Wolf, D.; Willenbacher, W.; Spizzo, G.; Seeber, A. Curcumin: New Insights into an Ancient Ingredient against Cancer. Int. J. Mol. Sci. 2019, 20, 1808. [Google Scholar] [CrossRef]
- Mun, S.H.; Joung, D.K.; Kim, Y.S.; Kang, O.H.; Kim, S.B.; Seo, Y.S.; Kim, Y.C.; Lee, D.S.; Shin, D.W.; Kweon, K.T.; et al. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine 2013, 20, 714–718. [Google Scholar] [CrossRef]
- Yang, M.Y.; Chang, K.C.; Chen, L.Y.; Hu, A. Low-dose blue light irradiation enhances the antimicrobial activities of curcumin against Propionibacterium acnes. J. Photochem. Photobiol. B Biol. 2018, 189, 21–28. [Google Scholar] [CrossRef]
- Dahl, T.A.; McGowan, W.M.; Shand, M.A.; Srinivasan, V.S. Photokilling of bacteria by the natural dye curcumin. Arch. Microbiol. 1989, 151, 183–185. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Visai, L.; Bragheri, F.; Cristiani, I.; Gupta, P.K.; Speziale, P. Toluidine blue-mediated photodynamic effects on staphylococcal biofilms. Antimicrob. Agents Chemother. 2008, 52, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Wainwright, M.; Crossley, K.B. Photosensitizing agents-circumventing resistance and breaking down biofilms: A review. Int. Biodeterior. Biodegrad. 2004, 53, 119–126. [Google Scholar] [CrossRef]
- Hamblin, M.R.; Hasan, T. Photodynamic therapy: A new antimicrobial approach to infections disease? Photochem. Photobiol. Sci. 2004, 3, 436–450. [Google Scholar] [CrossRef] [PubMed]
- O’Riodan, K.; Akilov, O.E.; Hasan, T. The potential for photodynamic therapy in the treatment of localized infections. Photodiagn. Photodyn. Ther. 2005, 2, 247–262. [Google Scholar] [CrossRef]
- Komerik, N.; MacRobert, A.J. Photodynamic therapy as an alternative antimicrobial modality for oral infections. J. Environ. Pathol. Toxicol. Oncol. 2006, 25, 487–504. [Google Scholar] [PubMed]
Samples | Mean CFU | SD | % Inhibition vs. Control | |
---|---|---|---|---|
Negative control | 1064 | 13 | - | |
Toluidine blue 10 µM | 13 | 5 | 98.78 | |
Red diode without toluidine blue | Fluence 10 J/cm2 | 1291 | 29 | −21.33 |
Fluence 20 J/cm2 | 1099 | 43 | −3.29 | |
Fluence 30 J/cm2 | 1085 | 31 | −1.97 | |
Red diode with toluidine blue | Fluence 10 J/cm2 | 1 | 1 | 99.91 |
Fluence 20 J/cm2 | 0 | 0 | 100 | |
Fluence 30 J/cm2 | 0 | 0 | 100 |
Samples | Mean CFU | SD | % Inhibition vs. Control | |
---|---|---|---|---|
Negative control | 408 | 19 | - | |
Curcumin 100 µM | 295 | 60 | 27.70 | |
Blue diode without curcumin | Fluence 10 J/cm2 | 347 | 39 | 14.95 |
Fluence 20 J/cm2 | 242 | 98 | 40.69 | |
Fluence 30 J/cm2 | 261 | 100 | 36.03 | |
Blue diode with curcumin | Fluence 10 J/cm2 | 86 | 49 | 78.92 |
Fluence 20 J/cm2 | 15 | 3 | 96.32 | |
Fluence 30 J/cm2 | 3 | 2 | 99.26 |
Samples | Mean CFU | SD | % Inhibition vs. Control | |
---|---|---|---|---|
Negative control | 572 | 30 | - | |
Erythrosine 100 µM | 102 | 27 | 82.17 | |
Green diode without erythrosine | Fluence 10 J/cm2 | 385 | 6 | 32.69 |
Fluence 20 J/cm2 | 342 | 31 | 40.21 | |
Fluence 30 J/cm2 | 355 | 7 | 37.94 | |
Green diode with erythrosine | Fluence 10 J/cm2 | 0 | 0 | 100 |
Fluence 20 J/cm2 | 0 | 0 | 100 | |
Fluence 30 J/cm2 | 0 | 0 | 100 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merigo, E.; Conti, S.; Ciociola, T.; Manfredi, M.; Vescovi, P.; Fornaini, C. Antimicrobial Photodynamic Therapy Protocols on Streptococcus mutans with Different Combinations of Wavelengths and Photosensitizing Dyes. Bioengineering 2019, 6, 42. https://doi.org/10.3390/bioengineering6020042
Merigo E, Conti S, Ciociola T, Manfredi M, Vescovi P, Fornaini C. Antimicrobial Photodynamic Therapy Protocols on Streptococcus mutans with Different Combinations of Wavelengths and Photosensitizing Dyes. Bioengineering. 2019; 6(2):42. https://doi.org/10.3390/bioengineering6020042
Chicago/Turabian StyleMerigo, Elisabetta, Stefania Conti, Tecla Ciociola, Maddalena Manfredi, Paolo Vescovi, and Carlo Fornaini. 2019. "Antimicrobial Photodynamic Therapy Protocols on Streptococcus mutans with Different Combinations of Wavelengths and Photosensitizing Dyes" Bioengineering 6, no. 2: 42. https://doi.org/10.3390/bioengineering6020042
APA StyleMerigo, E., Conti, S., Ciociola, T., Manfredi, M., Vescovi, P., & Fornaini, C. (2019). Antimicrobial Photodynamic Therapy Protocols on Streptococcus mutans with Different Combinations of Wavelengths and Photosensitizing Dyes. Bioengineering, 6(2), 42. https://doi.org/10.3390/bioengineering6020042