In Vivo Targeted Reprogramming of Cardiac Fibroblasts for Heart Regeneration: Advances and Therapeutic Potential
Abstract
1. Introduction
2. Biological Basis of In Vivo Cardiac Reprogramming
2.1. Impacts of Fibroblast Origin, Differentiation State or Age
2.2. Molecular Drivers of In Vivo Cardiac Reprogramming
2.3. Cellular Mechanisms Governing In Vivo Cardiac Reprogramming
3. Fibroblast-Targeted Strategies for Cardiac Lineage Reprogramming
3.1. Viral Vectors
3.2. Non-Viral Vectors
4. Challenges and Future Perspectives
4.1. Screening New Cardiac Reprogramming Factors in Human Cells
4.2. Optimizing Reprogramming Reagents
4.3. Engineering New Vesicles for Targeted Gene or Drug Delivery
4.4. Establishing Stringent Animal Models to Assess Therapeutic Effects
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CF | Cardiac fibroblast |
CM | Cardiomyocyte |
iCM | Induced cardiomyocyte |
MI | Myocardial infarction |
iPSC | induced pluripotent stem cell |
ECM | Extracellular matrix |
AAV | Adeno-associated virus |
MEF | Mouse embryonic fibroblast |
EV | Extracellular vesicles |
PEI | Polyethylenimine |
AI | Artificial intelligence |
ML | Machine learning |
NGS | Next-generation sequencing |
References
- Del Buono, M.G.; Moroni, F.; Montone, R.A.; Azzalini, L.; Sanna, T.; Abbate, A. Ischemic cardiomyopathy and heart failure after acute myocardial infarction. Curr. Cardiol. Rep. 2022, 24, 1505–1515. [Google Scholar] [CrossRef]
- Frangogiannis, N.G. Cardiac fibrosis. Cardiovasc. Res. 2021, 117, 1450–1488. [Google Scholar] [CrossRef]
- Sapna, F.; Raveena, F.; Chandio, M.; Bai, K.; Sayyar, M.; Varrassi, G.; Mohamad, T. Advancements in Heart Failure Management: A Comprehensive Narrative Review of Emerging Therapies. Cureus 2023, 15, e46486. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.S.; Kittleson, M.M.; Kobashigawa, J.A. Updates on heart transplantation. Curr. Heart Fail. Rep. 2019, 16, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Jou, S.; Mendez, S.R.; Feinman, J.; Mitrani, L.R.; Fuster, V.; Mangiola, M.; Gidea, C. Heart transplantation: Advances in expanding the donor pool and xenotransplantation. Nat. Rev. Cardiol. 2024, 21, 25–36. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Good, A.; Kalou, W.; Ahmad, W.; Dutta, S.; Chen, S.; Lin, C.N.; Krishnan, K.C.; Fan, Y.; Huang, W.; et al. Current Advances and Future Directions of Pluripotent Stem Cells-Derived Engineered Heart Tissue for Treatment of Cardiovascular Diseases. Cells 2024, 13, 2098. [Google Scholar] [CrossRef]
- Olatunji, G.; Kokori, E.; Yusuf, I.; Ayanleke, E.; Damilare, O.; Afolabi, S.; Adetunji, B.; Mohammed, S.; Akinmoju, O.; Aboderin, G.; et al. Stem cell-based therapies for heart failure management: A narrative review of current evidence and future perspectives. Heart Fail. Rev. 2024, 29, 573–598. [Google Scholar] [CrossRef]
- Musunuru, K.; Sheikh, F.; Gupta, R.M.; Houser, S.R.; Maher, K.O.; Milan, D.J.; Terzic, A.; Wu, J.C. Induced pluripotent stem cells for cardiovascular disease modeling and precision medicine: A scientific statement from the American Heart Association. Circ. Genom. Precis. Med. 2018, 11, e000043. [Google Scholar] [CrossRef]
- Karantalis, V.; Hare, J.M. Use of mesenchymal stem cells for therapy of cardiac disease. Circ. Res. 2015, 116, 1413–1430. [Google Scholar] [CrossRef]
- Menasche, P.; Vanneaux, V.; Fabreguettes, J.R.; Bel, A.; Tosca, L.; Garcia, S.; Larghero, J. Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: A translational experience. Eur. Heart J. 2015, 36, 743–750. [Google Scholar] [CrossRef]
- Selvakumar, D.; Clayton, Z.E.; Prowse, A.; Dingwall, S.; Kim, S.K.; Reyes, L.; George, J.; Shah, H.; Chen, S.; Leung, H.H.L.; et al. Cellular heterogeneity of pluripotent stem cell-derived cardiomyocyte grafts is mechanistically linked to treatable arrhythmias. Nat. Cardiovasc. Res. 2024, 3, 145–165. [Google Scholar] [CrossRef]
- Mahmud, S.; Alam, S.; Emon, N.U.; Boby, U.H.; Kamruzzaman; Ahmed, F.; Monjur-Al-Hossain, A.; Tahamina, A.; Rudra, S.; Ajrin, M. Opportunities and challenges in stem cell therapy in cardiovascular diseases: Position standing in 2022. Saudi Pharm. J. 2022, 30, 1360–1371. [Google Scholar] [CrossRef]
- Huang, P.; Tian, X.; Li, Q.; Yang, Y. New strategies for improving stem cell therapy in ischemic heart disease. Heart Fail. Rev. 2016, 21, 737–752. [Google Scholar] [CrossRef] [PubMed]
- Rosen, M.R.; Myerburg, R.J.; Francis, D.P.; Cole, G.D.; Marbán, E. Translating stem cell research to cardiac disease therapies: Pitfalls and prospects for improvement. J. Am. Coll. Cardiol. 2014, 64, 922–937. [Google Scholar] [CrossRef]
- Abdelwahid, E.; Kalvelyte, A.; Stulpinas, A.; de Carvalho, K.A.T.; Guarita-Souza, L.C.; Foldes, G. Stem cell death and survival in heart regeneration and repair. Apoptosis 2016, 21, 252–268. [Google Scholar] [CrossRef] [PubMed]
- Ieda, M.; Fu, J.D.; Delgado-Olguin, P.; Vedantham, V.; Hayashi, Y.; Bruneau, B.G.; Srivastava, D. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 2010, 142, 375–386. [Google Scholar] [CrossRef]
- Efe, J.A.; Hilcove, S.; Kim, J.; Zhou, H.; Ouyang, K.; Wang, G.; Ding, S. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat. Cell Biol. 2011, 13, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, W.; Saleh, B.; Qazi, R.-E.; Muneer, R.; Khan, I.; Khan, M.; Salim, A. Direct differentiation of rat skin fibroblasts into cardiomyocytes. Exp. Cell Res. 2024, 435, 113934. [Google Scholar] [CrossRef]
- Qian, L.; Huang, Y.; Spencer, C.I.; Foley, A.; Vedantham, V.; Liu, L.; Srivastava, D. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 2012, 485, 593–598. [Google Scholar] [CrossRef]
- Song, K.; Nam, Y.J.; Luo, X.; Qi, X.; Tan, W.; Huang, G.N.; Olson, E.N. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 2012, 485, 599–604. [Google Scholar] [CrossRef]
- Grath, A.; Dai, G. Direct cell reprogramming for tissue engineering and regenerative medicine. J. Biol. Eng. 2019, 13, 14. [Google Scholar] [CrossRef]
- Bektik, E.; Fu, J.-d. Ameliorating the fibrotic remodeling of the heart through direct cardiac reprogramming. Cells 2019, 8, 679. [Google Scholar] [CrossRef]
- Zakrzewski, J.L.; van den Brink, M.R.; Hubbell, J.A. Overcoming immunological barriers in regenerative medicine. Nat. Biotechnol. 2014, 32, 786–794. [Google Scholar] [CrossRef]
- Qian, L.; Berry, E.C.; Fu, J.-D.; Ieda, M.; Srivastava, D. Reprogramming of mouse fibroblasts into cardiomyocyte-like cells in vitro. Nat. Protoc. 2013, 8, 1204–1215. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, L.; Liu, Z.; Alimohamadi, S.; Yin, C.; Liu, J.; Qian, L. Comparative Gene Expression Analyses Reveal Distinct Molecular Signatures between Differentially Reprogrammed Cardiomyocytes. Cell Rep. 2017, 20, 3014–3024. [Google Scholar] [CrossRef]
- Chen, J.X.; Krane, M.; Deutsch, M.A.; Wang, L.; Rav-Acha, M.; Gregoire, S.; Wu, S.M. Inefficient reprogramming of fibroblasts into cardiomyocytes using gata4, mef2c, and tbx5. Circ. Res. 2012, 111, 50–55. [Google Scholar] [CrossRef]
- Brlecic, P.E.; Bonham, C.A.; Rosengart, T.K.; Mathison, M. Direct cardiac reprogramming: A new technology for cardiac repair. J. Mol. Cell Cardiol. 2023, 178, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, D.; DeWitt, N. In Vivo Cellular Reprogramming: The Next Generation. Cell 2016, 166, 1386–1396. [Google Scholar] [CrossRef]
- Romanazzo, S.; Lin, K.; Srivastava, P.; Kilian, K.A. Targeting cell plasticity for regeneration: From in vitro to in vivo reprogramming. Adv. Drug Deliv. Rev. 2020, 161, 124–144. [Google Scholar] [CrossRef] [PubMed]
- Yang, J. Partial Cell Fate Transitions to Promote Cardiac Regeneration. Cells 2024, 13, 2002. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Spurlock, B.; Liu, J.; Qian, L. Fibroblast Reprogramming in Cardiac Repair. JACC Basic Transl. Sci. 2024, 9, 145–160. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.; Wang, K. Transcription factor-mediated programming of stem cell fate. Trends Cell Biol. 2023, 33, 621–624. [Google Scholar] [CrossRef] [PubMed]
- Sadahiro, T.; Ieda, M. In vivo reprogramming as a new approach to cardiac regenerative therapy. In Seminars in Cell & Developmental Biologyed; Elsevier: Amsterdam, The Netherlands, 2022; pp. 21–27. [Google Scholar]
- Kurose, H. Cardiac fibrosis and fibroblasts. Cells 2021, 10, 1716. [Google Scholar] [CrossRef] [PubMed]
- Patrick, R.; Janbandhu, V.; Tallapragada, V.; Tan, S.S.M.; McKinna, E.E.; Contreras, O.; Ghazanfar, S.; Humphreys, D.T.; Murray, N.J.; Tran, Y.T.H.; et al. Integration mapping of cardiac fibroblast single-cell transcriptomes elucidates cellular principles of fibrosis in diverse pathologies. Sci. Adv. 2024, 10, eadk8501. [Google Scholar] [CrossRef] [PubMed]
- Tani, H.; Sadahiro, T.; Yamada, Y.; Isomi, M.; Yamakawa, H.; Fujita, R.; Abe, Y.; Akiyama, T.; Nakano, K.; Kuze, Y.; et al. Direct Reprogramming Improves Cardiac Function and Reverses Fibrosis in Chronic Myocardial Infarction. Circulation 2023, 147, 223–238. [Google Scholar] [CrossRef]
- Furtado, M.B.; Costa, M.W.; Pranoto, E.A.; Salimova, E.; Pinto, A.R.; Lam, N.T.; Park, A.; Snider, P.; Chandran, A.; Harvey, R.P.; et al. Cardiogenic genes expressed in cardiac fibroblasts contribute to heart development and repair. Circ. Res. 2014, 114, 1422–1434. [Google Scholar] [CrossRef]
- Kanisicak, O.; Khalil, H.; Ivey, M.J.; Karch, J.; Maliken, B.D.; Correll, R.N.; Brody, M.J.; Lin, S.-C.J.; Aronow, B.J.; Tallquist, M.D.; et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat. Commun. 2016, 7, 12260. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, H.; Tao, Y.; Yang, C.; Yang, Y.; Zhou, B.; Zhao, Y. Improved Factor Combination for In Vivo Reprogramming of Cardiac Myofibroblast to Cardiomyocyte-Like Cell with Dual Recombinase Tracing. Circulation 2023, 148, 1728–1731. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, W.; Blakes, R.; Sundby, L.J.; Shi, Z.; Rockey, D.C.; Ervasti, J.M.; Nam, Y.-J. Fibroblast fate determination during cardiac reprogramming by remodeling of actin filaments. Stem Cell Rep. 2022, 17, 1604–1619. [Google Scholar] [CrossRef]
- Fu, X.; Khalil, H.; Kanisicak, O.; Boyer, J.G.; Vagnozzi, R.J.; Maliken, B.D.; Sargent, M.A.; Prasad, V.; Valiente-Alandi, I.; Blaxall, B.C.; et al. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J. Clin. Investig. 2018, 128, 2127–2143. [Google Scholar] [CrossRef]
- Kondo, H.; Kim, H.W.; Wang, L.; Okada, M.; Paul, C.; Millard, R.W.; Wang, Y. Blockade of senescence-associated microRNA-195 in aged skeletal muscle cells facilitates reprogramming to produce induced pluripotent stem cells. Aging Cell 2016, 15, 56–66. [Google Scholar] [CrossRef]
- Mahmoudi, S.; Mancini, E.; Xu, L.; Moore, A.; Jahanbani, F.; Hebestreit, K.; Srinivasan, R.; Li, X.; Devarajan, K.; Prélot, L.; et al. Heterogeneity in old fibroblasts is linked to variability in reprogramming and wound healing. Nature 2019, 574, 553–558. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, L.; Vaseghi, H.R.; Liu, Z.; Lu, R.; Alimohamadi, S.; Qian, L. Bmi1 Is a Key Epigenetic Barrier to Direct Cardiac Reprogramming. Cell Stem Cell 2016, 18, 382–395. [Google Scholar] [CrossRef]
- Santos, F.; Correia, M.; Dias, R.; Bola, B.; Noberini, R.; Ferreira, R.S.; Trigo, D.; Domingues, P.; Teixeira, J.; Bonaldi, T.; et al. Age-associated metabolic and epigenetic barriers during direct reprogramming of mouse fibroblasts into induced cardiomyocytes. Aging Cell 2024, 24, e14371. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ma, H.; Huang, P.; Xie, Y.; Near, D.; Wang, H.; Xu, J.; Yang, Y.; Xu, Y.; Garbutt, T.; et al. Down-regulation of Beclin1 promotes direct cardiac reprogramming. Sci. Transl. Med. 2020, 12, eaay7856. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Shayani, G.; Xu, Y.; Kim, A.; Hong, Y.; Feng, H.; Zhu, H. Induction of Senescence by Loss of Gata4 in Cardiac Fibroblasts. Cells 2023, 12, 1652. [Google Scholar] [CrossRef]
- Chen, Z.-Y.; Ji, S.-J.; Huang, C.-W.; Tu, W.-Z.; Ren, X.-Y.; Guo, R.; Xie, X. In situ reprogramming of cardiac fibroblasts into cardiomyocytes in mouse heart with chemicals. Acta Pharmacol. Sin. 2024, 45, 2290–2299. [Google Scholar] [CrossRef]
- Huang, C.; Tu, W.; Fu, Y.; Wang, J.; Xie, X. Chemical-induced cardiac reprogramming in vivo. Cell Res. 2018, 28, 686–689. [Google Scholar] [CrossRef] [PubMed]
- Cao, N.; Huang, Y.; Zheng, J.; Spencer, C.I.; Zhang, Y.; Fu, J.-D.; Nie, B.; Xie, M.; Zhang, M.; Wang, H.; et al. Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science 2016, 352, 1216–1220. [Google Scholar] [CrossRef]
- Inagawa, K.; Miyamoto, K.; Yamakawa, H.; Muraoka, N.; Sadahiro, T.; Umei, T.; Wada, R.; Katsumata, Y.; Kaneda, R.; Nakade, K.; et al. Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of gata4, mef2c, and tbx5. Circ. Res. 2012, 111, 1147–1156. [Google Scholar] [CrossRef]
- Mathison, M.; Gersch, R.P.; Nasser, A.; Lilo, S.; Korman, M.; Fourman, M.; Hackett, N.; Shroyer, K.; Yang, J.; Ma, Y.; et al. In vivo cardiac cellular reprogramming efficacy is enhanced by angiogenic preconditioning of the infarcted myocardium with vascular endothelial growth factor. J. Am. Heart Assoc. 2012, 1, e005652. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, T.M.; Egemnazarov, B.; Finch, E.A.; Zhang, L.; Payne, J.A.; Pandya, K.; Zhang, Z.; Rosenberg, P.; Mirotsou, M.; Dzau, V.J. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ. Res. 2012, 110, 1465–1473. [Google Scholar] [CrossRef]
- Mathison, M.; Singh, V.P.; Gersch, R.P.; Ramirez, M.O.; Cooney, A.; Kaminsky, S.M.; Chiuchiolo, M.J.; Nasser, A.; Yang, J.; Crystal, R.G.; et al. “Triplet” polycistronic vectors encoding Gata4, Mef2c, and Tbx5 enhances postinfarct ventricular functional improvement compared with singlet vectors. J. Thorac. Cardiovasc. Surg. 2014, 148, 1656–1664.e2. [Google Scholar] [CrossRef]
- Ma, H.; Wang, L.; Yin, C.; Liu, J.; Qian, L. In vivo cardiac reprogramming using an optimal single polycistronic construct. Cardiovasc. Res. 2015, 108, 217–219. [Google Scholar] [CrossRef]
- Jayawardena, T.M.; Finch, E.A.; Zhang, L.; Zhang, H.; Hodgkinson, C.P.; Pratt, R.E.; Dzau, V.J. MicroRNA induced cardiac reprogramming in vivo: Evidence for mature cardiac myocytes and improved cardiac function. Circ. Res. 2015, 116, 418–424. [Google Scholar] [CrossRef]
- Mohamed, T.M.A.; Stone, N.R.; Berry, E.C.; Radzinsky, E.; Huang, Y.; Pratt, K.; Ang, Y.-S.; Yu, P.; Wang, H.; Tang, S.; et al. Chemical Enhancement of In Vitro and In Vivo Direct Cardiac Reprogramming. Circulation 2017, 135, 978–995. [Google Scholar] [CrossRef]
- Mathison, M.; Singh, V.P.; Chiuchiolo, M.J.; Sanagasetti, D.; Mao, Y.; Patel, V.B.; Yang, J.; Kaminsky, S.M.; Crystal, R.G.; Rosengart, T.K. In situ reprogramming to transdifferentiate fibroblasts into cardiomyocytes using adenoviral vectors: Implications for clinical myocardial regeneration. J. Thorac. Cardiovasc. Surg. 2017, 153, 329–339.e3. [Google Scholar] [CrossRef]
- Miyamoto, K.; Akiyama, M.; Tamura, F.; Isomi, M.; Yamakawa, H.; Sadahiro, T.; Muraoka, N.; Kojima, H.; Haginiwa, S.; Kurotsu, S.; et al. Direct In Vivo Reprogramming with Sendai Virus Vectors Improves Cardiac Function after Myocardial Infarction. Cell Stem Cell 2018, 22, 91–103.e5. [Google Scholar] [CrossRef]
- Yoo, S.Y.; Jeong, S.-N.; Kang, J.-I.; Lee, S.-W. Chimeric Adeno-Associated Virus-Mediated Cardiovascular Reprogramming for Ischemic Heart Disease. ACS Omega 2018, 3, 5918–5925. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Lee, E.; Kim, J.; Kwon, Y.W.; Kwon, Y.; Kim, J. Efficient in vivo direct conversion of fibroblasts into cardiomyocytes using a nanoparticle-based gene carrier. Biomaterials 2019, 192, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.H.; Hu, J.; Pratt, R.E.; Hodgkinson, C.P.; Asokan, A.; Dzau, V.J. Optimizing delivery for efficient cardiac reprogramming. Biochem. Biophys. Res. Commun. 2020, 533, 9–16. [Google Scholar] [CrossRef]
- Li, Z.; Xiang, S.; Lin, Z.; Li, E.N.; Yagi, H.; Cao, G.; Yocum, L.; Li, L.; Hao, T.; Bruce, K.K. Direct in vivo reprogramming with non-viral sequential targeting nanoparticles promotes cardiac regeneration. Biomaterials 2021, 276, 121028. [Google Scholar] [CrossRef]
- Kaur, K.; Hadas, Y.; Kurian, A.A.; Żak, M.M.; Yoo, J.; Mahmood, A.; Girard, H.; Komargodski, R.; Io, T.; Santini, M.P.; et al. Direct reprogramming induces vascular regeneration post muscle ischemic injury. Mol. Ther. 2021, 29, 3042–3058. [Google Scholar] [CrossRef] [PubMed]
- Isomi, M.; Sadahiro, T.; Yamakawa, H.; Fujita, R.; Yamada, Y.; Abe, Y.; Murakata, Y.; Akiyama, T.; Shu, T.; Mizukami, H.; et al. Overexpression of Gata4, Mef2c, and Tbx5 Generates Induced Cardiomyocytes Via Direct Reprogramming and Rare Fusion in the Heart. Circulation 2021, 143, 2123–2125. [Google Scholar] [CrossRef]
- Nakano, K.; Sadahiro, T.; Fujita, R.; Isomi, M.; Abe, Y.; Yamada, Y.; Akiyama, T.; Honda, S.; French, B.A.; Mizukami, H.; et al. Development of adeno-associated viral vectors targeting cardiac fibroblasts for efficient in vivo cardiac reprogramming. Stem Cell Rep. 2024, 19, 1389–1398. [Google Scholar] [CrossRef]
- Bann, G.G.; Dos Santos, M.; Chen, K.; Tan, W.; Bezprozvannaya, S.; Gan, P.; Xu, L.; Liu, N.; Bassel-Duby, R.; Olson, E.N. Cellular Reprogramming by PHF7 Enhances Cardiac Function Following Myocardial Infarction. Circulation 2025, Online ahead of print.
- Stone, N.R.; Gifford, C.A.; Thomas, R.; Pratt, K.J.; Samse-Knapp, K.; Mohamed, T.M.; Radzinsky, E.M.; Schricker, A.; Ye, L.; Yu, P.; et al. Context-Specific Transcription Factor Functions Regulate Epigenomic and Transcriptional Dynamics during Cardiac Reprogramming. Cell Stem Cell 2019, 25, 87–102.e9. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, H.; Wang, Z.; Garry, G.A.; Malladi, V.S.; Botten, G.A.; Ye, W.; Zhou, H.; Osterwalder, M.; Dickel, D.E.; Visel, A.; et al. Cardiac Reprogramming Factors Synergistically Activate Genome-wide Cardiogenic Stage-Specific Enhancers. Cell Stem Cell 2019, 25, 69–86.e5. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, J.K.; Bruneau, B.G. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature 2009, 459, 708–711. [Google Scholar] [CrossRef]
- Dal-Pra, S.; Hodgkinson, C.P.; Mirotsou, M.; Kirste, I.; Dzau, V.J. Demethylation of H3K27 Is Essential for the Induction of Direct Cardiac Reprogramming by miR Combo. Circ. Res. 2017, 120, 1403–1413. [Google Scholar] [CrossRef]
- Liu, L.; Lei, I.; Karatas, H.; Li, Y.; Wang, L.; Gnatovskiy, L.; Dou, Y.; Wang, S.; Qian, L.; Wang, Z. Targeting Mll1 H3K4 methyltransferase activity to guide cardiac lineage specific reprogramming of fibroblasts. Cell Discov. 2016, 2, 16036. [Google Scholar] [CrossRef]
- Garry, G.A.; Bezprozvannaya, S.; Chen, K.; Zhou, H.; Hashimoto, H.; Morales, M.G.; Liu, N.; Bassel-Duby, R.; Olson, E.N. The histone reader PHF7 cooperates with the SWI/SNF complex at cardiac super enhancers to promote direct reprogramming. Nat. Cell Biol. 2021, 23, 467–475. [Google Scholar] [CrossRef]
- Xie, Y.; Van Handel, B.; Qian, L.; Ardehali, R. Recent advances and future prospects in direct cardiac reprogramming. Nat. Cardiovasc. Res. 2023, 2, 1148–1158. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, L.; Welch, J.D.; Ma, H.; Zhou, Y.; Vaseghi, H.R.; Qian, L. Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte [Letter]. Nature 2017, 551, 100–104. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Z.; Welch, J.D.; Gao, X.; Wang, L.; Garbutt, T.; Keepers, B.; Ma, H.; Prins, J.F.; Shen, W.; et al. Single-Cell Transcriptomic Analyses of Cell Fate Transitions during Human Cardiac Reprogramming. Cell Stem Cell 2019, 25, 149–164.e9. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Sadahiro, T.; Nakano, K.; Honda, S.; Abe, Y.; Akiyama, T.; Fujita, R.; Nakamura, M.; Maeda, T.; Kuze, Y.; et al. Cardiac Reprogramming and Gata4 Overexpression Reduce Fibrosis and Improve Diastolic Dysfunction in Heart Failure with Preserved Ejection Fraction. Circulation 2025, 151, 379–395. [Google Scholar] [CrossRef]
- Yamakawa, H.; Muraoka, N.; Miyamoto, K.; Sadahiro, T.; Isomi, M.; Haginiwa, S.; Kojima, H.; Umei, T.; Akiyama, M.; Kuishi, Y.; et al. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions. Stem Cell Rep. 2015, 5, 1128–1142. [Google Scholar] [CrossRef]
- Wang, H.; Yang, J.; Cai, Y.; Zhao, Y. Macrophages suppress cardiac reprogramming of fibroblasts in vivo via IFN-mediated intercellular self-stimulating circuit. Protein Cell 2024, 15, 906–929. [Google Scholar] [CrossRef]
- Simões, F.C.; Riley, P.R.; Ginhoux, F.; Martin, P. Immune cells in cardiac repair and regeneration. Development 2022, 149, dev199906. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.; Kariya, T.; Ishikawa, K. Targeted delivery of therapeutic agents to the heart. Nat. Rev. Cardiol. 2021, 18, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Naso, M.F.; Tomkowicz, B.; Perry, W.L.; Strohl, W.R. Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. Biodrugs 2017, 31, 317–334. [Google Scholar] [CrossRef]
- Mullard, A. FDA approves first haemophilia B gene therapy. Nat. Rev. Drug Discov. 2023, 22, 7. [Google Scholar] [CrossRef] [PubMed]
- Francisco, J.; Zhang, Y.; Nakada, Y.; Jeong, J.I.; Huang, C.-Y.; Ivessa, A.; Oka, S.; Babu, G.J.; Del Re, D.P. AAV-mediated YAP expression in cardiac fibroblasts promotes inflammation and increases fibrosis. Sci. Rep. 2021, 11, 10553. [Google Scholar] [CrossRef] [PubMed]
- A Piras, B.; Tian, Y.; Xu, Y.; A Thomas, N.; O’COnnor, D.M.; A French, B. Systemic injection of AAV9 carrying a periostin promoter targets gene expression to a myofibroblast-like lineage in mouse hearts after reperfused myocardial infarction. Gene Ther. 2016, 23, 469–478. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, J.; Srinath, C.; Zeng, A.; Wu, I.; Leon, E.C.; Qureshi, T.N.; Reid, C.A.; Nettesheim, E.R.; Xu, E.; et al. Improved Cardiac Function in Postischemic Rats Using an Optimized Cardiac Reprogramming Cocktail Delivered in a Single Novel Adeno-Associated Virus. Circulation 2023, 148, 1099–1112. [Google Scholar] [CrossRef]
- Muniyandi, P.; Palaninathan, V.; Mizuki, T.; Maekawa, T.; Hanajiri, T.; Mohamed, M.S. Poly(lactic-co-glycolic acid)/Polyethylenimine Nanocarriers for Direct Genetic Reprogramming of MicroRNA Targeting Cardiac Fibroblasts. ACS Appl. Nano Mater. 2020, 3, 2491–2505. [Google Scholar] [CrossRef]
- Yang, L.; Xue, S.; Du, M.; Lian, F. Highly Efficient MicroRNA Delivery Using Functionalized Carbon Dots for Enhanced Conversion of Fibroblasts to Cardiomyocytes. Int. J. Nanomed. 2021, 16, 3741–3754. [Google Scholar] [CrossRef]
- Yameen, B.; Choi, W.I.; Vilos, C.; Swami, A.; Shi, J.; Farokhzad, O.C. Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release 2014, 190, 485–499. [Google Scholar] [CrossRef]
- Kim, H.; Song, B.-W.; Park, S.-J.; Choi, S.W.; Moon, H.; Hwang, K.-C.; Kang, S.-W.; Moon, S.-H.; Yang, Y.; Kwon, I.C.; et al. Ultraefficient extracellular vesicle-guided direct reprogramming of fibroblasts into functional cardiomyocytes. Sci. Adv. 2022, 8, eabj6621. [Google Scholar] [CrossRef]
- Gandham, S.; Su, X.; Wood, J.; Nocera, A.L.; Alli, S.C.; Milane, L.; Zimmerman, A.; Amiji, M.; Ivanov, A.R. Technologies and Standardization in Research on Extracellular Vesicles. Trends Biotechnol. 2020, 38, 1066–1098. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, H.; Chen, Q.; Guo, F.; Zhang, B.; Hu, L.; Huang, X.; Shen, W.; Gao, J.; Chen, W.; et al. Myofibroblast-Targeting Extracellular Vesicles: A Promising Platform for Cardiac Fibrosis Drug Delivery. Biomater. Res. 2025, 29, 0179. [Google Scholar] [CrossRef] [PubMed]
- Macher, M.; Platzman, I.; Spatz, J.P. Bottom-Up Assembly of Bioinspired, Fully Synthetic Extracellular Vesicles. Methods Mol. Biol. 2023, 2654, 263–276. [Google Scholar]
- Yamada, Y.; Sadahiro, T.; Ieda, M. Development of direct cardiac reprogramming for clinical applications. J. Mol. Cell Cardiol. 2023, 178, 1–8. [Google Scholar] [CrossRef]
- Tallquist, M.D. Cardiac Fibroblast Diversity. Annu. Rev. Physiol. 2020, 82, 63–78. [Google Scholar] [CrossRef]
- Romero-Tejeda, M.; Fonoudi, H.; Weddle, C.J.; DeKeyser, J.-M.; Lenny, B.; Fetterman, K.A.; Magdy, T.; Sapkota, Y.; Epting, C.L.; Burridge, P.W. A novel transcription factor combination for direct reprogramming to a spontaneously contracting human cardiomyocyte-like state. J. Mol. Cell Cardiol. 2023, 182, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Schimmel, K.; Stojanović, S.D.; Huang, C.-K.; Jung, M.; Meyer, M.H.; Xiao, K.; Grote-Levi, L.; Bär, C.; Pfanne, A.; Mitzka, S.; et al. Combined high-throughput library screening and next generation RNA sequencing uncover microRNAs controlling human cardiac fibroblast biology. J. Mol. Cell Cardiol. 2021, 150, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.S.; Nguyen, N.U.N.; Nakada, Y.; Hsu, C.-C.; Farag, A.; Lam, N.T.; Wang, P.; Thet, S.; Menendez-Montes, I.; Elhelaly, W.M.; et al. Identification of FDA-approved drugs that induce heart regeneration in mammals. Nat. Cardiovasc. Res. 2024, 3, 372–388. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.S.L.; Palano, G.; Lim, C.; Moggio, A.; Drowley, L.; Plowright, A.T.; Bohlooly-Y, M.; Rosen, B.S.; Hansson, E.M.; Wang, Q.-D.; et al. CRISPR-Knockout Screen Identifies Dmap1 as a Regulator of Chemically Induced Reprogramming and Differentiation of Cardiac Progenitors. Stem Cells 2019, 37, 958–972. [Google Scholar] [CrossRef]
- Zhang, H.; Tian, L.; Shen, M.; Tu, C.; Wu, H.; Gu, M.; Paik, D.T.; Wu, J.C. Generation of Quiescent Cardiac Fibroblasts From Human Induced Pluripotent Stem Cells for In Vitro Modeling of Cardiac Fibrosis. Circ. Res. 2019, 125, 552–566. [Google Scholar] [CrossRef]
- Fernandes, I.; Funakoshi, S.; Hamidzada, H.; Epelman, S.; Keller, G. Modeling cardiac fibroblast heterogeneity from human pluripotent stem cell-derived epicardial cells. Nat. Commun. 2023, 14, 8183. [Google Scholar] [CrossRef]
- Ambroise, R.; Takasugi, P.; Liu, J.; Qian, L. Direct Cardiac Reprogramming in the Age of Computational Biology. J. Cardiovasc. Dev. Dis. 2024, 11, 273. [Google Scholar] [CrossRef]
- The FANTOM Consortium; Rackham, O.J.L.; Firas, J.; Fang, H.; E Oates, M.; Holmes, M.L.; Knaupp, A.S.; Suzuki, H.; Nefzger, C.M.; O Daub, C.; et al. A predictive computational framework for direct reprogramming between human cell types. Nat. Genet. 2016, 48, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Wytock, T.P.; Motter, A.E. Cell reprogramming design by transfer learning of functional transcriptional networks. Proc. Natl. Acad. Sci. USA 2024, 121, e2312942121. [Google Scholar] [CrossRef]
- Capponi, S.; Wang, S. AI in cellular engineering and reprogramming. Biophys. J. 2024, 123, 2658–2670. [Google Scholar] [CrossRef]
- Sasaki, N.; Kok, C.Y.; Westhaus, A.; Alexander, I.E.; Lisowski, L.; Kizana, E. In Search of Adeno-Associated Virus Vectors with Enhanced Cardiac Tropism for Gene Therapy. Heart Lung Circ. 2023, 32, 816–824. [Google Scholar] [CrossRef]
- Gonzalez, T.J.; Mitchell-Dick, A.; Blondel, L.O.; Fanous, M.M.; Hull, J.A.; Oh, D.K.; Moller-Tank, S.; Rivera, R.M.C.; Piedrahita, J.A.; Asokan, A. Structure-guided AAV capsid evolution strategies for enhanced CNS gene delivery. Nat. Protoc. 2023, 18, 3413–3459. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Castillo-Hair, S.; Byeon, G.W.; Bromley, P.; Meuleman, W.; Seelig, G. Iterative deep learning design of human enhancers exploits condensed sequence grammar to achieve cell-type specificity. Cell Syst. 2025, 16, 101302. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, G.M.; Borsos, M.; Barcelona, B.H.; Appling, N.; Mayfield, A.M.H.; Mackey, E.D.; Eser, R.A.; Jackson, C.R.; Chen, X.; Kumar, S.R.; et al. Spatial genomics of AAV vectors reveals mechanism of transcriptional crosstalk that enables targeted delivery of large genetic cargo. Nat. Biotechnol. 2025. [Google Scholar] [CrossRef]
- Murthy, N.; Lee, K.; Yu, P.; Lingampalli, N.; Kim, H.J.; Tang, R. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells. Int. J. Nanomed. 2015, 10, 1841–1854. [Google Scholar] [CrossRef]
- Wang, J.; Yu, L.; Zhou, A.; Liu, J.; Wang, K.; Luo, Y.; Wang, F. Non-Viral Gene Delivery Systems for Treatment of Myocardial Infarction: Targeting Strategies and Cardiac Cell Modulation. Pharmaceutics 2021, 13, 1520. [Google Scholar] [CrossRef]
- Turnbull, I.C.; A Eltoukhy, A.; Fish, K.M.; Nonnenmacher, M.; Ishikawa, K.; Chen, J.; Hajjar, R.J.; Anderson, D.G.; Costa, K.D. Myocardial Delivery of Lipidoid Nanoparticle Carrying modRNA Induces Rapid and Transient Expression [Original Article]. Mol. Ther. 2016, 24, 66–75. [Google Scholar] [CrossRef]
- Ferreira, M.P.A.; Talman, V.; Torrieri, G.; Liu, D.; Marques, G.; Moslova, K.; Liu, Z.; Pinto, J.F.; Hirvonen, J.; Ruskoaho, H.; et al. Dual-Drug Delivery Using Dextran-Functionalized Nanoparticles Targeting Cardiac Fibroblasts for Cellular Reprogramming. Adv. Funct. Mater. 2018, 28, 1705134. [Google Scholar] [CrossRef]
- Maduka, C.V.; Rodriguez-Rivera, G.J.; Garay-Sarmiento, M.; Perry, A.R.; Boyd, S.; Worthington, K.; Burdick, J.A. Engineering nanoparticles that target fibroblast activation protein in cardiac fibrosis. bioRxiv 2025. bioRxiv:2025.04.23.650330. [Google Scholar] [CrossRef]
- Passaro, F.; Tocchetti, C.G.; Spinetti, G.; Paudice, F.; Ambrosone, L.; Costagliola, C.; Cacciatore, F.; Abete, P.; Testa, G. Targeting fibrosis in the failing heart with nanoparticles. Adv. Drug Deliv. Rev. 2021, 174, 461–481. [Google Scholar] [CrossRef] [PubMed]
- van Berlo, J.H.; Kanisicak, O.; Maillet, M.; Vagnozzi, R.J.; Karch, J.; Lin, S.-C.J.; Middleton, R.C.; Marbán, E.; Molkentin, J.D. c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature 2014, 509, 337–341. [Google Scholar] [CrossRef]
- Nygren, J.M.; Jovinge, S.; Breitbach, M.; Säwén, P.; Röll, W.; Hescheler, J.; Taneera, J.; Fleischmann, B.K.; Jacobsen, S.E.W. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med. 2004, 10, 494–501. [Google Scholar] [CrossRef]
- Singh, V.P.; Mathison, M.; Patel, V.; Sanagasetti, D.; Gibson, B.W.; Yang, J.; Rosengart, T.K. MiR-590 Promotes Transdifferentiation of Porcine and Human Fibroblasts Toward a Cardiomyocyte-Like Fate by Directly Repressing Specificity Protein 1. J. Am. Heart Assoc. 2016, 5, e003922. [Google Scholar] [CrossRef]
- Baksh, S.S.; Hodgkinson, C.P. Conservation of miR combo based direct cardiac reprogramming. Biochem. Biophys. Rep. 2022, 31, 101310. [Google Scholar] [CrossRef]
Reagents | Animal Model | In Vivo Conversion Efficiency | Function Improvements | Year |
---|---|---|---|---|
Retroviruses (Gata4, Mef2c, Tbx5); Thymosin β4 protein | Postn-Cre;R26-lacZ or Fsp1-Cre;R26-lacZ mice | ~12% of retrovirus-infected cells in border/infarct tissue sections (Langendorf CM dissociation or immunohistochemistry) | 12 weeks post-MI EF: ~32% vs. ~22% (negative control); 8 weeks post-MI scar size: ~18% vs. ~42% | 2012 [19] |
Retroviruses (Gata4, Hand2, Mef2c, Tbx5) | Fsp1-Cre;R26-lacZ or Tcf21-iCre;R26-tdT mice | 2.5–6.5% of total CMs in border/infarct tissues (Langendorf CM dissociation or immunohistochemistry) | 12 weeks post-MI EF: ~57% vs. ~30% (negative control); 4 weeks post-MI scar size: ~20% vs. ~45% | 2012 [20] |
Retroviruses (Gata4, Mef2c, Tbx5) | αMHC-GFP or nude mice | 1–3% of retrovirus-infected cells (immunohistochemistry) | Not defined | 2012 [51] |
Lentiviruses (Gata4, Mef2c, Tbx5) and adenovirus (VEGF) | Fisher 344 rats | Not defined | 7 weeks post-MI EF: 63 ± 2% vs. 48 ± 2% (negative control); 7 weeks post-MI fibrotic area: 12 ± 2% vs. 24 ± 3% | 2012 [52] |
Lentiviruses (microRNAs-1, 133, 208, and 409) | Fsp1-Cre;R26-tdT mice | ~1% of total CMs in infarct tissues (immuno-histochemistry | Not defined | 2012 [53] |
Lentivirus (polycistronic Gata4, Mef2c, Tbx5) and adenovirus (VEGF) | Fisher 344 rats | Not defined | 7 weeks post-MI EF: 48 ± 3% vs. 39 ± 3% (negative control); 7 weeks post-MI fibrotic area: 21 ± 1% vs. 31 ± 6% | 2014 [54] |
Retrovirus (polycistronic Gata4, Mef2c, Tbx5) | Postn-Cre;R26-lacZ mice | 11–36% of lacZ+ cells in border/infarct tissue sections (immunohistochemistry) | 8 weeks post-MI EF: ~38% vs. ~18% (negative control); 4 weeks post-MI scar size: ~20% vs. ~40% | 2015 [55] |
Lentiviruses (microRNAs-1, 133, 208, and 409) | Fsp1-Cre;R26-tdT mice | ~12% of total CMs in the peri-infarct tissue sections (immunohistochemistry) | 3 months post-MI FS: ~30% vs. ~20% (negative control); 1-month post-MI Fibrosis: ~10% vs. ~25%. | 2015 [56] |
Retroviruses (Gata4, Mef2c, Tbx5); Small molecules (SB431542, XAV939) | Postn-Cre:R26-YFP mice | 150–200 YFP+ iCMs in multiple heart sections (immunohistochemistry) | 12 weeks post-MI EF: ~35% vs. ~22% (negative control); 12 weeks post-MI scar size: ~12% vs. ~38% | 2017 [57] |
Adenoviruses or lentiviruses (Gata4, Mef2c, Tbx5) | Sprague Dawley rats | Not defined | 4 weeks post-MI change in EF: echocardiography: 58 ± 3% (Adeno-) or 50 ± 4% (Lent-) vs. 51 ± 2% (negative control); MRI: 60 ± 2% (Adeno-) or 57 ± 3% (Lent-) vs. 56 ± 2%; 4 weeks post-MI fibrotic area: ~6% vs. ~10% | 2017 [58] |
Sendai viruses (Gata4, Mef2c, and Tbx5) | Tcf21-iCre;R26-tdT mice | ~1.5% of tdT+ cells | 4 weeks post-MI EF: ~35% vs. ~25% (negative control); 4 weeks post-MI fibrotic area: ~10% vs. ~30% | 2018 [59] |
AAVs (Gata4, Mef2c, Tbx5, and thymosin β4) | Mice of undefined background | Not defined | Decreased fibrotic area, increased LV wall thickness, increased capillary density, decreased apoptosis, and increased CM markers | 2018 [60] |
Cationic gold nanoparticles/PEI (Gata4, Mef2c, and Tbx5 plasmids | C57BL/6 J mice | Not defined | Decreased scar or fibrosis area, increased infarct thickness, and increased CM markers | 2019 [61] |
AAVs (microRNAs-1, 133, 208, and 409) | Fsp1-Cre;R26-tdT mice | ~19% of total CMs in peri-infarct region (immunohistochemistry) | Not defined | 2020 [62] |
Peptide-modified mesoporous silicon nanoparticles (microRNAs-1, 133, 208, and 409) | Fsp1-Cre;R26-tdT mice | ~1.5% of tdT+ cells in the infarct area (immunohistochemistry) | 4 weeks post-MI EF: ~50% vs. ~28% (negative control); 4 weeks post-MI Scar size in total LV area: ~25% vs. ~60% | 2021 [63] |
Modified mRNA (Gata4, Mef2c, Tbx5, Hand2) and reprogramming-helper genes (dominant-negative (DN)-TGFβ, DN-Wnt8a, and acid ceramidase) | Tnnt2-iCre;R26-mTmG mice | 24% of total non-CMs (mT+ cells) in the infarct area (immunohistochemistry) | 4 weeks post-MI EF: 42% vs. 20% (negative control); 4 weeks post-MI fibrotic size: 10% vs. 17%; increased survival rate; increased capillary density | 2021 [64] |
Sendai Viruses (Gata4, Mef2c, Tbx5) | Tcf21-iCre;R26-mTmG mice | 1.0–1.5% of mG+ cells in the infarct myocardium (immunohistochemistry). Fused cells counted for ~0.3%. | Not defined | 2021 [65] |
Lentivirus (Gata4, Mef2c, Tbx5, Sall4, MyoCD) and small molecules (ruxolitinib and SB431542) | Tnni3-Dre;Postn-iCre;IR1-ZsGreen/tdT or Tnni3-Dre;R26-iCre;IR1-ZsGreen/tdT mice | ~28% of Postn-traced cells or ~40% of R26-traced non-CM cells (immunohistochemistry). Fused cells counted for ~4%. | 4 weeks post-MI EF: ~34% vs. ~17% (negative control) | 2023 [39] |
Chemical cocktail (CHIR99021, RepSox, Forskolin, VPA, Parnate, TTNPB, Rolipram) | Fsp1-Cre:R26-tdT or Pdgfrα-DreER;R26-tdT mice | ~0.9% of tdT+ cells in the heart sections (immunohistochemistry) | Not defined | 2024 [48] |
AAVs (Gata4, Hand2, Tbx5, and Mef2c-fused with MYOD transactivation domain) | Postn-iCre:R26-tdT or Tcf21-iCre:R26-tdT mice | ~1.8% of tdT+ cells at the border area (immunohistochemistry) | 4 weeks post-MI EF: ~32% vs. ~25% (negative control); 4 weeks post-MI fibrotic area: ~20% vs. ~45% | 2024 [66] |
Retrovirus (PHF7) | Tcf21-iCre;R26-mTmG mice | ~2% of mG+ cells in the infarct area (immunohistochemistry) Fused cells counted for ~0.4%. | 21 days post-MI EF (echocardiography): ~60% vs. 50% (negative control); 14 to 16 weeks post-MI EF (MRI): ~25% vs. ~10%. 16-week fibrosis: ~52 µm2 vs. ~102 µm2; increased survival rate | 2025 [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, W.; Dutta, S.; He, X.; Chen, S.; Saleem, M.Z.; Wang, Y.; Liang, J. In Vivo Targeted Reprogramming of Cardiac Fibroblasts for Heart Regeneration: Advances and Therapeutic Potential. Bioengineering 2025, 12, 940. https://doi.org/10.3390/bioengineering12090940
Ahmad W, Dutta S, He X, Chen S, Saleem MZ, Wang Y, Liang J. In Vivo Targeted Reprogramming of Cardiac Fibroblasts for Heart Regeneration: Advances and Therapeutic Potential. Bioengineering. 2025; 12(9):940. https://doi.org/10.3390/bioengineering12090940
Chicago/Turabian StyleAhmad, Waqas, Suchandrima Dutta, Xingyu He, Sophie Chen, Muhammad Zubair Saleem, Yigang Wang, and Jialiang Liang. 2025. "In Vivo Targeted Reprogramming of Cardiac Fibroblasts for Heart Regeneration: Advances and Therapeutic Potential" Bioengineering 12, no. 9: 940. https://doi.org/10.3390/bioengineering12090940
APA StyleAhmad, W., Dutta, S., He, X., Chen, S., Saleem, M. Z., Wang, Y., & Liang, J. (2025). In Vivo Targeted Reprogramming of Cardiac Fibroblasts for Heart Regeneration: Advances and Therapeutic Potential. Bioengineering, 12(9), 940. https://doi.org/10.3390/bioengineering12090940