A Bivalent Protease-Activated Receptor-Derived Peptide Mimics Neuronal Anti-Apoptotic Activity of Activated Protein C
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture and Immunocytochemistry Reagents
2.2. Isolation and Culture of Primary Mouse Cortical Neurons
2.3. Confirmation of Neuronal Cultures
2.4. Induction and Analysis of Apoptosis and of Caspase-3 in Neuronal Cultures Treated with NMDA
2.5. Western Blotting Analysis
2.6. Statistical Analysis
3. Results
3.1. Characterization of Cultured Neuronal Cells
3.2. Anti-Apoptotic Activity of G10 Peptide Mimics Anti-Apoptotic Activity of APC on NMDA-Challenged Neurons
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APC | Activated protein |
PAR | Protease-activated receptor |
NMDA | N-methyl-D-aspartate |
DMEM | Dulbecco’s Modified Eagle Medium |
EBSS | Ca2+ and Mg2+-free Earle’s Balanced Salt Solution |
TUNEL | Terminal deoxynucleotide transferase dUTP nick end labeling |
NeuN | Neuronal nuclear antigen |
References
- Shibata, M.; Kumar, S.R.; Amar, A.; Fernandez, J.A.; Hofman, F.; Griffin, J.H.; Zlokovic, B.V. Anti-inflammatory, antithrombotic, and neuroprotective effects of activated protein C in a murine model of focal ischemic stroke. Circulation 2001, 103, 1799–1805. [Google Scholar] [CrossRef]
- Griffin, J.H.; Mosnier, L.O.; Fernandez, J.A.; Zlokovic, B.V. 2016 Scientific Sessions Sol Sherry Distinguished Lecturer in Thrombosis: Thrombotic Stroke: Neuroprotective Therapy by Recombinant-Activated Protein C. Arter. Thromb. Vasc. Biol. 2016, 36, 2143–2151. [Google Scholar] [CrossRef]
- Griffin, J.H.; Zlokovic, B.V.; Mosnier, L.O. Activated protein C, protease activated receptor 1, and neuroprotection. Blood 2018, 132, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Mosnier, L.O.; Sinha, R.K.; Burnier, L.; Bouwens, E.A.; Griffin, J.H. Biased agonism of protease-activated receptor 1 by activated protein C caused by noncanonical cleavage at Arg46. Blood 2012, 120, 5237–5246. [Google Scholar] [CrossRef]
- Burnier, L.; Mosnier, L.O. Novel mechanisms for activated protein C cytoprotective activities involving noncanonical activation of protease-activated receptor 3. Blood 2013, 122, 807–816. [Google Scholar] [CrossRef]
- Feistritzer, C.; Schuepbach, R.A.; Mosnier, L.O.; Bush, L.A.; Di Cera, E.; Griffin, J.H.; Riewald, M. Protective signaling by activated protein C is mechanistically linked to protein C activation on endothelial cells. J. Biol. Chem. 2006, 281, 20077–20084. [Google Scholar] [CrossRef]
- Healy, L.D.; Fernandez, J.A.; Aiolfi, R.; Mosnier, L.O.; Griffin, J.H. An orthosteric/allosteric bivalent peptide agonist comprising covalently linked protease-activated receptor-derived peptides mimics in vitro and in vivo activities of activated protein C. J. Thromb. Haemost. 2024, 22, 2039–2051. [Google Scholar] [CrossRef]
- Drucker, D.J. GLP-1-based therapies for diabetes, obesity and beyond. Nat. Rev. Drug Discov. 2025, 24, 631–650. [Google Scholar] [CrossRef] [PubMed]
- Davenport, A.P.; Scully, C.C.G.; de Graaf, C.; Brown, A.J.H.; Maguire, J.J. Advances in therapeutic peptides targeting G protein-coupled receptors. Nat. Rev. Drug Discov. 2020, 19, 389–413. [Google Scholar] [CrossRef]
- Di Pizio, A.; Bermudez, M.; De Graaf, C.; Jockers, R. Editorial: Peptide-binding GPCRs coming of age. Front. Endocrinol. 2023, 14, 1189508. [Google Scholar] [CrossRef] [PubMed]
- Zong, P.; Feng, J.; Yue, Z.; Li, Y.; Wu, G.; Sun, B.; He, Y.; Miller, B.; Yu, A.S.; Su, Z.; et al. Functional coupling of TRPM2 and extrasynaptic NMDARs exacerbates excitotoxicity in ischemic brain injury. Neuron 2022, 110, 1944–1958.E8. [Google Scholar] [CrossRef]
- Bonfoco, E.; Krainc, D.; Ankarcrona, M.; Nicotera, P.; Lipton, S.A. Apoptosis and necrosis: Two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc. Natl. Acad. Sci. USA 1995, 92, 7162–7166. [Google Scholar] [CrossRef]
- Yang, L.; Yang, Z.M.; Zhang, N.; Tian, Z.; Liu, S.B.; Zhao, M.G. Neuroprotective effects of vitexin by inhibition of NMDA receptors in primary cultures of mouse cerebral cortical neurons. Mol. Cell. Biochem. 2014, 386, 251–258. [Google Scholar] [CrossRef]
- Ariawan, D.; van der Hoven, J.; Morey, N.; Pushpitha, K.; Genoud, S.; Stefen, H.; Veltman, S.; Przybyla, M.; Deng, Y.; Fath, T.; et al. Engineered Cyclotide Blocks Neuronal Excitotoxicity. J. Med. Chem. 2025, 68, 5211–5221. [Google Scholar] [CrossRef]
- Yuan, H.; Hansen, K.B.; Vance, K.M.; Ogden, K.K.; Traynelis, S.F. Control of NMDA receptor function by the NR2 subunit amino-terminal domain. J. Neurosci. 2009, 29, 12045–12058. [Google Scholar] [CrossRef] [PubMed]
- Henson, M.A.; Roberts, A.C.; Perez-Otano, I.; Philpot, B.D. Influence of the NR3A subunit on NMDA receptor functions. Prog. Neurobiol. 2010, 91, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Wang, Y.; Guo, H.; Sagare, A.; Fernandez, J.A.; Bell, R.D.; Barrett, T.M.; Griffin, J.H.; Freeman, R.S.; Zlokovic, B.V. Protein S protects neurons from excitotoxic injury by activating the TAM receptor Tyro3-phosphatidylinositol 3-kinase-Akt pathway through its sex hormone-binding globulin-like region. J. Neurosci. 2010, 30, 15521–15534. [Google Scholar] [CrossRef] [PubMed]
- Gorbacheva, L.R.; Storozhevykh, T.P.; Pinelis, V.G.; Davydova, O.N.; Ishiwata, S.; Strukova, S.M. Activated protein C via PAR1 receptor regulates survival of neurons under conditions of glutamate excitotoxicity. Biochemistry 2008, 73, 717–724. [Google Scholar] [CrossRef]
- Guo, H.; Wang, Y.; Singh, I.; Liu, D.; Fernandez, J.A.; Griffin, J.H.; Chow, N.; Zlokovic, B.V. Species-dependent neuroprotection by activated protein C mutants with reduced anticoagulant activity. J. Neurochem. 2009, 109, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Babkina, I.; Savinkova, I.; Molchanova, T.; Sidorova, M.; Surin, A.; Gorbacheva, L. Neuroprotective Effects of Noncanonical PAR1 Agonists on Cultured Neurons in Excitotoxicity. Int. J. Mol. Sci. 2024, 25, 1221. [Google Scholar] [CrossRef]
- Healy, L.D.; Fernandez, J.A.; Mosnier, L.O.; Griffin, J.H. Activated protein C and PAR1-derived and PAR3-derived peptides are anti-inflammatory by suppressing macrophage NLRP3 inflammasomes. J. Thromb. Haemost. 2021, 19, 269–280. [Google Scholar] [CrossRef]
- Fricker, M.; Tolkovsky, A.M.; Borutaite, V.; Coleman, M.; Brown, G.C. Neuronal Cell Death. Physiol. Rev. 2018, 98, 813–880. [Google Scholar] [CrossRef]
- Lorente, J.S.; Sokolov, A.V.; Ferguson, G.; Schioth, H.B.; Hauser, A.S.; Gloriam, D.E. GPCR drug discovery: New agents, targets and indications. Nat. Rev. Drug Discov. 2025, 24, 458–479. [Google Scholar] [CrossRef]
- Alessio, S.D.; Griffin, J.H.; Danese, S. A novel peptide can significantly improve preclinical outcomes in a murine dextran sulfate sodium model of colitis. United Eur. Gastroenterol. J. 2024, 12, 867. [Google Scholar]
- Mosnier, L.O.; Zlokovic, B.V.; Griffin, J.H. The cytoprotective protein C pathway. Blood 2007, 109, 3161–3172. [Google Scholar] [CrossRef] [PubMed]
- Griffin, J.H.; Zlokovic, B.V.; Mosnier, L.O. Activated protein C: Biased for translation. Blood 2015, 125, 2898–2907. [Google Scholar] [CrossRef]
- Ren, D.; Giri, H.; Li, J.; Rezaie, A.R. The Cardioprotective Signaling Activity of Activated Protein C in Heart Failure and Ischemic Heart Diseases. Int. J. Mol. Sci. 2019, 20, 1762. [Google Scholar] [CrossRef]
- Shahzad, K.; Kohli, S.; Al-Dabet, M.M.; Isermann, B. Cell biology of activated protein C. Curr. Opin. Hematol. 2019, 26, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Kunze, G.; Isermann, B. Targeting biased signaling by PAR1: Function and molecular mechanism of parmodulins. Blood 2023, 141, 2675–2684. [Google Scholar] [CrossRef]
- Fox, W.O.; Preston, R.J.S. Molecular basis of protease-activated receptor 1 signaling diversity. J. Thromb. Haemost. 2020, 18, 6–16. [Google Scholar] [CrossRef]
- Leon, G.; Rehill, A.M.; Preston, R.J.S. The protein C pathways. Curr. Opin. Hematol. 2022, 29, 251–258. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sagare, A.; Kim, Y.; Kisler, K.; Rust, R.; Mack, W.J.; Fernández, J.A.; Zlokovic, B.V.; Griffin, J.H. A Bivalent Protease-Activated Receptor-Derived Peptide Mimics Neuronal Anti-Apoptotic Activity of Activated Protein C. Bioengineering 2025, 12, 899. https://doi.org/10.3390/bioengineering12090899
Sagare A, Kim Y, Kisler K, Rust R, Mack WJ, Fernández JA, Zlokovic BV, Griffin JH. A Bivalent Protease-Activated Receptor-Derived Peptide Mimics Neuronal Anti-Apoptotic Activity of Activated Protein C. Bioengineering. 2025; 12(9):899. https://doi.org/10.3390/bioengineering12090899
Chicago/Turabian StyleSagare, Abhay, Youbin Kim, Kassandra Kisler, Ruslan Rust, William J. Mack, José A. Fernández, Berislav V. Zlokovic, and John H. Griffin. 2025. "A Bivalent Protease-Activated Receptor-Derived Peptide Mimics Neuronal Anti-Apoptotic Activity of Activated Protein C" Bioengineering 12, no. 9: 899. https://doi.org/10.3390/bioengineering12090899
APA StyleSagare, A., Kim, Y., Kisler, K., Rust, R., Mack, W. J., Fernández, J. A., Zlokovic, B. V., & Griffin, J. H. (2025). A Bivalent Protease-Activated Receptor-Derived Peptide Mimics Neuronal Anti-Apoptotic Activity of Activated Protein C. Bioengineering, 12(9), 899. https://doi.org/10.3390/bioengineering12090899