The Evaluation of Cellulose from Agricultural Waste as a Polymer for the Controlled Release of Ibuprofen Through the Formulation of Multilayer Tablets
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cellulose Extraction
2.3. Physicochemical Characterization
2.3.1. Fourier Transform Infrared Spectroscopy
2.3.2. Thermogravimetric Analysis (TGA)
2.3.3. X-Ray Diffraction (XRD)
2.4. Tablet Preparation
2.5. Hardness of Tablets
2.6. Ibuprofen Release and Quantification
3. Results
3.1. Functional Groups of Commercial Cellulose
3.2. Functional Groups of Agricultural Waste Extracted Cellulose
3.3. Thermal Stability of Cellulose
3.4. X-Ray Diffraction Analysis (XRD)
3.5. The Hardness of the Tablets
3.6. Ibuprofen Release Profiles
3.6.1. Ibuprofen Release from Tablets Made of Commercial Cellulose
3.6.2. Ibuprofen Release from Tablets Made of Rice Husk Cellulose
3.6.3. Ibuprofen Release from Tablets Made of Orange Peel Cellulose
3.6.4. Comparison Between Two-Layer and Three-Layer Release Profiles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riera, M.A.; Maldonado, S.; Palma, R. Residuos Agroindustriales Generados En Ecuador Para La Elaboración De Bioplásticos. Rev. Ing. Ind. 2019, 17, 227–246. [Google Scholar] [CrossRef]
- García, A.; Gandini, A.; Labidi, J.; Belgacem, N.; Bras, J. Industrial and Crop Wastes: A New Source for Nanocellulose Biorefinery. Ind. Crops Prod. 2016, 93, 26–38. [Google Scholar] [CrossRef]
- Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Cortés-García, F.J.; Camacho-Ferre, F. Agricultural Waste: Review of the Evolution, Approaches and Perspectives on Alternative Uses. Glob. Ecol. Conserv. 2020, 22, e00902. [Google Scholar] [CrossRef]
- Sharma, N.; Allardyce, B.J.; Rajkhowa, R.; Agrawal, R. Rice Straw-Derived Cellulose: A Comparative Study of Various Pre-Treatment Technologies and Its Conversion to Nanofibres. Sci. Rep. 2023, 13, 16327. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Lü, X. Composition of Plant Biomass and Its Impact on Pretreatment. In Advances in 2nd Generation of Bioethanol Production; Elsevier: Amsterdam, The Netherlands, 2021; pp. 71–85. ISBN 978-0-12-818862-0. [Google Scholar]
- Macuja, J.C.O.; Ruedas, L.N.; España, R.C.N. Utilization of Cellulose from Luffa cylindrica Fiber as Binder in Acetaminophen Tablets. Adv. Environ. Chem. 2015, 2015, 243785. [Google Scholar] [CrossRef]
- Bravo, I.; Figueroa, F.; Swasy, M.I.; Attia, M.F.; Ateia, M.; Encalada, D.; Vizuete, K.; Galeas, S.; Guerrero, V.H.; Debut, A.; et al. Cellulose Particles Capture Aldehyde VOC Pollutants. RSC Adv. 2020, 10, 7967–7975. [Google Scholar] [CrossRef]
- Ventura-Cruz, S.; Tecante, A. Nanocellulose and Microcrystalline Cellulose from Agricultural Waste: Review on Isolation and Application as Reinforcement in Polymeric Matrices. Food Hydrocoll. 2021, 118, 106771. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, X.; Gao, D.; Xia, K. Bulk Cellulose Plastic Materials from Processing Cellulose Powder Using Back Pressure-Equal Channel Angular Pressing. Carbohydr. Polym. 2012, 87, 2470–2476. [Google Scholar] [CrossRef]
- Insuasti-Cruz, E.; Suárez-Jaramillo, V.; Mena Urresta, K.A.; Pila-Varela, K.O.; Fiallos-Ayala, X.; Dahoumane, S.A.; Alexis, F. Natural Biomaterials from Biodiversity for Healthcare Applications. Adv. Healthc. Mater. 2022, 11, 2101389. [Google Scholar] [CrossRef]
- Domínguez-Robles, J.; Stewart, S.A.; Rendl, A.; González, Z.; Donnelly, R.F.; Larrañeta, E. Lignin and Cellulose Blends as Pharmaceutical Excipient for Tablet Manufacturing via Direct Compression. Biomolecules 2019, 9, 423. [Google Scholar] [CrossRef]
- Shokri, J.; Adibki, K. Application of Cellulose and Cellulose Derivatives in Pharmaceutical Industries. In Cellulos—Medical, Pharmaceutical and Electronic Applications; Van De Ven, T.G.M., Ed.; IntechOpen Books: London, UK, 2013; ISBN 978-953-51-1191-7. [Google Scholar]
- Zamora-Mendoza, L.; Gushque, F.; Yanez, S.; Jara, N.; Álvarez-Barreto, J.F.; Zamora-Ledezma, C.; Dahoumane, S.A.; Alexis, F. Plant Fibers as Composite Reinforcements for Biomedical Applications. Bioengineering 2023, 10, 804. [Google Scholar] [CrossRef] [PubMed]
- Faheed, N.K. Advantages of Natural Fiber Composites for Biomedical Applications: A Review of Recent Advances. Emergent Mater. 2024, 7, 63–75. [Google Scholar] [CrossRef]
- Purnomo; Setyarini, P.H.; Cahyandari, D. Potential Natural Fiber-Reinforced Composite for Biomedical Application. IOP Conf. Ser. Mater. Sci. Eng. 2019, 494, 012018. [Google Scholar] [CrossRef]
- Seydibeyoğlu, M.Ö.; Mohanty, A.K.; Misra, M. (Eds.) Fiber Technology for Fiber-Reinforced Composites; Woodhead Publishing Series in Composites Science and Engineering; Woodhead Publishing, an Imprint of Elsevier: Duxford, UK; Cambridge, MA, USA; Kidlington, UK, 2017; ISBN 978-0-08-101871-2. [Google Scholar]
- Guamba, E.; Vispo, N.S.; Whitehead, D.C.; Singh, A.K.; Santos-Oliveira, R.; Niebieskikwiat, D.; Zamora-Ledezma, C.; Alexis, F. Cellulose-Based Hydrogels towards an Antibacterial Wound Dressing. Biomater. Sci. 2023, 11, 3461–3468. [Google Scholar] [CrossRef]
- Kundu, R.; Mahada, P.; Chhirang, B.; Das, B. Cellulose Hydrogels: Green and Sustainable Soft Biomaterials. Curr. Res. Green Sustain. Chem. 2022, 5, 100252. [Google Scholar] [CrossRef]
- Kabir, S.M.F.; Sikdar, P.P.; Haque, B.; Bhuiyan, M.A.R.; Ali, A.; Islam, M.N. Cellulose-Based Hydrogel Materials: Chemistry, Properties and Their Prospective Applications. Prog. Biomater. 2018, 7, 153–174. [Google Scholar] [CrossRef]
- Shaikh, R.; O’Brien, D.P.; Croker, D.M.; Walker, G.M. The Development of a Pharmaceutical Oral Solid Dosage Forms. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2018; Volume 41, pp. 27–65. ISBN 978-0-444-63963-9. [Google Scholar] [CrossRef]
- Seddiqi, H.; Oliaei, E.; Honarkar, H.; Jin, J.; Geonzon, L.C.; Bacabac, R.G.; Klein-Nulend, J. Cellulose and Its Derivatives: Towards Biomedical Applications. Cellulose 2021, 28, 1893–1931. [Google Scholar] [CrossRef]
- Dias, F.; Duarte, C. Cellulose and Its Derivatives Use in the Pharmaceutical Compounding Practice. In Cellulose—Medical, Pharmaceutical and Electronic Applications; IntechOpen Books: London, UK, 2013; pp. 141–162. ISBN 978-953-51-1191-7. [Google Scholar]
- Efentakis, M.; Peponaki, C. Formulation Study and Evaluation of Matrix and Three-Layer Tablet Sustained Drug Delivery Systems Based on Carbopols with Isosorbite Mononitrate. AAPS PharmSciTech 2008, 9, 917–923. [Google Scholar] [CrossRef]
- Gopinath, V.; Saravanan, S.; Al-Maleki, A.R.; Ramesh, M.; Vadivelu, J. A Review of Natural Polysaccharides for Drug Delivery Applications: Special Focus on Cellulose, Starch and Glycogen. Biomed. Pharmacother. 2018, 107, 96–108. [Google Scholar] [CrossRef]
- Efentakis, M.; Naseef, H.; Vlachou, M. Two- and Three-Layer Tablet Drug Delivery Systems for Oral Sustained Release of Soluble and Poorly Soluble Drugs. Drug Dev. Ind. Pharm. 2010, 36, 903–916. [Google Scholar] [CrossRef]
- Blicharski, T.; Swiader, K.; Serefko, A.; Kulczycka-Mamona, S.; Kolodziejczyk, M.; Szopa, A. Challenges in Technology of Bilayer and Multi-Layer Tablets: A Mini-Review. Curr. Issues Pharm. Med. Sci. 2019, 32, 229–235. [Google Scholar] [CrossRef]
- Bellini, M.; Walther, M.; Bodmeier, R. Evaluation of Manufacturing Process Parameters Causing Multilayer Tablets Delamination. Int. J. Pharm. 2019, 570, 118607. [Google Scholar] [CrossRef] [PubMed]
- Pereira, B.C.; Isreb, A.; Forbes, R.T.; Dores, F.; Habashy, R.; Petit, J.-B.; Alhnan, M.A.; Oga, E.F. ‘Temporary Plasticiser’: A Novel Solution to Fabricate 3D Printed Patient-Centred Cardiovascular ‘Polypill’ Architectures. Eur. J. Pharm. Biopharm. 2019, 135, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Abebe, A.; Akseli, I.; Sprockel, O.; Kottala, N.; Cuitiño, A.M. Review of Bilayer Tablet Technology. Int. J. Pharm. 2014, 461, 549–558. [Google Scholar] [CrossRef]
- Goyanes, A.; Wang, J.; Buanz, A.; Martínez-Pacheco, R.; Telford, R.; Gaisford, S.; Basit, A.W. 3D Printing of Medicines: Engineering Novel Oral Devices with Unique Design and Drug Release Characteristics. Mol. Pharm. 2015, 12, 4077–4084. [Google Scholar] [CrossRef]
- Demiri, V.; Stranzinger, S.; Rinner, P.; Piller, M.; Sacher, S.; Lingitz, J.; Khinast, J.; Salar-Behzadi, S. Gluing Pills Technology: A Novel Route to Multilayer Tablet Manufacturing. Int. J. Pharm. 2018, 548, 672–681. [Google Scholar] [CrossRef]
- Hwang, K.-M.; Cho, C.-H.; Lee, S.-H.; Kim, J.-Y.; Park, E.-S. Preformulation and Evaluation of Multi-Layer Tablets. J. Pharm. Investig. 2024, 54, 161–174. [Google Scholar] [CrossRef]
- Chidambaram, N.; Porter, W.; Flood, K.; Qiu, Y. Formulation and Characterization of New Layered Diffusional Matrices for Zero-Order Sustained Release. J. Control. Release 1998, 52, 149–158. [Google Scholar] [CrossRef]
- Abdul, S.; Poddar, S. A Flexible Technology for Modified Release of Drugs: Multi Layered Tablets. J. Control. Release 2004, 97, 393–405. [Google Scholar] [CrossRef]
- Chen, T.; He, X.; Jiang, T.; Liu, W.; Li, Y.; Liu, P.; Liu, Z. Synthesis and Drug Delivery Properties of Ibuprofen-Cellulose Nanofibril System. Int. J. Biol. Macromol. 2021, 182, 931–937. [Google Scholar] [CrossRef]
- Bushra, R.; Aslam, N. An Overview of Clinical Pharmacology of Ibuprofen. Oman Med. J. 2010, 25, 155–161. [Google Scholar] [CrossRef]
- Nerurkar, J.; Jun, H.W.; Price, J.C.; Park, M.O. Controlled-Release Matrix Tablets of Ibuprofen Using Cellulose Ethers and Carrageenans: Effect of Formulation Factors on Dissolution Rates. Eur. J. Pharm. Biopharm. 2005, 61, 56–68. [Google Scholar] [CrossRef]
- Llera-Rojas, V.G.; Hernández-Salgado, M.; Quintanar-Guerrero, D.; Leyva-Gómez, G.; Mendoza-Elvira, S.; Villalobos-García, R. Comparative Study of the Release Profiles of Ibuprofen from Polymeric Nanocapsules and Nanospheres. J. Mex. Chem. Soc. 2019, 63, 61–70. [Google Scholar] [CrossRef]
- Ngo, V.T.H.; Bajaj, T. Ibuprofen. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Amidon, G.L.; Lennernäs, H.; Shah, V.P.; Crison, J.R. A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of in Vitro Drug Product Dissolu-Tion and in Vivo Bioavailability. Pharm. Res. 1995, 12, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Medina Lopez, J.R.; Lugo, C.; Hurtado Y de la Peña, M.; Domínguez, A. In Vitro Release Study of Ibuprofen Dragees: Dose and Dissolution Apparatus Influence. Rev. Mex. Cienc. Farm. 1995, 46, 24–32. [Google Scholar]
- Noppakundilograt, S.; Buranagul, P.; Graisuwan, W.; Koopipat, C.; Kiatkamjornwong, S. Modified Chitosan Pretreatment of Polyester Fabric for Printing by Ink Jet Ink. Carbohydr. Polym. 2010, 82, 1124–1135. [Google Scholar] [CrossRef]
- Lin, M.; Meng, S.; Zhong, W.; Li, Z.; Du, Q.; Tomasik, P. Novel Biodegradable Blend Matrices for Controlled Drug Release. J. Pharm. Sci. 2008, 97, 4240–4248. [Google Scholar] [CrossRef]
- Morán, J.I.; Alvarez, V.A.; Cyras, V.P.; Vázquez, A. Extraction of Cellulose and Preparation of Nanocellulose from Sisal Fibers. Cellulose 2008, 15, 149–159. [Google Scholar] [CrossRef]
- Bethke, K.; Palantöken, S.; Andrei, V.; Roß, M.; Raghuwanshi, V.S.; Kettemann, F.; Greis, K.; Ingber, T.T.K.; Stückrath, J.B.; Valiyaveettil, S.; et al. Functionalized Cellulose for Water Purification, Antimicrobial Applications, and Sensors. Adv. Funct. Mater. 2018, 28, 1800409. [Google Scholar] [CrossRef]
- Cai, J.; Xu, D.; Dong, Z.; Yu, X.; Yang, Y.; Banks, S.W.; Bridgwater, A.V. Processing Thermogravimetric Analysis Data for Isoconversional Kinetic Analysis of Lignocellulosic Biomass Pyrolysis: Case Study of Corn Stalk. Renew. Sustain. Energy Rev. 2018, 82, 2705–2715. [Google Scholar] [CrossRef]
- Vaca-Medina, G.; Jallabert, B.; Viet, D.; Peydecastaing, J.; Rouilly, A. Effect of Temperature on High Pressure Cellulose Compression. Cellulose 2013, 20, 2311–2319. [Google Scholar] [CrossRef]
- Haider, Y.M.; Abdullah, Z.S.; Jani, G.H.; Mokhtar, N. Evaluation of Some Mechanical Properties of a Maxillofacial Silicon Elastomer Reinforced with Polyester Powder. Int. J. Dent. 2019, 2019, 2948457. [Google Scholar] [CrossRef]
- Shehata, S.; Serpell, C.J.; Biagini, S.C.G. Architecture-Controlled Release of Ibuprofen from Polymeric Nanoparticles. Mater. Today Commun. 2020, 25, 101562. [Google Scholar] [CrossRef]
- Putri, V.S. Validation of UV-Vis Spectrophotometric Method to Determine Drug Release of Quercetin Loaded-Nanoemulsion. Indones. J. Pharm. 2023, 34, 272–279. [Google Scholar] [CrossRef]
- Hospodarova, V.; Singovszka, E.; Stevulova, N. Characterization of Cellulosic Fibers by FTIR Spectroscopy for Their Further Implementation to Building Materials. AJAC 2018, 09, 303–310. [Google Scholar] [CrossRef]
- Mironova, M.; Makarov, I.; Golova, L.; Vinogradov, M.; Shandryuk, G.; Levin, I. Improvement in Carbonization Efficiency of Cellulosic Fibres Using Silylated Acetylene and Alkoxysilanes. Fibers 2019, 7, 84. [Google Scholar] [CrossRef]
- Hideno, A. Thermogravimetric Analysis-Based Characterization of Suitable Biomass for Alkaline Peroxide Treatment to Obtain Cellulose and Fermentable Sugars. BioRes 2020, 15, 6217–6229. [Google Scholar] [CrossRef]
- French, A.D. Idealized Powder Diffraction Patterns for Cellulose Polymorphs. Cellulose 2014, 21, 885–896. [Google Scholar] [CrossRef]
- Park, S.; Baker, J.O.; Himmel, M.E.; Parilla, P.A.; Johnson, D.K. Cellulose Crystallinity Index: Measurement Techniques and Their Impact on Interpreting Cellulase Performance. Biotechnol. Biofuels 2010, 3, 10. [Google Scholar] [CrossRef]
- Ghiaskar, A.; Damghani Nouri, M. High-velocity Impact Behavior and Quasi-static Indentation of New Elastomeric Nanocomposites Reinforced with Cellulose Nanofibers and Lignin Powder. Polym. Compos. 2024, 45, 2500–2516. [Google Scholar] [CrossRef]
- Singh, S.Y.; Verma, R.; Kumar, L. Porous Oral Drug Delivery System: Tablets. Pharm. Chem. J. 2018, 52, 553–561. [Google Scholar] [CrossRef]
- Johar, N.; Ahmad, I.; Dufresne, A. Extraction, Preparation and Characterization of Cellulose Fibres and Nanocrystals from Rice Husk. Ind. Crops Prod. 2012, 37, 93–99. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to Read and Interpret FTIR Spectroscope of Organic Material. Indones. J. Sci. Technol. 2019, 4, 97. [Google Scholar] [CrossRef]
- Nurazzi, N.M.; Asyraf, M.R.M.; Rayung, M.; Norrrahim, M.N.F.; Shazleen, S.S.; Rani, M.S.A.; Shafi, A.R.; Aisyah, H.A.; Radzi, M.H.M.; Sabaruddin, F.A.; et al. Thermogravimetric Analysis Properties of Cellulosic Natural Fiber Polymer Composites: A Review on Influence of Chemical Treatments. Polymers 2021, 13, 2710. [Google Scholar] [CrossRef] [PubMed]
- Pintiaux, T.; Heuls, M.; Vandenbossche, V.; Murphy, T.; Wuhrer, R.; Castignolles, P.; Gaborieau, M.; Rouilly, A. Cellulose Consolidation under High-Pressure and High-Temperature Uniaxial Compression. Cellulose 2019, 26, 2941–2954. [Google Scholar] [CrossRef]
- Andersson, J.; Rosenholm, J.; Areva, S.; Lindén, M. Influences of Material Characteristics on Ibuprofen Drug Loading and Release Profiles from Ordered Micro- and Mesoporous Silica Matrices. Chem. Mater. 2004, 16, 4160–4167. [Google Scholar] [CrossRef]
- Koduri, S.C.; Napoleon, A.A. Mathematical Model Application for In Vitro Release Kinetics of Ranolazine Extended-Release Tablets. Dissolut. Technol. 2024, 31, 182–188. [Google Scholar] [CrossRef]
- Goldmünz, E.Y.; Aserin, A.; Pal, A.; Shimon, D.; Ottaviani, M.F.; Garti, N. pH-Sensitive Lyotropic Liquid Crystal Beads Designed for Oral Zero-Order Extended Drug Release. Int. J. Pharm. 2025, 674, 125412. [Google Scholar] [CrossRef]
- Laracuente, M.-L.; Yu, M.H.; McHugh, K.J. Zero-Order Drug Delivery: State of the Art and Future Prospects. J. Control. Release 2020, 327, 834–856. [Google Scholar] [CrossRef]
- Adepu, S.; Ramakrishna, S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules 2021, 26, 5905. [Google Scholar] [CrossRef]
- El Allaoui, B.; Benzeid, H.; Zari, N.; Qaiss, A.E.K.; Bouhfid, R. Functional Cellulose-Based Beads for Drug Delivery: Preparation, Functionalization, and Applications. J. Drug Deliv. Sci. Technol. 2023, 88, 104899. [Google Scholar] [CrossRef]
Tablet Type | Cellulose Type | Ibuprofen (mg) | Cellulose (mg) |
---|---|---|---|
Cellulose (C) | CC | - | 900 |
OC | - | 900 | |
RC | - | 900 | |
Compressed commercial ibuprofen (IB) | CC | 900 | - |
OC | 900 | - | |
RC | 900 | - | |
Cellulose mixed with ibuprofen (MIX) | CC | 450 | 450 |
OC | 450 | 450 | |
RC | 450 | 450 | |
Bilayer (BL) | CC | 450 | 450 |
OC | 450 | 450 | |
RC | 450 | 450 | |
Trilayer (TL) | CC | 450 | 225 T 225 B |
OC | 450 | 225 T 225 B | |
RC | 450 | 225 T 225 B |
Tablet Type | Temperature (°C) | Pressure (MPa) | Number of Compressions |
---|---|---|---|
Cellulose (C) | 180 | 25 | 1 |
Compressed commercial ibuprofen (IB) | 150 | 20 | 1 |
Cellulose mixed with ibuprofen (MIX) | 150 | 25 | 1 |
Bilayer (BL) | 180 150 | 25 | 2 |
Trilayer (TL) | 180 150 160 | 20 20 25 | 3 |
Cellulose | Tablet Type | Average Hardness Units (HD) |
---|---|---|
Commercial ibuprofen | Commercial Tablet | 59.40 |
Commercial cellulose | MIX | 60.00 |
BL | 58.50 | |
TL | 59.40 | |
Rice cellulose | MIX | 61.30 |
BL | 60.90 | |
TL | 61.30 | |
Orange cellulose | MIX | 61.90 |
BL | 59.70 | |
TL | 60.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sango-Parco, D.; Zamora-Mendoza, L.; Valdiviezo-Cuenca, Y.; Zamora-Ledezma, C.; Dahoumane, S.A.; López, F.; Alexis, F. The Evaluation of Cellulose from Agricultural Waste as a Polymer for the Controlled Release of Ibuprofen Through the Formulation of Multilayer Tablets. Bioengineering 2025, 12, 838. https://doi.org/10.3390/bioengineering12080838
Sango-Parco D, Zamora-Mendoza L, Valdiviezo-Cuenca Y, Zamora-Ledezma C, Dahoumane SA, López F, Alexis F. The Evaluation of Cellulose from Agricultural Waste as a Polymer for the Controlled Release of Ibuprofen Through the Formulation of Multilayer Tablets. Bioengineering. 2025; 12(8):838. https://doi.org/10.3390/bioengineering12080838
Chicago/Turabian StyleSango-Parco, David, Lizbeth Zamora-Mendoza, Yuliana Valdiviezo-Cuenca, Camilo Zamora-Ledezma, Si Amar Dahoumane, Floralba López, and Frank Alexis. 2025. "The Evaluation of Cellulose from Agricultural Waste as a Polymer for the Controlled Release of Ibuprofen Through the Formulation of Multilayer Tablets" Bioengineering 12, no. 8: 838. https://doi.org/10.3390/bioengineering12080838
APA StyleSango-Parco, D., Zamora-Mendoza, L., Valdiviezo-Cuenca, Y., Zamora-Ledezma, C., Dahoumane, S. A., López, F., & Alexis, F. (2025). The Evaluation of Cellulose from Agricultural Waste as a Polymer for the Controlled Release of Ibuprofen Through the Formulation of Multilayer Tablets. Bioengineering, 12(8), 838. https://doi.org/10.3390/bioengineering12080838