Liver Cancer: Artificial Intelligence (AI)-Based Integrated Therapeutic Approaches
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
AFP | Alpha-fetoprotein |
AI | Artificial intelligence |
APC | Adenomatous Polyposis Coli gene |
CTLA-4 | Cytotoxic T-lymphocyte-associated antigen 4 |
HCC | Hepatocellular carcinoma |
LEF-1 | Lymphoid enhancer factor—1 |
LRP | Low-density lipoprotein receptor-related protein |
mTOR | Mammalian target of rapamycin |
NAFLD | Non-alcoholic fatty liver disease |
PD-1 | Programmed cell death protein 1 |
RFA | Radiofrequency ablation |
RTK | Receptor tyrosine kinase |
TACE | Transarterial chemoembolization |
TCF | T-cell factor |
References
- Kumaravel, J.; Selvamani, M.; Elangovan, D.; Subramanian, B. Exploring the Potential of Artificial Intelligence and Machine Learning for Cancer Diagnosis and Treatment: Recent Progress and Looking Ahead. Oral Oncol. Rep. 2024, 10, 100439. [Google Scholar] [CrossRef]
- Sudhakaran, G. Artificial Intelligence in Reducing Delays and Enhancing Accuracy of Oral Cancer: Recent Affairs. EJMO 2024, 8, 378. [Google Scholar] [CrossRef]
- Veeraraghavan, V.P.; Minervini, G.; Russo, D.; Cicciù, M.; Ronsivalle, V. Assessing Artificial Intelligence in Oral Cancer Diagnosis: A Systematic Review. J. Craniofac. Surg. 2024, 35, 2397–2403. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Viatour, P. Hepatocellular carcinoma: Old friends and new tricks. Exp. Mol. Med. 2020, 52, 1898–1907. [Google Scholar] [CrossRef]
- Sanyal, A.J.; Yoon, S.K.; Lencioni, R. The Etiology of Hepatocellular Carcinoma and Consequences for Treatment. Oncologist 2010, 15, 14–22. [Google Scholar] [CrossRef]
- Chidambaranathan-Reghupaty, S.; Fisher, P.B.; Sarkar, D. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification. Adv. Cancer Res. 2021, 149, 1–61. [Google Scholar]
- Pandyarajan, V.; Govalan, R.; Yang, J.D. Risk Factors and Biomarkers for Chronic Hepatitis B Associated Hepatocellular Carcinoma. Int. J. Mol. Sci. 2021, 22, 479. [Google Scholar] [CrossRef]
- Chavda, V.; Zajac, K.K.; Gunn, J.L.; Balar, P.; Khadela, A.; Vaghela, D.; Soni, S.; Ashby, C.R.; Tiwari, A.K. Ethnic differences in hepatocellular carcinoma prevalence and therapeutic outcomes. Cancer Rep. 2023, 6, e1821. [Google Scholar] [CrossRef]
- Xue, Y.; Ruan, Y.; Wang, Y.; Xiao, P.; Xu, J. Signaling pathways in liver cancer: Pathogenesis and targeted therapy. Mol. Biomed. 2024, 5, 20. [Google Scholar] [CrossRef]
- Aden, D.; Zaheer, S.; Sureka, N.; Trisal, M.; Chaurasia, J.K.; Zaheer, S. Exploring immune checkpoint inhibitors: Focus on PD-1/PD-L1 axis and beyond. Pathol. Res. Pract. 2025, 269, 155864. [Google Scholar] [CrossRef]
- Wojtukiewicz, M.Z.; Rek, M.M.; Karpowicz, K.; Górska, M.; Polityńska, B.; Wojtukiewicz, A.M.; Moniuszko, M.; Radziwon, P.; Tucker, S.C.; Honn, K.V. Inhibitors of immune checkpoints—PD-1, PD-L1, CTLA-4—New opportunities for cancer patients and a new challenge for internists and general practitioners. Cancer Metastasis Rev. 2021, 40, 949–982. [Google Scholar] [CrossRef]
- Mandlik, D.S.; Mandlik, S.K.; Choudhary, H.B. Immunotherapy for hepatocellular carcinoma: Current status and future perspectives. World J. Gastroenterol. 2023, 29, 1054–1075. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Sung, P.S.; Park, S.Y.; Kim, J.W.; Hong, H.P.; Yoon, J.-H.; Chung, D.J.; Kwon, J.H.; Lim, S.; Kim, J.H.; et al. Local ablation for hepatocellular carcinoma: 2024 expert consensus-based practical recommendation of the Korean Liver Cancer Association. J. Liver Cancer 2024, 24, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.-Y.; Liu, P.-H.; Hsu, C.-Y.; Huang, Y.-H.; Liao, J.-I.; Su, C.-W.; Hou, M.-C.; Huo, T.-I. Radiofrequency Ablation versus Transarterial Chemoembolization for Hepatocellular Carcinoma within Milan Criteria: Prognostic Role of Tumor Burden Score. Cancers 2022, 14, 4207. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wen, Y. Point-of-care testing for early-stage liver cancer diagnosis and personalized medicine: Biomarkers, current technologies and perspectives. Heliyon 2024, 10, e38444. [Google Scholar] [CrossRef]
- Yıldırım, H.Ç.; Kavgaci, G.; Chalabiyev, E.; Dizdar, O. Advances in the Early Detection of Hepatobiliary Cancers. Cancers 2023, 15, 3880. [Google Scholar] [CrossRef]
- Canbay, A. Prevention of hepatocellular carcinoma and surveillance of high-risk patients. Hepatol. Forum 2021, 3, 33–38. [Google Scholar] [CrossRef]
- Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 589–604. [Google Scholar] [CrossRef]
- Jabri, A.; Khan, J.; Taftafa, B.; Alsharif, M.; Mhannayeh, A.; Chinnappan, R.; Alzhrani, A.; Kazmi, S.; Mir, M.S.; Alsaud, A.W.; et al. Bioengineered Organoids Offer New Possibilities for Liver Cancer Studies: A Review of Key Milestones and Challenges. Bioengineering 2024, 11, 346. [Google Scholar] [CrossRef]
- Fu, J.; Feng, Y.; Sun, Y.; Yi, R.; Tian, J.; Zhao, W.; Zhang, C. A multi-drug concentration gradient mixing chip: A novel platform for high-throughput drug combination screening. Biosensors 2024, 14, 212. [Google Scholar] [CrossRef]
- Ioannis, K.; Theodoros, P.V.; Anna, Z.; George, K.M. Towards Automation in Radiotherapy Planning: A Deep Learning Approach for the Delineation of Parotid Glands in Head and Neck Cancer. Bioengineering 2024, 11, 214. [Google Scholar] [CrossRef]
- Xi, X.; Li, J.Q.; Zhu, Z.C.; Zhao, L.; Wang, H.; Song, C.W.; Chen, Y.N.; Zhao, Q.; Yang, J.J.; Pei, Y. A Comprehensive Review on Synergy of Multi-Modal Data and AI Technologies in Medical Diagnosis. Bioengineering 2024, 11, 219. [Google Scholar] [CrossRef] [PubMed]
- Gharahbagh, A.A.; Hajihashemi, V.; Machado, J.J.M.; Tavares, J.M.R.S. Feature Extraction Based on Local Histogram with Unequal Bins and a Recurrent Neural Network for the Diagnosis of Kidney Diseases from CT Images. Bioengineering 2024, 11, 220. [Google Scholar] [CrossRef]
- Stolz, M. The Revolution in Breast Cancer Diagnostics: From Visual Inspection of Histopathology Slides to Using Desktop Tissue Analysers for Automated Nanomechanical Profiling of Tumours. Bioengineering 2024, 11, 237. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Huang, M.; Zhang, L.F.; Chan, L.W.C. Enhancing Diagnostic Images to Improve the Performance of the Segment Anything Model in Medical Image Segmentation. Bioengineering 2024, 11, 270. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Wu, J.C.H.; Lu, H.H.S.; Kuan, Y.M.; Liu, Y.C.; Chang, P.Y.; Chen, J.P.; Lee, O.K.S. Precision Identification of Locally Advanced Rectal Cancer in Denoised CT Scans Using Efficient Net and Voting System Algorithms. Bioengineering 2024, 11, 399. [Google Scholar] [CrossRef]
- Shamir, S.B.; Sasson, A.L.; Margolies, R.; Mendelson, D.S. New Frontiers in Breast Cancer Imaging: The Rise of AI. Bioengineering 2024, 11, 451. [Google Scholar] [CrossRef]
- AlMohimeed, A.; Shehata, M.; El-Rashidy, N.; Saleh, H. ViT-PSO-SVM: Cervical Cancer Predication Based on Integrating Vision Transformer with Particle Swarm Optimization and Support Vector Machine. Bioengineering 2024, 11, 729. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, Z.R.; Zhu, C.Y.; Cai, H.; Yin, K.; Zhong, F.; Liu, L. Constructing a Clinical Patient Similarity Network of Gastric Cancer. Bioengineering 2024, 11, 808. [Google Scholar] [CrossRef]
- Alsulami, A.A.; Albarakati, A.; AL-Ghamdi, A.A.; Ragab, M. Identification of Anomalies in Lung and Colon Cancer Using Computer Vision-Based Swin Transformer with Ensemble Model on Histopathological Images. Bioengineering 2024, 11, 978. [Google Scholar] [CrossRef]
- Jeong, W.S.; Baek, C.H.; Lee, D.Y.; Song, S.Y.; Na, J.B.; Hidayat, M.S.; Kim, G.W.; Kim, D.H. The Classification of Metastatic Spine Cancer and Spinal Compression Fractures by Using CNN and SVM Techniques. Bioengineering 2024, 11, 1264. [Google Scholar] [CrossRef]
- Yang, P.C.; Huang, C.W.; Karmakar, R.; Mukundan, A.; Chen, T.H.; Chou, C.K.; Yang, K.Y.; Wang, H.C. Precision Imaging for Early Detection of Esophageal Cancer. Bioengineering 2025, 12, 90. [Google Scholar] [CrossRef]
- Zaridis, D.I.; Pezoulas, V.C.; Mylona, E.; Kalantzopoulos, C.N.; Tachos, S.S.; Tsiknakis, N.; Papanikolaou, N.; Matsopoulos, G.K.; Tsiknakis, M.; Marias, K.; et al. Simplatab: An Automated Machine Learning Framework for Radiomics-Based Bi-Parametric MRI Detection of Clinically Significant Prostate Cancer. Bioengineering 2025, 12, 242. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, L.H.; Wang, B.J.; Guo, B.; Guo, A.H.; Zhou, Z.G. Integrated Machine Learning Algorithms-Enhanced Predication for Cervical Cancer from Mass Spectrometry-Based Proteomics Data. Bioengineering 2025, 12, 269. [Google Scholar] [CrossRef] [PubMed]
- Su, C.C.; Chou, C.K.; Mukundan, A.; Karmakar, R.; Sanbatcha, B.F.; Huang, C.W.; Weng, W.C.; Wang, H.C. Capsule Endoscopy: Current Trends, Technological Advancements, and Future Perspectives in Gastrointestinal Diagnostics. Bioengineering 2025, 12, 613. [Google Scholar] [CrossRef]
- Soker, A.; Almagor, M.; Mai, S.; Garini, Y. AI-Powered Spectral Imaging for Virtual Pathology Staining. Bioengineering 2025, 12, 655. [Google Scholar] [CrossRef]
- Moghadam, S.D.; Maris, B.; Mokhtari, A.; Daffara, C.; Fiorini, P. OCT in Oncology and Precision Medicine: From Nanoparticles to Advanced Technologies and AI. Bioengineering 2025, 12, 650. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakshmikanthan, M.; Muthu, S.; Caleb, J.T.D.; Francis, Y.M.; Pulidindi, I.N. Liver Cancer: Artificial Intelligence (AI)-Based Integrated Therapeutic Approaches. Bioengineering 2025, 12, 837. https://doi.org/10.3390/bioengineering12080837
Lakshmikanthan M, Muthu S, Caleb JTD, Francis YM, Pulidindi IN. Liver Cancer: Artificial Intelligence (AI)-Based Integrated Therapeutic Approaches. Bioengineering. 2025; 12(8):837. https://doi.org/10.3390/bioengineering12080837
Chicago/Turabian StyleLakshmikanthan, Mythileeswari, Sakthivel Muthu, John T. D. Caleb, Yuvaraj Maria Francis, and Indra Neel Pulidindi. 2025. "Liver Cancer: Artificial Intelligence (AI)-Based Integrated Therapeutic Approaches" Bioengineering 12, no. 8: 837. https://doi.org/10.3390/bioengineering12080837
APA StyleLakshmikanthan, M., Muthu, S., Caleb, J. T. D., Francis, Y. M., & Pulidindi, I. N. (2025). Liver Cancer: Artificial Intelligence (AI)-Based Integrated Therapeutic Approaches. Bioengineering, 12(8), 837. https://doi.org/10.3390/bioengineering12080837