Enhancing Trauma Care: Machine Learning-Based Photoplethysmography Analysis for Estimating Blood Volume During Hemorrhage and Resuscitation
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Data Capture
2.2. Data Processing
2.3. Feature Engineering
2.4. Model Selection
2.5. Performance Evaluation
2.6. Model Optimization
2.7. Evaluation of Model Tracking Fluid Balance During Resuscitation
2.8. Statistical Analysis of Model Performance
3. Results
3.1. Sampling Window Optimization
3.2. Data Normalization
3.3. Hyperparameter Tuning
3.4. Extended Model Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
Abbreviations
EBL | Estimated Blood Loss |
MTP | Mass Transfusion Protocol |
ML | Machine Learning |
PEBL | Percent Estimated Blood Loss |
PPG | Photoplethysmography |
MAP | Mean Arterial Pressure |
GT | Ground Truth |
ENET | Elastic Net |
RF | Random Forest |
XGB | Extreme Gradient Boosting |
SVR | Support Vector Regression |
R2 | Coefficient of Determination |
MSE | Mean Squared Error |
MAE | Mean Absolute Error |
RMSE | Root Mean Squared Error |
a.u. | Arbitrary Unit |
References
- Eastridge, B.J.; Mabry, R.L.; Seguin, P.; Cantrell, J.; Tops, T.; Uribe, P.; Mallett, O.; Zubko, T.; Oetjen-Gerdes, L.; Rasmussen, T.E.; et al. Death on the battlefield (2001–2011): Implications for the future of combat casualty care. J. Trauma Acute Care Surg. 2012, 73, S431. [Google Scholar] [CrossRef]
- Latif, R.K.; Clifford, S.P.; Baker, J.A.; Lenhardt, R.; Haq, M.Z.; Huang, J.; Farah, I.; Businger, J.R. Traumatic hemorrhage and chain of survival. Scand. J. Trauma Resusc. Emerg. Med. 2023, 31, 25. [Google Scholar] [CrossRef]
- Galvagno, S.M.; Nahmias, J.T.; Young, D.A. Advanced trauma life support® update 2019: Management and applications for adults and special populations. Anesthesiol. Clin. 2019, 37, 13–32. [Google Scholar] [CrossRef] [PubMed]
- Tran, A.; Matar, M.; Steyerberg, E.W.; Lampron, J.; Taljaard, M.; Vaillancourt, C. Early identification of patients requiring massive transfusion, embolization, or hemostatic surgery for traumatic hemorrhage: A systematic review protocol. Syst. Rev. 2017, 6, 80. [Google Scholar] [CrossRef] [PubMed]
- Sokoliuk, V.; Levchenko, O. Blood Loss Estimation Techniques. In Transfusion Practice in Clinical Neurosciences; Prabhakar, H., S Tandon, M., Kapoor, I., Mahajan, C., Eds.; Springer Nature: Singapore, 2022; pp. 409–416. [Google Scholar] [CrossRef]
- Epstein, A.; Lim, R.; Johannigman, J.; Fox, C.J.; Inaba, K.; Vercruysse, G.A.; Thomas, R.W.; Martin, M.J.; Konstantyn, G.; Schwaitzberg, S.D. Putting Medical Boots on the Ground: Lessons from the War in Ukraine and Applications for Future Conflict with Near-Peer Adversaries. J. Am. Coll. Surg. 2023, 237, 364. [Google Scholar] [CrossRef] [PubMed]
- Gozlan, A.; Abuhasira, R.; Dreiher, J.; Peleg, S.; Sebbag, G.; Schwarzfuchs, D.; Slutsky, T.; Dolfin, D.; Frenkel, A.; Codish, S. October 7th 2023 mass casualty incident in southern Israel: Lessons for emergency preparedness and management. Isr. J. Health Policy Res. 2024, 13, 67. [Google Scholar] [CrossRef]
- Meyer, D.E.; Vincent, L.E.; Fox, E.E.; O’Keeffe, T.; Inaba, K.; Bulger, E.; Holcomb, J.B.; Cotton, B.A. Every minute counts: Time to delivery of initial massive transfusion cooler and its impact on mortality. J. Trauma Acute Care Surg. 2017, 83, 19–24. [Google Scholar] [CrossRef]
- Zhang, A.; Xing, L.; Zou, J.; Wu, J.C. Shifting machine learning for healthcare from development to deployment and from models to data. Nat. Biomed. Eng. 2022, 6, 1330–1345. [Google Scholar] [CrossRef]
- Gonzalez, J.M.; Ortiz, R.; Holland, L.; Ruiz, A.; Ross, E.; Snider, E.J. Machine Learning Models for Tracking Blood Loss and Resuscitation in a Hemorrhagic Shock Swine Injury Model. Bioengineering 2024, 11, 1075. [Google Scholar] [CrossRef]
- Edwards, T.; Gonzalez, J.M.; Hernandez-Torres, S.; Venn, E.; Ford, R.; Ewer, N.; Hoareau, G.L.; Holland, L.; Convertino, V.A.; Snider, E. Predicting blood loss volume in a canine model of hemorrhagic shock using arterial waveform machine learning analysis. Am. J. Vet. Res. 2025, 86. [Google Scholar] [CrossRef]
- Convertino, V.A.; Wirt, M.D.; Glenn, J.F.; Lein, B.C. The Compensatory Reserve For Early and Accurate Prediction Of Hemodynamic Compromise: A Review of the Underlying Physiology. Shock 2016, 45, 580. [Google Scholar] [CrossRef]
- Gathright, R.; Mejia, I.; Gonzalez, J.M.; Hernandez Torres, S.I.; Berard, D.; Snider, E.J. Overview of wearable healthcare devices for medical decision support in the pre-hospital setting. Sensors 2024, 24, 8204. [Google Scholar] [CrossRef]
- Snider, E.J.; Vega, S.J.; Nessen, I.A.; Hernandez Torres, S.; Salazar, S.; Berard, D.; Salinas, J. In Vivo Evaluation of an Adaptive Resuscitation Controller Using Whole Blood and Crystalloid Infusates for Hemorrhagic Shock. Front. Bioeng. Biotechnol. 2024, 12, 1420330. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, T.M.; Berard, D.; Gonzalez, J.M.; Vega, S.J.; Gathright, R.; Bedolla, C.; Ross, E.; Snider, E.J. In Vivo Evaluation of Two Hemorrhagic Shock Resuscitation Controllers with Non-Invasive, Intermittent Sensors. Bioengineering 2024, 11, 1296. [Google Scholar] [CrossRef] [PubMed]
- Swindle, M.M.; Makin, A.; Herron, A.J.; Clubb, F.J.; Frazier, K.S. Swine as Models in Biomedical Research and Toxicology Testing. Vet. Pathol. 2012, 49, 344–356. [Google Scholar] [CrossRef] [PubMed]
- Walters, E.M.; Prather, R.S. Advancing swine models for human health and diseases. Mo. Med. 2013, 110, 212. [Google Scholar]
- Gonzalez, J.M.; Edwards, T.H.; Hoareau, G.L.; Snider, E.J. Refinement of Machine Learning Arterial Waveform Models for Predicting Blood Loss Severity in Canines. Front. Artif. Intell. 2024, 7, 1408029. [Google Scholar] [CrossRef]
- Vaslef, S.N.; Kaminski, B.J.; Talarico, T.L. Oxygen transport dynamics of acellular hemoglobin solutions in an isovolemic hemodilution model in swine. J. Trauma Acute Care Surg. 2001, 51, 1153–1160. [Google Scholar] [CrossRef]
- Santry, H.P.; Alam, H.B. Fluid resuscitation: Past, present, and the future. Shock 2010, 33, 229–241. [Google Scholar] [CrossRef]
- Jabaley, C.; Dudaryk, R. Fluid Resuscitation for Trauma Patients: Crystalloids Versus Colloids. Curr. Anesthesiol. Rep. 2014, 4, 216–224. [Google Scholar] [CrossRef]
- Chowdhury, M.H.; Shuzan, M.N.I.; Chowdhury, M.E.; Mahbub, Z.B.; Uddin, M.M.; Khandakar, A.; Reaz, M.B.I. Estimating blood pressure from the photoplethysmogram signal and demographic features using machine learning techniques. Sensors 2020, 20, 3127. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Drucker, H.; Burges, C.J.; Kaufman, L.; Smola, A.; Vapnik, V. Support vector regression machines. In Advances in Neural Information Processing Systems 9 (NIPS 1996); MIT Press: Cambridge, MA, USA, 1997. [Google Scholar]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian Optimization of Machine Learning Algorithms. arXiv 2012, arXiv:1206.2944. Available online: https://arxiv.org/abs/1206.2944 (accessed on 21 April 2022). [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Lamb, T.; Tran, A.; Lampron, J.; Shorr, R.; Taljaard, M.; Vaillancourt, C. The impact of time to hemostatic intervention and delayed care for patients with traumatic hemorrhage: A systematic review. J. Trauma Acute Care Surg. 2023, 95, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Hans, C. Elastic net regression modeling with the orthant normal prior. J. Am. Stat. Assoc. 2011, 106, 1383–1393. [Google Scholar] [CrossRef]
- Awad, M.; Khanna, R.; Awad, M.; Khanna, R. Support vector regression. In Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers; Apress: Berkeley, CA, USA, 2015; pp. 67–80. [Google Scholar]
- Biau, G.; Scornet, E. A random forest guided tour. Test 2016, 25, 197–227. [Google Scholar] [CrossRef]
Parameter | Definition | XGB | RF | ENET | SVR |
---|---|---|---|---|---|
# of Estimators | Number of trees or models to train in the ensemble | ✔ | ✔ | ||
Learning Rate | How much each tree contributes to the final prediction | ✔ | |||
Max Depth | The maximum depth of each decision tree | ✔ | ✔ | ||
Min Child Weight | Minimum sum of instance weights needed in a child node to allow a split | ✔ | |||
Subsample | Fraction of training data randomly sampled for each tree to prevent overfitting | ✔ | |||
Colsample by Tree | Fraction of features randomly sampled for each tree | ✔ | |||
Gamma | Regularization parameter; in XGB, it sets the minimum loss reduction to make a split; in SVR, it defines how far the influence of a single training example reaches | ✔ | ✔ | ||
Reg Alpha | L1 regularization term on weights to encourage sparsity | ✔ | |||
Reg Lambda | L2 regularization term on weights to reduce complexity | ✔ | |||
Min Samples Split | Minimum number of samples required to split an internal node | ✔ | |||
Min Samples Leaf | Minimum number of samples required to be at a leaf node | ✔ | |||
Max Features | Number of features to consider when looking for the best split | ✔ | |||
Bootstrap | Whether bootstrap samples are used when building trees | ✔ | |||
Alpha | Overall strength of regularization (combines L1 and L2) | ✔ | |||
L1 Ratio | Ratio of L1 and L2 regularization | ✔ | |||
C | Regularization parameter that balances margin maximization and error | ✔ | |||
Epsilon | Tolerance within which no penalty is given in the loss function for errors | ✔ | |||
Kernel | Specifies the kernel type to be used (e.g., linear, RBF) | ✔ |
5 s Sampling Window | ||||||
---|---|---|---|---|---|---|
Normalized | Non-Normalized | |||||
Model | MAE | MSE | R2 | MAE | MSE | R2 |
XGB | 0.100 ± 0.056 | 0.0190 ± 0.022 | 0.805 ± 0.150 | 0.0909 ± 0.059 | 0.0171 ± 0.026 | 0.839 ± 0.138 |
RF | 0.0988 ± 0.072 | 0.0228 ± 0.034 | 0.791 ± 0.191 | 0.0845 ± 0.063 | 0.0173 ± 0.027 | 0.846 ± 0.186 |
SVR | 0.113 ± 0.072 | 0.0245 ± 0.040 | 0.739 ± 0.202 | 0.0908 ± 0.052 | 0.0170 ± 0.024 | 0.783 ± 0.173 |
Average | 0.104 ± 0.067 | 0.0221 ± 0.032 | 0.778 ± 0.181 | 0.0887 ± 0.058 | 0.0171 ± 0.026 | 0.823 ± 0.166 |
5 s Sampling Window, Non-Normalized | ||||||
---|---|---|---|---|---|---|
Optimized | Non-Optimized | |||||
Model | MAE | MSE | R2 | MAE | MSE | R2 |
XGB | 0.0814 ± 0.060 | 0.0148 ± 0.025 | 0.872 ± 0.161 | 0.0909 ± 0.059 | 0.0171 ± 0.026 | 0.839 ± 0.138 |
RF | 0.0731 ± 0.055 | 0.0132 ± 0.024 | 0.870 ± 0.172 | 0.0845 ± 0.063 | 0.0173 ± 0.027 | 0.846 ± 0.186 |
Average | 0.0773 ± 0.058 | 0.0140 ± 0.025 | 0.871 ± 0.167 | 0.0877 ± 0.061 | 0.0172 ± 0.027 | 0.843 ± 0.162 |
Performance Metrics Across Hemorrhage and Resuscitation Phases | |||
---|---|---|---|
Model (Setup Parameters) | MAE | MSE | R2 |
XGB (5 s, Non-Normalized, Tuned) | 0.147 ± 0.069 | 0.0429 ± 0.038 | 0.609 ± 0.253 |
RF (5 s, Non-Normalized, Tuned) | 0.137 ± 0.070 | 0.0397 ± 0.039 | 0.614 ± 0.230 |
ENET (60 s, Non-Normalized, Not Tuned) | 0.207 ± 0.213 | 0.0881 ± 0.265 | 0.419 ± 0.203 |
SVR (5 s, Non-Normalized, Not Tuned) | 0.166 ± 0.195 | 0.0504 ± 0.215 | 0.413 ± 0.194 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez, J.M.; Holland, L.; Hernandez Torres, S.I.; Arrington, J.G.; Rodgers, T.M.; Snider, E.J. Enhancing Trauma Care: Machine Learning-Based Photoplethysmography Analysis for Estimating Blood Volume During Hemorrhage and Resuscitation. Bioengineering 2025, 12, 833. https://doi.org/10.3390/bioengineering12080833
Gonzalez JM, Holland L, Hernandez Torres SI, Arrington JG, Rodgers TM, Snider EJ. Enhancing Trauma Care: Machine Learning-Based Photoplethysmography Analysis for Estimating Blood Volume During Hemorrhage and Resuscitation. Bioengineering. 2025; 12(8):833. https://doi.org/10.3390/bioengineering12080833
Chicago/Turabian StyleGonzalez, Jose M., Lawrence Holland, Sofia I. Hernandez Torres, John G. Arrington, Tina M. Rodgers, and Eric J. Snider. 2025. "Enhancing Trauma Care: Machine Learning-Based Photoplethysmography Analysis for Estimating Blood Volume During Hemorrhage and Resuscitation" Bioengineering 12, no. 8: 833. https://doi.org/10.3390/bioengineering12080833
APA StyleGonzalez, J. M., Holland, L., Hernandez Torres, S. I., Arrington, J. G., Rodgers, T. M., & Snider, E. J. (2025). Enhancing Trauma Care: Machine Learning-Based Photoplethysmography Analysis for Estimating Blood Volume During Hemorrhage and Resuscitation. Bioengineering, 12(8), 833. https://doi.org/10.3390/bioengineering12080833