Functionally Isolated Sarcoplasmic Reticulum in Cardiomyocytes: Experimental and Mathematical Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Isolation and Perfusion Solutions
2.2. Cell Contraction and [Ca2+]i Measurement
2.3. The Experimental Protocol
2.4. SERCA Stimulation and Inhibition
2.5. The Mathematical Model
2.6. Data and Statistical Analysys
3. Results
3.1. Caffeine Pulses
3.2. Effects of β-Adrenergic Stimulation by ISO
3.3. Effects of SERCA Inhibition by tBQ
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
[Ca2+]i | Cytosolic free Ca2+ concentration |
cAMP | 3’,5’-cyclyc adenosine monophosphate |
Caf00 | Na+-Ca2+-free Tyrode’s solution containing caffeine |
ECC | Excitation–contraction coupling |
FISRM | Functionally isolated sarcoplasmic reticulum model |
ISO | Isoproterenol |
MCU | Mitochondrial Ca2+ uniporter |
NCX | Na+/Ca2+ exchanger |
PKA | cAMP-dependent protein kinase |
PLN | Phospholamban |
PMCA | Plasma membrane Ca2+-ATPase |
RyR | Ryanodine receptors |
SERCA | Sarco/endoplasmic Ca2+-ATPase |
SR | Sarcoplasmic reticulum |
tBQ | 2,5-di-(tert-butyl)-1,4-benzohydroquinone |
TyN | Modified Tyrode’s solution |
Ty00 | Na+-Ca2+-free Tyrode’s solution |
ΔL | Contraction amplitude (cell shortening) |
Δ[Ca2+]i | Ca2+ transient amplitude |
References
- Fabiato, A. Calcium-induced release of calcium from cardiac sarcoplasmic reticulum. J. Physiol. 1983, 245, C1–C14. [Google Scholar] [CrossRef] [PubMed]
- Bers, D.M. Cardiac excitation-contraction coupling. Nature 2002, 415, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Eisner, D.A.; Caldwell, J.L.; Kistamás, K.; Trafford, A.W. Calcium and excitation-contraction coupling in the heart. Circ. Res. 2017, 121, 181–195. [Google Scholar] [CrossRef]
- Bassani, R.A.; Bassani, J.W.M.; Bers, D.M. Mitochondrial and sarcolemmal Ca transport reduce [Ca2+]i during caffeine contractures in rabbit cardiac myocytes. J. Physiol. 1992, 453, 591–608. [Google Scholar] [CrossRef]
- Bassani, J.W.M.; Bassani, R.A.; Bers, D.M. Relaxation in rabbit and rat cardiac cells: Species-dependent differences in cellular mechanism. J. Physiol. 1994, 476, 279–293. [Google Scholar] [CrossRef]
- Bassani, J.W.M.; Yuan, W.; Bers, D.M. Fractional SR Ca release is regulated by trigger Ca and SR Ca content in cardiac myocytes. Am. J. Physiol.-Cell Physiol. 1995, 268, C1313–C1319. [Google Scholar] [CrossRef]
- Bassani, R.A.; Altamirano, J.; Puglisi, J.L.; Bers, D.M. Action potential duration determines sarcoplasmic reticulum Ca2+ reloading in mammalian ventricular myocytes. J. Physiol. 2004, 559, 591–607. [Google Scholar] [CrossRef]
- Shannon, T.R.; Wang, F.; Bers, D.M. Regulation of cardiac sarcoplasmic reticulum Ca release by luminal [Ca] and altered gating assessed with mathematical model. Biophys. J. 2005, 89, 4096–4110. [Google Scholar] [CrossRef]
- Kho, C.; Lee, A.; Hajjar, R.J. Altered sarcoplasmic reticulum calcium cycling: Targets for heart failure therapy. Nat. Rev. Cardiol. 2012, 9, 717–733. [Google Scholar] [CrossRef]
- Mattiazzi, A.; Bassani, R.A.; Escobar, A.L.; Palomeque, J.; Valverde, C.A.; Vila Petroff, M.; Bers, D.M. Chasing cardiac physiology and pathology down the CaMKII cascade. Am. J. Physiol. Heart Circul. Physiol. 2015, 308, H1177–H1191. [Google Scholar] [CrossRef]
- Gaido, O.E.R.; Nkashama, L.J.; Schole, K.L.; Wang, Q.; Umapathi, P.; Mesubi, O.O.; Konstantinidis, K.; Luczak, E.D.; Anderson, M.E. CaMKII as a therapeutic target in cardiovascular disease. Annu. Rev. Pharmacol. Toxicol. 2023, 63, 249–272. [Google Scholar] [CrossRef] [PubMed]
- Bassani, R.A.; Ricardo, R.A.; Bassani, J.W.M. Estimation of the fractional sarcoplasmic reticulum Ca2+ release in intact cardiomyocytes using integrated Ca2+ fluxes. Gen. Physiol. Biophys. 2012, 31, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Zhihao, L.; Jungyu, N.; Lan, L.; Michael, S.; Rui, G.; Xiyun, B.; Xiaozhi, L.; Guanwei, F. SERCA2a: A key protein in the Ca2+ cycle of the heart failure. Heart Fail. Rev. 2020, 25, 523–535. [Google Scholar] [CrossRef]
- Kansakar, U.; Varzideh, F.; Jankauskas, S.S.; Gambardella, J.; Trimarco, B.; Santulli, G. Advances in the understanding of excitation-contraction coupling: The pulsing quest for drugs against heart failure and arrhythmias. Eur. Heart J. 2021, 7, e91–e93. [Google Scholar] [CrossRef]
- Mattiazzi, A.; Kranias, E.G. Unleashing the power of genetics: PLN ablation, phospholambanopathies and evolving challenges. Circ. Res. 2024, 134, 138–142. [Google Scholar] [CrossRef]
- Bondarenko, V.E.; Szigeti, G.P.; Bett, G.C.L.; Kim, S.-J.; Rasmusson, R.L. Computer model of action potential of mouse ventricular myocytes. Am. J. Physiol. Heart Circul. Physiol. 2004, 287, H1378–H1403. [Google Scholar] [CrossRef]
- Penna, L.B.; Bassani, R.A. Increased spontaneous activity and reduced inotropic response to catecholamines in ventricular myocytes from footshock-stressed rats. Stress. 2010, 13, 73–82. [Google Scholar] [CrossRef]
- Soriano, D.C.; Bassani, R.A.; Bassani, J.W.M. Instrumentation for measurement of intracellular Ca2+ concentration: Effects of beta-adrenergic stimulation on isolated cardiac myocytes. Braz. J. Biomed. Eng. 2007, 23, 123–130. [Google Scholar]
- Shannon, T.R.; Ginsburg, K.S.; Bers, D.M. Quantitative assessment of the SR Ca2+ leak-load relationship. Circ. Res. 2002, 91, 594–600. [Google Scholar] [CrossRef]
- Harkins, A.B.; Kurebayashi, N.; Baylor, S.M. Resting myoplasmic calcium in frog skeletal muscle fibers estimated with fluo-3. Biophys. J. 1993, 65, 865–881. [Google Scholar] [CrossRef]
- Sitsapesan, R.; Williams, A.J. Mechanisms of caffeine activation of single calcium-release channels of sheep cardiac sarcoplasmic reticulum. J. Physiol. 1990, 423, 425–439. [Google Scholar] [CrossRef] [PubMed]
- Bassani, R.A.; Bers, D.M. Rate of diastolic Ca release from sarcoplasmic reticulum of intact rabbit and rat ventricular myocytes. Biophys. J. 1995, 68, 2015–2022. [Google Scholar] [CrossRef] [PubMed]
- Bassani, R.A.; Shannon, T.R.; Bers, D.M. Passive Ca2+ binding in ventricular myocardium of neonatal and adult rats. Cell Calcium 1998, 23, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Nakasaki, Y.; Matsuda, N.; Shigekawa, M. Inhibition of sarcoplasmic reticulum Ca2+-ATPase by 2,5-di(tert-butyl)-1,4-benzohydroquinone. J. Biochem. 1992, 112, 750–755. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.; Greensmith, D.J.; Sankaranaraynan, R.; O’Neill, S.C.; Eisner, D.A. The effect of 2,5-di-(tert-butyl)-1,4-benzohydroquinone (TBQ) on intracellular Ca2+ handling in rat ventricular myocytes. Cell Calcium 2015, 58, 208–214. [Google Scholar] [CrossRef]
- Parichatikanond, W.; Duangrat, R.; Kurose, H.; Mangmool, S. Regulation of β-adrenergic receptors in the heart: A review on emerging therapeutic strategies for heart failure. Cells 2024, 13, 1674. [Google Scholar] [CrossRef]
- Yang, B.; Wang, S.; Yang, H. β-adrenergic regulation of Ca2+ signaling in heart cells. Biophys. Rep. 2024, 10, 274–282. [Google Scholar] [CrossRef]
- Keizer, J.; Levine, L. Ryanodine receptor adaptation and Ca2+-induced Ca2+ release–dependent Ca2+ oscillations. Biophys. J. 1996, 71, 3477–3487. [Google Scholar] [CrossRef]
- Jafri, M.S.; Rice, J.J.; Winslow, R.L. Cardiac Ca2+ dynamics: The roles of ryanodine receptor adaption and sarcoplasmic reticulum load. Biophys. J. 1998, 74, 1149–1169. [Google Scholar] [CrossRef]
- Su, Z.; Li, F.; Spitzer, K.W.; Yao, A.; Ritter, M.; Barry, W.H. Comparison of sarcoplasmic reticulum Ca2+-ATPase function in human, dog, rabbit, and mouse ventricular myocytes. J. Mol. Cell. Cardiol. 2003, 35, 761–767. [Google Scholar] [CrossRef]
- Ginsburg, K.S.; Weber, C.R.; Bers, D.M. Control of maximum sarcoplasmic reticulum Ca load in intact ferret ventricular myocytes: Effects of thapsigargin and isoproterenol. J. Gen. Physiol. 1998, 111, 491–504. [Google Scholar] [CrossRef] [PubMed]
- Bassani, R.A.; Bassani, J.W.M. Higher sarcolemmal Ca-ATPase activity in neonatal rat ventricle. Biophys. J. 2002, 82, 596a. [Google Scholar]
- Wilson, C.; Stafford, N.; Zi, M.; Chelu, A.; Niort, B.C.; Li, Y.; Baudoin, F.; Prehar, S.; Trafford, A.W.; Cartwright, E.J. Cardiomyocyte-specific loss of plasma membrane calcium ATPase 1 impacts cardiac rhythm and is associated with ventricular repolarisation dysfunction. J. Mol. Cell. Cardiol. 2022, 172, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Luongo, T.S.; Lambert, J.P.; Yuan, A.; Zhang, X.; Gross, P.; Song, J.; Shanmughapriya, S.; Gao, E.; Jain, M.; Houser, S.R.; et al. The mitochondrial calcium uniporter matches energetic supply with cardiac workload during stress and modulates permeability transition. Cell Rep. 2015, 12, 23–34. [Google Scholar] [CrossRef]
- Ginsburg, K.S.; Bers, D.M. Modulation of excitation-contraction coupling by isoproterenol in cardiomyocytes with controlled SR Ca2+ load and Ca2+ current trigger. J. Physiol. 2004, 556, 463–480. [Google Scholar] [CrossRef]
- Ullrich, N.D.; Valdivia, H.H.; Niggli, E. PKA phosphorylation of cardiac ryanodine receptor modulates SR luminal Ca2+ sensitivity. J. Mol. Cell. Cardiol. 2012, 53, 33–42. [Google Scholar] [CrossRef]
- Bovo, E.; Huke, S.; Blatter, L.A.; Zima, A.V. The effect of PKA-mediated phosphorylation of ryanodine receptor on SR Ca2+ leak in ventricular myocytes. J. Mol. Cell Cardiol. 2017, 104, 9–16. [Google Scholar] [CrossRef]
- Benitah, J.P.; Perrier, R.; Mercadier, J.J.; Pereira, L.; Gómez, A.M. RyR2 and calcium release in heart failure. Front. Physiol. 2021, 12, 734210. [Google Scholar] [CrossRef]
- Arici, M.; Hsu, S.C.; Ferrandi, M.; Barassi, P.; Ronchi, C.; Torre, E.; Luraghi, A.; Chang, G.J.; Ferrari, P.; Bianchi, G.; et al. Selective SERCA2a activator as a candidate for chronic heart failure therapy. J. Transl. Med. 2024, 22, 77. [Google Scholar] [CrossRef]
- Tadini-Buoninsegni, F.; Smeazzetto, S.; Gualdani, R.; Moncelli, M.R. Drug interactions with the Ca2+-ATPase from sarco(endo)plasmic reticulum (SERCA). Front. Mol. Biosci. 2018, 5, 36. [Google Scholar] [CrossRef]
- Berlin, J.R.; Bassani, J.W.; Bers, D.M. Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes. Biophys. J. 1994, 67, 1775–1787. [Google Scholar] [CrossRef] [PubMed]
- Sankaranarayanan, R.; Li, Y.; Greensmith, D.J.; Eisner, D.A.; Venetucci, L. Biphasic decay of the Ca transient results from increased sarcoplasmic reticulum Ca leak. J. Physiol. 2016, 594, 611–623. [Google Scholar] [CrossRef] [PubMed]
- Dettbarn, C.; Palade, P. Effects of three sarcoplamic/endoplasmic reticulum Ca++ pump inhibitors on relase channels of intracellular stores. J. Pharmacol. Exp. Ther. 1998, 285, 739–745. [Google Scholar] [CrossRef] [PubMed]
Control | ISO | p | |
---|---|---|---|
Δ[Ca2+]i (µM) | 0.232 ± 0.083 | 0.440 ± 0.184 | 0.014 |
t0.5 [Ca2+]i (ms) | 99 ± 16 | 74 ± 20 | 0.013 |
ΔL (% of RCL) | 4.22 ± 2.30 | 8.10 ± 2.57 | 0.021 |
t0.5 ΔL (ms) | 125 ± 37 | 96 ± 32 | 0.005 |
[Ca2+]SR (µM) | 95 ± 35 | 102 ± 36 | 0.007 |
Control | ISO | p | |
---|---|---|---|
Δ[Ca2+]i (µM) | 0.324 ± 0.173 | 0.293 ± 0.183 | 0.471 |
t0.5 [Ca2+]i (ms) | 125 ± 21 | 94 ± 16 | <0.001 |
Control | tBQ | p | |
Δ[Ca2+]i (µM) | 0.272 ± 0.086 | 0.230 ± 0.056 | 0.029 |
t0.5 [Ca2+]i (ms) | 117 ± 24 | 183 ± 43 | <0.001 |
Control | tBQ | p | |
---|---|---|---|
Δ[Ca2+]i (µM) | 0.273 ± 0.170 | 0.199 ± 0.072 | 0.159 |
t0.5 [Ca2+]i (ms) | 89 ± 12 | 155 ± 20 | <0.001 |
ΔL (% of RCL) | 7.06 ± 2.55 | 5.43 ± 1.92 | 0.049 |
t0.5 ΔL (ms) | 97 ± 23 | 117 ± 24 | <0.001 |
[Ca2+]SR (µM) | 112 ± 28 | 104 ± 29 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soriano, D.C.; Bassani, R.A.; Bassani, J.W.M. Functionally Isolated Sarcoplasmic Reticulum in Cardiomyocytes: Experimental and Mathematical Models. Bioengineering 2025, 12, 627. https://doi.org/10.3390/bioengineering12060627
Soriano DC, Bassani RA, Bassani JWM. Functionally Isolated Sarcoplasmic Reticulum in Cardiomyocytes: Experimental and Mathematical Models. Bioengineering. 2025; 12(6):627. https://doi.org/10.3390/bioengineering12060627
Chicago/Turabian StyleSoriano, Diogo C., Rosana A. Bassani, and José W. M. Bassani. 2025. "Functionally Isolated Sarcoplasmic Reticulum in Cardiomyocytes: Experimental and Mathematical Models" Bioengineering 12, no. 6: 627. https://doi.org/10.3390/bioengineering12060627
APA StyleSoriano, D. C., Bassani, R. A., & Bassani, J. W. M. (2025). Functionally Isolated Sarcoplasmic Reticulum in Cardiomyocytes: Experimental and Mathematical Models. Bioengineering, 12(6), 627. https://doi.org/10.3390/bioengineering12060627