Optimization of Scanning Protocol for AI-Integrated Assessment of HER2 Dual Bright-Field In-Situ Hybridization Application in Breast Cancer
Abstract
1. Introduction
2. Materials and Methods
2.1. Cases and Slide Preparation
2.2. Dual BF ISH
2.3. Regions of Interest (ROI)
2.4. WSI Scanner and Scanning Protocol
2.5. AI-Integrated Dual BF ISH Application
2.6. HER2 Status and ASCO/CAP ISH Group Diagnosis
2.7. Performance Analysis
2.8. Ground Truth of HER2 Status and ASCO/CAP ISH Group
2.9. Statistical Analysis
3. Results
3.1. Scanning Time
3.2. Image Quality
3.3. Number of Detected Nuclei by Automated Image Analysis in Application
3.4. HER2 Status and ASCO/CAP ISH Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ISH | In situ hybridization |
IHC | Immunohistochemistry |
ASCO/CAP | American Society of Clinical Oncology/College of American Pathologist |
BF | Bright-Field |
HER-2 | Human Epidermal Growth Factor Receptor 2 |
CEP17 | Chromosome Enumeration Probe 17 |
ROI | Region of Interest |
WSI | Whole slide image |
SVM | Support vector machine |
CNN | Convolutional neural network |
References
- Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2001, 2, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Rakha, E.A.; WHO Classification of Tumours Editorial Board. Invasive breast carcinoma: General overview. In Breast Tumours WHO Classification of Tumours, 5th ed.; World Health Organization: Lyon, France, 2019; Volume 5, pp. 82–101. [Google Scholar]
- Yoder, A.; Inge, L.J.; Chen, C.C.; Marati, V.R.; Nguyen, T.K.; Zuiderveld, K.; Martin, J.; Gladden, S.; Miri, M.S.; Venugopal, R.; et al. Computer-aided scoring of erb-b2 receptor tyrosine kinase 2 (HER2) gene amplification status in breast cancer. J. Pathol. Inform. 2022, 13, 100116. [Google Scholar] [CrossRef]
- Lim, T.H.; Lim, A.S.; Tien, S.L.; Tan, P.H. Impact of the updated 2018 American Society of Clinical Oncology/College of American Pathologists (ASCO/CAP) guidelines on human epidermal growth factor receptor 2 (HER2) gene testing in invasive breast cancers: A single center study. Ann. Diagn. Pathol. 2022, 58, 151935. [Google Scholar] [CrossRef] [PubMed]
- Wolff, A.C.; Hammond, M.E.; Allison, K.H.; Harvey, B.E.; Mangu, P.B.; Bartlett, J.M.; Bilous, M.; Ellis, I.O.; Fitzgibbons, P.; Hanna, W.; et al. Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline focused update. Arch. Pathol. Lab. Med. 2018, 142, 1364–1382. [Google Scholar] [CrossRef]
- Woo, J.W.; Lee, K.; Chung, Y.R.; Jang, M.H.; Ahn, S.; Park, S.Y. The updated 2018 American Society of Clinical Oncology/College of American Pathologists guideline on human epidermal growth factor receptor 2 interpretation in breast cancer: Comparison with previous guidelines and clinical significance of the proposed in situ hybridization groups. Hum. Pathol. 2020, 98, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.W.; Khalil, M.A.; Lin, Y.J.; Lee, Y.C.; Chao, T.K. Detection of ERBB2 and CEN17 signals in fluorescent in situ hybridization and dual in situ hybridization for guiding breast cancer HER2 target therapy. Artif. Intell. Med. 2023, 141, 102568. [Google Scholar] [CrossRef]
- Rathi, A.; Sahay, A.; Shet, T.M.; Patil, A.; Desai, S.B. Validation of Dual-Color Dual In-situ Hybridization for HER2/neu Gene in Breast Cancer. Arch. Pathol. Lab. Med. 2024, 148, 453–460. [Google Scholar] [CrossRef]
- Hossain, M.S.; Syeed, M.M.; Fatema, K.; Hossain, M.S.; Uddin, M.F. Singular nuclei segmentation for automatic her2 quantification using cish whole slide images. Sensors 2022, 22, 7361. [Google Scholar] [CrossRef]
- Gough, M.; Liu, C.; Srinivasan, B.; Wilkinson, L.; Dunk, L.; Yang, Y.; Schreiber, V.; Tuffaha, H.; Kryza, T.; Hooper, J.D.; et al. Improved concordance of challenging human epidermal growth factor receptor 2 dual in-situ hybridisation cases with the use of a digital image analysis algorithm in breast cancer. Histopathology 2023, 83, 647–656. [Google Scholar] [CrossRef]
- Salto-Tellez, M.; Maxwell, P.; Hamilton, P. Artificial intelligence-the third revolution in pathology. Histopathology 2019, 74, 372–376. [Google Scholar] [CrossRef]
- Furrer, D.; Jacob, S.; Caron, C.; Sanschagrin, F.; Provencher, L.; Diorio, C. Validation of a new classifier for the automated analysis of the human epidermal growth factor receptor 2 (HER2) gene amplification in breast cancer specimens. Diagn. Pathol. 2013, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Konsti, J.; Lundin, J.; Jumppanen, M.; Lundin, M.; Viitanen, A.; Isola, J. A public-domain image processing tool for automated quantification of fluorescence in situ hybridization signals. J. Clin. Pathol. 2007, 61, 278–282. [Google Scholar] [CrossRef]
- van der Logt, E.M.; Kuperus, D.A.; van Setten, J.W.; van den Heuvel, M.C.; Boers, J.E.; Schuuring, E.; Kibbelaar, R.E. Fully automated fluorescent in situ hybridization (FISH) staining and digital analysis of HER2 in breast cancer: A validation study. PLoS ONE 2015, 10, e0123201. [Google Scholar] [CrossRef]
- Iourov, I.Y.; Soloviev, I.V.; Vorsanova, S.G.; Monakhov, V.V.; Yurov, Y.B. An approach for quantitative assessment of fluorescence in situ hybridization (FISH) signals for applied human molecular cytogenetics. J. Histochem. Cytochem. 2005, 53, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Grigoryan, A.M.; Dougherty, E.R.; Kononen, J.; Bubendorf, L.; Hostetter, G.; Kallioniemi, O. Morphological spot counting from stacked images for automated analysis of gene copy numbers by fluorescence in situ hybridization. J. Biomed. Opt. 2002, 7, 109–122. [Google Scholar] [CrossRef]
- Klijanienko, J.; Couturier, J.; Galut, M.; El-Naggar, A.K.; Maciorowski, Z.; Padoy, E.; Mosseri, V.; Vielh, P. Detection and quantitation by fluorescence in situ hybridization (FISH) and image analysis of HER-2/neu gene amplification in breast cancer fine-needle samples. Cancer Cytopathol. Interdiscip. Int. J. Am. Cancer Soc. 1999, 87, 312–318. [Google Scholar] [CrossRef]
- Wong, W.; Shakhawat, H.; Hanna, M.; Inoue, T.; Stueben, B.; Ibrahim, K.; Teplov, A.; Edelweiss, M.; Brogi, E.; Hameed, M. A Feasibility Study in The Automated Quantification of HER2 Gene Amplification in Breast Cancer Using Chromogenic In-situ Hybridization Whole Slide Images. Lab. Investig. 2020, 100 (Suppl. 1), 286. [Google Scholar] [CrossRef]
- Hossain, M.S.; Hanna, M.G.; Uraoka, N.; Nakamura, T.; Edelweiss, M.; Brogi, E.; Hameed, M.R.; Yamaguchi, M.; Ross, D.S.; Yagi, Y. Automatic quantification of HER2 gene amplification in invasive breast cancer from chromogenic in situ hybridization whole slide images. J. Med. Imaging 2019, 6, 047501. [Google Scholar] [CrossRef]
- College of American Pathologists. Algorithms. 2022. Available online: https://www.cap.org/protocols-and-guidelines/cap-guidelines/current-cap-guidelines/recommendations-for-human-epidermal-growth-factor-2-testing-in-breast-cancer (accessed on 8 August 2022).
- Gunn, S.; Yeh, I.T.; Lytvak, I.; Tirtorahardjo, B.; Dzidic, N.; Zadeh, S.; Kim, J.; McCaskill, C.; Lim, L.; Gorre, M.; et al. Clinical array-based karyotyping of breast cancer with equivocal HER2 status resolves gene copy number and reveals chromosome 17 complexity. BMC Cancer 2010, 10, 396. [Google Scholar] [CrossRef]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013, 48, 452–458. [Google Scholar] [CrossRef]
- Rakha, E.A.; Tan, P.H.; Quinn, C.; Provenzano, E.; Shaaban, A.M.; Deb, R.; Callagy, G.; Starczynski, J.; Lee, A.H.S.; O Ellis, I.; et al. UK recommendations for HER2 assessment in breast cancer: An update. J. Clin. Pathol. 2022, 76, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Ohnishi, T.; Bakoglu, N.; Hanna, M.; Ntiamoah, P.; Edelweiss, M.; Brogi, E.; Hameed, M.; Ross, D.; Yagi, Y. AI-Integrated Automated CISH Analysis in Breast Invasive Carcinomas: Evaluation of HER2 Status and ASCO/CAP Group’s Classification & Investigation of Number of Nuclei for the Best Results. Lab. Investig. 2023, 103 (Suppl. 1), S1309–S1310. [Google Scholar]
- Lee, R.E.; McClintock, D.S.; Laver, N.M.; Yagi, Y. Evaluation and optimization for liquid-based preparation cytology in whole slide imaging. J. Pathol. Inform. 2011, 2, 46. [Google Scholar] [CrossRef] [PubMed]
- Theodosiou, Z.; Kasampalidis, I.N.; Karayannopoulou, G.; Kostopoulos, I.; Bobos, M.; Bevilacqua, G.; Aretini, P.; Starita, A.; Lyroudia, K.; Pitas, I. Evaluation of FISH image analysis system on assessing HER2 amplification in breast carcinoma cases. Breast 2008, 17, 80–84. [Google Scholar] [CrossRef]
- Raimondo, F.; Gavrielides, M.A.; Karayannopoulou, G.; Lyroudia, K.; Pitas, I.; Kostopoulos, I. Automated evaluation of Her-2/neu status in breast tissue from fluorescent in situ hybridization images. IEEE Trans. Image Process. 2005, 14, 1288–1299. [Google Scholar] [CrossRef] [PubMed]
- Stevens, R.; Almanaseer, I.; Gonzalez, M.; Caglar, D.; Knudson, R.A.; Ketterling, R.P.; Schrock, D.S.; Seemayer, T.A.; Bridge, J.A. Analysis of HER2 gene amplification using an automated fluorescence in situ hybridization signal enumeration system. J. Mol. Diagn. 2007, 9, 144–150. [Google Scholar] [CrossRef]
- Hanna, M.G.; Reuter, V.E.; Hameed, M.R.; Tan, L.K.; Chiang, S.; Sigel, C.; Hollmann, T.; Giri, D.; Samboy, J.; Moradel, C.; et al. Whole slide imaging equivalency and efficiency study: Experience at a large academic center. Mod. Pathol. 2019, 32, 916–928. [Google Scholar] [CrossRef]
- Menter, T.; Nicolet, S.; Baumhoer, D.; Tolnay, M.; Tzankov, A. Intraoperative frozen section consultation by remote whole-slide imaging analysis–validation and comparison to robotic remote microscopy. J. Clin. Pathol. 2019, 73, 350–352. [Google Scholar] [CrossRef]
- Buck, T.P.; Dilorio, R.; Havrilla, L.; O’Neill, D.G. Validation of a whole slide imaging system for primary diagnosis in surgical pathology: A community hospital experience. J. Pathol. Inform. 2014, 5, 43. [Google Scholar] [CrossRef]
Case ID | Sample | Diagnosis | Primary vs. Met | AMP | IHC Score | FISH Ratio | HER2/Nucleus | CEP17/Nucleus | ISH Group |
---|---|---|---|---|---|---|---|---|---|
1 | BX | IDC with lobular growth pattern | Primary | NA | 1+ to 2+ | 1.41 | 3.82 | 2.7 | 5 |
2 | BX | IDC involving dermis and Muscle | Met | NA | 2+ | 1.31 | 2.36 | 1.8 | 5 |
3 | EX | IDC with focal micropapillary features | Primary | NA | 1+ to 2+ | 1.14 | 2.62 | 2.3 | 5 |
4 | EX | ILC with focal pleomorphic features | Primary | NA | 1+ to 2+ | 1.48 | 4.11 | 2.8 | 4 |
5 | EX | IDC | Primary | NA | 2+ | 1.73 | 4.64 | 2.7 | 4 |
6 | EX | IDC | Primary | A | 3+ | n/a | n/a | n/a | 1 |
7 | BX | IDC | Primary | A | 2+ | 3.89 | 7.18 | 1.8 | 1 |
8 | EX | IDC | Primary | A | 2+ | 2.65 | 7.2 | 2.7 | 1 |
9 | EX | IDC with focal micropapillary features | Primary | A | 1+ to 2+ | 2.49 | 11.19 | 4.5 | 1 |
10 | BX | IDC, with focal micropapillary features | Primary | A | 3+ | 8.88 | 18.65 | 2.1 | 1 |
Scanning Protocol | ||||||
---|---|---|---|---|---|---|
Features | A1 | A2 | B1 | B2 | B3 | C1 |
Magnification of the objective lens | 40× | 40× | 40× | 20× | 20× | 40× |
Numerical aperture | 0.95 | 1.2 * | 0.95 | 0.8 | 0.8 | Unknown |
Resolution (µm/pixel) | 0.12 | 0.12 | 0.08 | 0.17 | 0.17 | 0.26 |
Z-stack | None | None | None | None | Extended focus of 3 layers at 1.4 µm interval | None |
Case ID | Tissue Areas (mm2) | Scanning Protocol | |||
---|---|---|---|---|---|
A1&2 | B1 | B2 | B3 | ||
1 | 140 | 65 | 106 | 34 | 229 |
7 | 280 | 145 | 175 | 42 | 703 |
4 | 473 | 204 | 272 | 54 | 863 |
Case ID | Scanning Protocol | Manual FISH (Ground Truth) | Manual Dual BF ISH | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | A2 | B1 | B2 | B3 | C1 | |||||||||||
G | S | G | S | G | S | G | S | G | S | G | S | G | AMP | G | AMP | |
1 | 5 | N | 5 | N | 5 | N | 5 | N | 5 | N | 5 | N | 5 | NA | 5 | NA |
2 | 5 | N | 5 | N | 5 | N | 5 | N | 5 | N | n/a | n/a | 5 | NA | 5 | NA |
3 | 5 | N | 5 | N | 5 | N | 5 | N | 5 | N | n/a | n/a | 5 | NA | 5 | NA |
4 | 4 | N | 4 | N | 5 | N | 5 | N | 4 | N | 5 | N | 4 | NA | 5 | NA |
5 | 4 | N | 4 | N | 4 | N | 4 | N | 4 | N | n/a | n/a | 4 | NA | 4 | NA |
6 | 1 | P | 1 | P | 1 | P | 1 | P | 1 | P | n/a | n/a | 1 | A | 1 | A |
7 | 1 | P | 1 | P | 1 | P | 1 | P | 1 | P | n/a | n/a | 1 | A | 1 | A |
8 | 1 | P | 1 | P | 1 | P | 1 | P | 1 | P | 5 | N | 1 | A | 1 | A |
9 | 1 | P | 1 | P | 1 | P | 1 | P | 1 | P | 5 | N | 1 | A | 1 | A |
10 | 1 | P | 1 | P | 1 | P | 1 | P | 1 | P | n/a | n/a | 1 | A | 1 | A |
Concordance with Manual FISH % | 100 | 100 | 100 | 100 | 90 | 100 | 90 | 100 | 100 | 100 | 10 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakoglu Malinowski, N.; Ohnishi, T.; Cesmecioglu, E.; Ross, D.S.; Tsukamoto, T.; Yagi, Y. Optimization of Scanning Protocol for AI-Integrated Assessment of HER2 Dual Bright-Field In-Situ Hybridization Application in Breast Cancer. Bioengineering 2025, 12, 569. https://doi.org/10.3390/bioengineering12060569
Bakoglu Malinowski N, Ohnishi T, Cesmecioglu E, Ross DS, Tsukamoto T, Yagi Y. Optimization of Scanning Protocol for AI-Integrated Assessment of HER2 Dual Bright-Field In-Situ Hybridization Application in Breast Cancer. Bioengineering. 2025; 12(6):569. https://doi.org/10.3390/bioengineering12060569
Chicago/Turabian StyleBakoglu Malinowski, Nilay, Takashi Ohnishi, Emine Cesmecioglu, Dara S. Ross, Tetsuya Tsukamoto, and Yukako Yagi. 2025. "Optimization of Scanning Protocol for AI-Integrated Assessment of HER2 Dual Bright-Field In-Situ Hybridization Application in Breast Cancer" Bioengineering 12, no. 6: 569. https://doi.org/10.3390/bioengineering12060569
APA StyleBakoglu Malinowski, N., Ohnishi, T., Cesmecioglu, E., Ross, D. S., Tsukamoto, T., & Yagi, Y. (2025). Optimization of Scanning Protocol for AI-Integrated Assessment of HER2 Dual Bright-Field In-Situ Hybridization Application in Breast Cancer. Bioengineering, 12(6), 569. https://doi.org/10.3390/bioengineering12060569