Electroencephalographic Biomarkers for Neuropsychiatric Diseases: The State of the Art
Abstract
:1. Introduction
2. A Brief Summary of Relevant Terminology
3. Cognitive Impairment
4. Resting-State EEG
5. Task-Oriented qEEG for Cognitive and Motor Processing
6. Traumatic Brain Injury
6.1. Advances in EEG Analysis for TBI Biomarkers
6.2. Clinical Applications
7. Depression
8. Migraine
9. Epilepsy
10. Discussion
11. Challenges and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
ADD | Alzheimer’s disease dementia |
APF | alpha peak frequency |
AUC | area under the curve |
BGF | background frequency |
BilLSTM | bi long short-term memory |
CEEMDAN | complete ensemble empirical mode decomposition with adaptive noise |
CFS | correlation feature selection |
CSD | current source density |
CT | cognitive training |
dDTF | direct directed transfer function |
DT | decision tree |
EEMD | ensemble empirical mode decomposition |
eLORETA | exact low-resolution brain electromagnetic tomography |
EO | eyes open; EC, eyes closed; ERP, event-related potential |
FAA | frontal alpha asymmetry |
FESZ | first-episode schizophrenia |
fPCA | functional principal component analysis |
HC | healthy control |
HR | high risk |
IED | interictal epileptiform discharges |
KNN | k-nearest neighbor |
LR | logistic regression |
LSTM | long short-term memory |
MCI | mild cognitive impairment |
MCIsc | mild cognitive impairment composite score |
NB | naïve bayes |
OCD | objective cognitive deficits |
PA | physical activity |
PD | Parkinson’s disease |
PDD | Parkinson’s disease dementia |
PfoCSs | peak frequency of cross-spectrums |
PLI | phase lag index |
PSD | power spectral density |
RHHT | revised Hilbert–Huang transformation |
ROC | receiver operating characteristic |
RSNN | reservoir spiking neural network |
RWC | regional weighted coherence |
SCD | subject cognitive decline |
SDW | summation of derivatives within windows |
SIR | standard imagen recognition |
STFT | short-time Fourier transform |
SVM | support vector machines |
TAR | theta-to-alpha ratio |
TAU | treatment as usual |
TF | transition frequency |
UHR | ultra high-risk |
WC | wavelet cross-spectrum |
3CVT | 3-choice vigilance task |
References
- Biomarkers Definition Group. Biomarkers and Surrogate Endpoints: Preferred Definitions and Conceptual Framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, P.S.; Mohan, A. Neuropsychiatry: Where Are We and Where Do We Go from Here? Mens Sana Monogr. 2013, 11, 4–15. [Google Scholar] [CrossRef]
- Jackson, A.F.; Bolger, D.J. The neurophysiological bases of EEG and EEG measurement: A review for the rest of us. Psychophysiology 2014, 51, 1061–1071. [Google Scholar] [CrossRef] [PubMed]
- Strimbu, K.; Tavel, J.A. What are Biomarkers? Curr. Opin. HIV AIDS 2010, 5, 463–466. [Google Scholar] [CrossRef]
- Weickert, C.S.; Weickert, T.W.; Pillai, A.; Buckley, P.F. Biomarkers in schizophrenia: A brief conceptual consideration. Dis. Markers 2013, 35, 3–9. [Google Scholar] [CrossRef]
- Davis, J.; Maes, M.; Andreazza, A.; McGrath, J.J.; Tye, S.J.; Berk, M. Towards a Classification of Biomarkers of Neuropsychiatric Disease: From Encompass to Compass. Mol. Psychiatry 2015, 20, 152–153. [Google Scholar] [CrossRef] [PubMed]
- Mitsukura, Y.; Sumali, B.; Watanabe h Ikaga, T.; Nishimura, T. Frontotemporal EEG as Potential Biomarker for Early MCI: A Case-Control Study. BMC Psychiatry 2022, 22, 289. [Google Scholar] [CrossRef]
- Nencha, U.; Rigoni, I.; Ribaldi, F.; Altomare, D.; Seeck, M.; Garibotto, V.; Vulliémoz, S.; Frisoni, G.B. Alterations in gamma frequency oscillations correlate with cortical tau deposition in Alzheimer’s disease. Neurobiol. Aging 2024, 139, 1–4. [Google Scholar] [CrossRef]
- Lassi, M.; Fabbiani, C.; Mazzeo, S.; Burali, R.; Vergani, A.A.; Giacomucci, G.; Moschini, V.; Morinelli, C.; Emiliani, F.; Scarpino; et al. Degradation of EEG microstates patterns in subjective cognitive decline and mild cognitive impairment: Early biomarkers along the Alzheimer’s Disease continuum? Neuroimage Clin. 2023, 38, 103407. [Google Scholar] [CrossRef]
- Meghdadi, A.H.; Salat, D.; Hamilton, J.; Hong, Y.; Boeve, B.F.; St Louis, E.K.; Verma, A.; Berka, C. EEG and ERP biosignatures of mild cognitive impairment for longitudinal monitoring of early cognitive decline in Alzheimer’s disease. PLoS ONE 2024, 19, e0308137. [Google Scholar] [CrossRef]
- Cao, J.; Zhao, Y.; Shan, X.; Blackburn, D.; Wei, J.; Erkoyuncu, J.A.; Chen, L.; Sarrigiannis, P.G. Ultra-high-resolution time-frequency analysis of EEG to characterise brain functional connectivity with the application in Alzheimer’s disease. J. Neural Eng. 2022, 19, 046034. [Google Scholar] [CrossRef]
- Schumacher, J.; Thomas, A.J.; Peraza, L.R.; Firbank, M.; Cromarty, R.; Hamilton, C.A.; Donaghy, P.C.; O’Brien, J.T.; Taylor, J.P. EEG alpha reactivity and cholinergic system integrity in Lewy body dementia and Alzheimer’s disease. Alzheimer’s Res. Ther. 2020, 12, 46. [Google Scholar] [CrossRef]
- Trenado, C.; Trauberg, P.; Elben, S.; Dimenshteyn, K.; Folkerts, A.K.; Witt, K.; Weiss, D.; Liepelt-Scarfone, I.; Kalbe, E.; Wojtecki, L. Resting state EEG as biomarker of cognitive training and physical activity’s joint effect in Parkinson’s patients with mild cognitive impairment. Neurol. Res. Pract. 2023, 5, 46. [Google Scholar] [CrossRef] [PubMed]
- Babiloni, C.; Noce, G.; Tucci, F.; Jakhar, D.; Ferri, R.; Panerai, S.; Catania, V.; Soricelli, A.; Salvatore, M.; Nobili, F.; et al. Poor reactivity of posterior electroencephalographic alpha rhythms during the eyes open condition in patients with dementia due to Parkinson’s disease. Neurobiol. Aging 2024, 135, 1–14. [Google Scholar] [CrossRef]
- Giménez-Aparisi, G.; Guijarro-Estelles, E.; Chornet-Lurbe, A.; Ballesta-Martinez, S.; Pardo-Hernandez, M.; Ye-Lin, Y. Early detection of Parkinson’s disease: Systematic analysis of the influence of the eyes on quantitative biomarkers in resting state electroencephalography. Heliyon 2023, 9, e20625. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Sun, J.; Chen, X.; Wang, Y.; Gao, X. EEG signatures of cognitive decline after mild SARS-CoV-2 infection: An age-dependent study. BMC Med. 2024, 22, 257. [Google Scholar] [CrossRef] [PubMed]
- Gaber, M.M.; Hosny, H.; Hussein, M.; Ashmawy, M.A.; Magdy, R. Cognitive Function and Quantitative Electroencephalogram Analysis in Subjects Recovered from COVID-19 Infection. BMC Neurol. 2024, 24, 60. [Google Scholar] [CrossRef]
- O’Donnell, A.; Pauli, R.; Banellis, L.; Sokoliuk, R.; Hayton, T.; Sturman, S.; Veenith, T.; Yakoub, K.M.; Belli, A.; Chennu, S.; et al. The prognostic value of resting-state EEG in acute post-traumatic unresponsive stress. Brain Commun. 2021, 3, fcab017. [Google Scholar] [CrossRef]
- Méndez-Balbuena, I.; Betancourt-Navarrete, B.L.; Hermosillo-Abundis, A.C.; Flores, A.; Rebolledo-Herrera, L.F.; Lemuz-López, R.; Huidobro, N.; Meza-Andrade, R.; Pelayo-González, H.J.; Bonilla-Sánchez, M.R.; et al. Weighted Coherence Analysis as a Window into the Neurophysiological Effects of Traumatic Brain Injury. Bioengineering 2024, 11, 1187. [Google Scholar] [CrossRef]
- Smith, E.E.; Tenke, C.E.; Deldin, P.J.; Trivedi, M.H.; Weissman, M.M.; Auerbach, R.P.; Bruder, G.E.; Pizzagalli, E.A.; Kayser, J. Frontal theta and posterior alpha in resting EEG: A critical examination of convergent and discriminant validity. Psychophysiology 2019, 57, e13483. [Google Scholar] [CrossRef]
- van der Vinne, N.; Vollebregt, M.A.; Rush, A.J.; Eebes, M.; van Putten, M.J.; Arns, M. EEG biomarker informed prescription of antidepressants in MDD: A feasibility trial. Eur. Neuropsychopharmacol. 2021, 44, 14–22. [Google Scholar] [CrossRef]
- Sun, S.; Li, J.; Chen, H.; Gong, T.; Li, X.; Hu, B. A study of resting-state EEG biomarkers for depression recognition. arXiv 2020, arXiv:2002.11039. [Google Scholar]
- Klotz, K.A.; Sag, Y.; Schönberger, J.; Jacobs, J. Scalp Ripples Can Predict Development of Epilepsy After First Unprovoked Seizure in Childhood. Ann. Neurol. 2021, 89, 134–142. [Google Scholar] [CrossRef] [PubMed]
- O’Hare, L.; Menchinelli, F.; Durrant, S.J. Resting-state alpha-band oscillations in migraine. Perception 2018, 47, 379–396. [Google Scholar] [CrossRef]
- Saeedinia, S.A.; Jahed-Motlagh, M.R.; Tafakhori, A.; Kasabov, N.K. Diagnostic biomarker discovery from brain EEG data using LSTM, reservoir-SNN, and NeuCube methods in a pilot study comparing epilepsy and migraine. Sci. Rep. 2024, 14, 10667. [Google Scholar] [CrossRef] [PubMed]
- Chaddad, A.; Wu, Y.; Kateb, R.; Bouridane, A. Electroencephalography signal processing: A comprehensive review and analysis of methods and techniques. Sensors 2023, 23, 6434. [Google Scholar] [CrossRef]
- Fisch, B. Fisch and Spehlmann’s EEG Primer, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Rangayyan, R.M.; Krishnan, S. Biomedical Signal Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2024. [Google Scholar]
- Grass, A.M.; Gibbs, F. A Fourier transform of the electroencephalogram. J. Neurophysiol. 1938, 1, 521–526. [Google Scholar] [CrossRef]
- Helfrich, R.F.; Knight, R.T. Cognitive neurophysiology: Event-related potentials. Handb. Clin. Neurol. 2019, 160, 543–558. [Google Scholar]
- Grech, R.; Cassar, T.; Muscat, J.; Camilleri, K.P.; Fabri, S.G.; Zervakis, M.; Xanthopoulos, P.; Sakkalis, V.; Vanrumste, B. Review on solving the inverse problem in EEG source analysis. J. NeuroEng. Rehabil. 2008, 5, 25. [Google Scholar] [CrossRef]
- Sacuiu, S.F. Dementias. In Handbook of Clinical Neurology; Rosano, C., Ikram, M.A., Ganulie, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 138: Neuroedpidemiology. [Google Scholar]
- Reisberg, B.; Prichep, L.; Mosconi, L.; John, E.R.; Glodzik-Sobanska, L.; Boskay, I.M.; Torossian, C.; Vedvyas, A.; Ashraf, N.; Jamil, I.A.; et al. The pre-mild cognitive impairment, subjective cognitive impairment stage of Alzheimer’s disease. Alzheimer’s Dement. 2008, 4, S98–S108. [Google Scholar] [CrossRef]
- Jessen, F.; Amariglio, R.E.; Buckley, R.F.; van der Flier, W.M.; Han, Y.; Molinuevo, J.L.; Rabin, L.; Rentz, D.M.; Rodriguez-Gomez, O.; Saykin, A.J.; et al. The characterization of subjective cognitive decline. Lancet Neurol. 2020, 19, 271–278. [Google Scholar] [CrossRef]
- Flicker, C.; Ferris, S.H.; Reisberg, B. Mild cognitive impairnet in the ederly: Predictors of dementia. Neurology 1991, 41, 1006–1009. [Google Scholar] [CrossRef]
- Geda, Y.E. Mild cognitive impaiment in older adults. Curr. Psychiatry Rep. 2012, 14, 320–327. [Google Scholar] [CrossRef]
- Buzi, G.; Fornari, C.; Perinelli, A.; Mazza, V. Functional connectivity changes in mild cognitive impairment: A meta-analysis of M/EEG studies. Clin. Neurophysiol. 2023, 156, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Tagawa, M.; Takei, Y.; Kato, Y.; Suto, T.; Hironaga, N.; Ohki, T.; Takahashi, Y.; Fujihara, K.; Sakurai, N.; Ujita, K.; et al. Disrupted local beta band networks in schizophrenia revealed through graph analysis: A magnetoencephalography study. Psychiatry Clin. Neurosci. 2022, 76, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Anjum, M.F.; Espinoza, A.I.; Cole, R.C.; Singh, A.; May, P.; Uc, E.Y.; Dasgupta, S.; Narayanan, N.S. Resting-state EEG measures cognitive impairment in Parkinson’s disease. NPJ Parkinson’s Dis. 2024, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Chino-Vilca, B.; Rodríguez-Rojo, I.C.; Torres-Simón, L.; Cuesta, P.; Vendrell, A.C.; Piñol-Ripoll, G.; Huerto, R.; Tahan, N.; Maestú, F. Sex specific EEG signatures associated with cerebrospinal fluid biomarkers in mild cognitive impairment. Clin. Neurophysiol. 2022, 142, 190–198. [Google Scholar] [CrossRef]
- Li, W.; Varatharajah, Y.; Dicks, E.; Barnard, L.; Brinkmann, B.H.; Crepeau, D.; Worrell, G.; Fan, W.; Kremers, W.; Boeve, B.; et al. Data-driven retrieval of population-level EEG features and their role in neurodegenerative diseases. Brain Commun. 2024, 6, fcae227. [Google Scholar] [CrossRef]
- Del Brutto, O.H.; Wu, S.; Mera, R.M.; Costa, A.F.; Recalde, B.Y.; Issa, N.P. Cognitive Decline Among Individuals With History of Mild Symptomatic SARS-CoV-2 Infection: A Longitudinal Prospective Study Nested to a Population Cohort. Eur. J. Neurol. 2021, 28, 3245–3253. [Google Scholar] [CrossRef]
- Broitman, A.W.; Healey, M.K.; Kahana, M.J. EEG Biomarkers of Age-Related Memory Change. bioRxiv 2024. [Google Scholar] [CrossRef]
- Borhani, S.; Zhao, X.; Kelly, M.R.; Gottschalk, K.E.; Yuan, F.; Jicha, G.A.; Jiang, Y. Gauging Working Memory Capacity from Differential Resting Brain Oscillations in Older Individuals with A Wearable Device. Front. Aging Neurosci. 2021, 13, 625006. [Google Scholar] [CrossRef] [PubMed]
- Babiloni, C.; Ferri, R.; Noce, G.; Lizio, R.; Lopez, S.; Lorenzo, I.; Tucci, F.; Soricelli, A.; Nobili, F.; Arnaldi, D.; et al. Resting State Alpha Electroencephalographic Rhythms Are Differently Related to Aging in Cognitively Unimpaired Seniors and Patients with Alzheimer’s Disease and Amnesic Mild Cognitive Impairment. J. Alzheimer’s Dis. 2021, 82, 1085–1114. [Google Scholar] [CrossRef]
- Zhen, Y.; Gao, L.; Chen, J.; Gu, L.; Shu, H.; Wang, Z.; Liu, D.; Zhang, Z. EEG Reveals Alterations in Motor Imagery in People with Amnestic Mild Cognitive Impairment. J. Gerontol. B Psychol. Sci. Soc. Sci. 2023, 78, 1474–1483. [Google Scholar] [CrossRef]
- Broster, L.S.; Jenkins, S.L.; Holmes, S.D.; Edwards, M.G.; Jicha, G.A.; Jiang, Y. Electrophysiological repetition effects in persons with mild cognitive impairment depend upon working memory demand. Neuropsychologia 2018, 117, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Bagattini, C.; Mazza, V.; Panizza, L.; Ferrari, C.; Bonomini, C.; Brignani, D. Neural Dynamics of Multiple Object Processing in Mild Cognitive Impairment and Alzheimer’s Disease: Future Early Diagnostic Biomarkers? J. Alzheimer’s Dis. 2017, 59, 643–654. [Google Scholar] [CrossRef]
- Cespón, J.; Galdo-Álvarez, S.; Pereiro, A.X.; Díaz, F. Differences between mild cognitive impairment subtypes as indicated by event-related potential correlates of cognitive and motor processes in a Simon task. J. Alzheimer’s Dis. 2015, 43, 631–647. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ye, X.; Song, B.; Yan, Y.; Ma, W.; Shi, J. Features of event-related potentials during retrieval of episodic memory in patients with mild cognitive impairment due to Alzheimer’s disease. Front. Neurosci. 2023, 17, 1185228. [Google Scholar] [CrossRef]
- Che, J.; Cheng, N.; Jiang, B.; Liu, Y.; Liu, H.; Li, Y.; Liu, H. Executive function measures of participants with mild cognitive impairment: Systematic review and meta-analysis of event-related potential studies. Int. J. Psychophysiol. 2024, 197, 112295. [Google Scholar] [CrossRef] [PubMed]
- Bong, S.H.; Kim, J.W. The Role of Quantitative Electroencephalogram in the Diagnosis and Subgrouping of Attention-Deficit/Hyperactivity Disorder. J. Korean Acad. Child Adolesc. Psychiatry 2021, 32, 85–92. [Google Scholar] [CrossRef]
- Loo, S.K.; McGough, J.J.; McCracken, J.T.; Smalley, S.L. Parsing heterogeneity in attention-deficit hyperactivity disorder using EEG-based subgroups. J. Child Psychol. Psychiatry 2018, 59, 223–231. [Google Scholar] [CrossRef]
- Hernández-Andrade, L.; Hermosillo-Abundis, A.C.; Betancourt-Navarrete, B.L.; Ruge, D.; Trenado, C.; Lemuz-López, R.; Pelayo-González, H.J.; López-Cortés, V.A.; Bonilla-Sánchez, M.D.R.; García-Flores, M.A.; et al. EEG Global Coherence in Scholar ADHD Children during Visual Object Processing. Int. J. Environ. Res. Public Health 2022, 19, 5953. [Google Scholar] [CrossRef] [PubMed]
- Michelini, G.; Salmastyan, G.; Vera, J.D.; Lenartowicz, A. Event-related brain oscillations in attention-eficit/hyperactivity disorder (ADHD): A systematic review and meta-analysis. Int. J. Psychophysiol. 2022, 174, 29–42. [Google Scholar] [CrossRef]
- Gu, W.; Chang, R.; Yang, B. EEG Machine Learning for Analysis of Mild Traumatic Brain Injury: A survey. arXiv 2022, arXiv:2208.08894. [Google Scholar]
- Rapp, P.E.; Keyser, D.O.; Albano, A.; Hernandez, R.; Gibson, D.B.; Zambon, R.A.; Hairston, W.D.; Hugues, J.D.; Krystal, A.; Nichols, A.S. Traumatic brain injury detection using electrophysiological methods. Front. Hum. Neurosci. 2015, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Franke, L.M.; Perera, R.A.; Sponheim, S.R. Long-term resting EEG correlates of repetitive mild traumatic brain injury and loss of consciousness: Alterations in alpha-beta power. Front. Neurol. 2023, 14, 1241481. [Google Scholar] [CrossRef] [PubMed]
- Ianof, J.N.; Anghinah, R. Traumatic brain injury: An EEG point of view. Dement. Neuropsychol. 2017, 11, 3–5. [Google Scholar] [CrossRef]
- Monni, A.; Collison, K.L.; Hill, K.E.; Oumeziane, B.A.; Foti, D. The novel frontal alpha asymmetry factor and its association with depression, anxiety, and personality traits. Psychophysiology 2022, 59, e14109. [Google Scholar] [CrossRef]
- Huie, J.R.; Mondello, S.; Lindsell, C.J.; Antiga, L.; Yuh, E.L.; Zanier, E.R.; Masson, S.; Rosario, B.L.; Ferguson, A.R. Biomarkers for traumatic brain injury: Data standards and statistical considerations. J. Neurotrauma 2021, 38, 2514–2529. [Google Scholar] [CrossRef]
- Lew, B.J.; McDermott, T.J.; Wiesman, A.I.; O’Neill, J.; Mills, M.S.; Robertson, K.R.; Fox, H.S.; Swindells, S.; Wilson, T.W. Neural dynamics of selective attention deficits in HIV-associated neurocognitive disorder. Neurology 2018, 91, e1860–e1869. [Google Scholar] [CrossRef]
- Dockree, P.M.; Bellgrove, M.A.; O’Keeffe, F.M.; Moloney, P.; Aimola, L.; Robertson, I.H. Sustained Attention in Traumatic Brain Injury (TBI) and Healthy Controls: Enhanced Sensitivity with Dual-Task Load. Exp. Brain Res. 2006, 168, 218–229. [Google Scholar] [CrossRef]
- Han, K.; Chapman, S.B.; Krawczyk, D.C. Disrupted intrinsic connectivity among default, dorsal attention, and frontoparietal control networks in individuals with chronic traumatic brain injury. J. Int. Neuropsychol. Soc. 2016, 22, 263–279. [Google Scholar] [CrossRef]
- Shah, S.A.; Lowder, R.J.; Kuceyeski, A. Quantitative multimodal imaging in traumatic brain injuries producing impaired cognition. Curr. Opin. Neurol. 2020, 33, 691–698. [Google Scholar] [CrossRef]
- Sattari, S.; Damji, S.; McLeod, J.; Mirian, M.M.; Wu, L.; Virji-Babul, N. Altered resting state EEG microstate dynamics in acute-phase pediatric mild traumatic brain injury. medRxiv 2024. [Google Scholar] [CrossRef]
- Gu, L.; Zhang, Z. Exploring Potential Electrophysiological Biomarkers in Mild Cognitive Impairment: A Systematic Review and Meta-Analysis of Event-Related Potential Studies. J. Alzheimer’s Dis. 2017, 58, 1283–1292. [Google Scholar] [CrossRef]
- Wilde, E.A.; Wanner, I.; Kenney, K.; Gill, J.; Stone, J.R.; Disner, S.; Schnakes, C.; Meyer, R.; Prager, E.M.; Haas, M.; et al. A Framework to Advance Biomarker Development in the Diagnosis, Outcome Prediction, and Treatment of Traumatic Brain Injury. J. Neurotrauma 2022, 39, 436–457. [Google Scholar] [CrossRef] [PubMed]
- Fontanillo Lopez, C.A.; Li, G.; Zhang, D. Beyond Technlologies of Electroencephalograph-Based Brain-Computer Interfaces: A Systematic Review from Commercial and Ethical Aspects. Front. Neurosci. 2020, 14, 611130. [Google Scholar] [CrossRef] [PubMed]
- Behboodi, A.; Kline, J.; Gravunder, A.; Phillips, C.; Parker, S.M.; Damiano, D.L. Development and evaluation of a BCI-neurofeedback system with real-time EEG detection and electrical stimulation assistance during motor attempt for neurorehabilitation of children with cerebral palsy. Front. Hum. Neurosci. 2024, 18, 1346050. [Google Scholar] [CrossRef]
- Mane, R.; Wu, Z.; Wang, D. Poststroke motor, cognitive and speech rehabilitation with brain–computer interface: A perspective review. Stroke Vasc. Neurol. 2022, 7, 541–549. [Google Scholar] [CrossRef]
- Ma, Y.; Gong, A.; Nan, W.; Ding, P.; Wang, F.; Fu, Y. Personalized brain–computer interface and its applications. J. Pers. Med. 2022, 13, 46. [Google Scholar] [CrossRef]
- Lanza, G.; Fisicaro, F.; Dubbioso, R.; Ranieri, F.; Chistyakov, A.V.; Cantone, M.; Pennisi, M.; Grasso, A.A.; Bella, R.; Di Lazzaro, V. A comprehensive review of transcranial magnetic stimulation in secondary dementia. Front. Aging Neurosci. 2022, 14, 995000. [Google Scholar] [CrossRef]
- Wojtecki, L.; Cont, C.; Stute, N.; Galli, A.; Schulte, C.; Trenado, C. Electrical brain networks before and after transcranial pulsed shockwave stimulation in Alzheimer’s patients. Geroscience 2024, 47, 953–964. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, P.J.; Watson, B.O. Gamma Oscillations as a Biomarker for Major Depression: An Emerging Topic. Transl. Psychiatry 2018, 8, 177. [Google Scholar] [CrossRef] [PubMed]
- Widge, A.S.; Bilge, M.T.; Montana, R.; Chang, W.; Rodriguez, C.I.; Deckersbach, T.; Carpenter, L.L.; Kalin, N.H.; Nemeroff, C.B. Electroencephalograhic Biomarkers for Treatment Response Prediction in Major Depressive Illness: A Meta-Analysis. Am. J. Psychiatry 2019, 176, 44–56. [Google Scholar] [CrossRef]
- Puledda, F.; Martins Silva, E.; Suwanlaong, K.; Goadsby, P.J. Migraine: From Pathophysiology to Treatment. J. Neurol. 2023, 270, 3654–3666. [Google Scholar] [CrossRef]
- Haehner, A.; Gossrau, G.; Bock, F.; Hummel, T.; Iannilli, E. Migraine Type-Dependent Patterns of Brain Activation After Facial and Intranasal Trigeminal Stimulation. Brain Topogr. 2023, 36, 52–71. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Gong, L.; Yand, Y.; Tan Ruan, L.; Chen, X.; Luo, H.; Ruan, J. Spatio-Temporal Dynamics of Resting-State Brain Networks are Associated with Migraine Disability. J. Headache Pain 2023, 24, 13. [Google Scholar] [CrossRef]
- Fiest, K.M.; Sauro, K.M.; Wiebe, S.; Pattern, S.B.; Kwon, C.; Dykeman, J.; Pringhseim, T.; Lorenzetti, D.; Jetté, N. Prevalence and Incidence of Epilepsy—A Systematic Review and Meta-Analysis of International Studies. Neurology 2017, 88, 296–303. [Google Scholar] [CrossRef]
- Bradzil, M.; Pail, M.; Halamek, J.; Plesinger, F.; Cimbalnik, J.; Roman, R.; Klimes, P.; Daniel, P.; Charastina, J.; Brichtova, E.; et al. Very high-frequency oscillations: Novel biomarkers of the epileptogenic zone. Ann. Neurol. 2017, 82, 299–310. [Google Scholar] [CrossRef]
- Woodcock, J.; Atkinson, A.J.; Rola, P. Physiological and Laboratory Markers of Drug Effect. In Principles of Clinical Pharmacology; Atkinson, A.J., Huang, S.M., Lertora, J.L.J., Markey, S.P., Eds.; Associated Press: New York, NY, USA, 2012. [Google Scholar]
- Jacobs, J.; Hwang, G.; Curran, T.; Kahana, M.J. EEG oscillations and recognition memory: Theta correlates of memory retrieval and decision making. NeuroImage 2006, 15, 978–987. [Google Scholar] [CrossRef]
- Cortese, S.; Solmi, M.; Michelini, G.; Bellato, A.; Blanner, C.; Canozzi, A.; Eudave, L.; Farhat, L.C.; Hojlund, M.; Kölher-Forsberg, O.; et al. Candidate diagnostic biomarkers for neurodevelopmental disorders in children and adolescents: A systematic review. World Psychiatry 2023, 22, 129–149. [Google Scholar] [CrossRef]
- Bastiaansen, M.; Mazaheri, A.; Jensen, O. Beyond ERPs: Oscillatory neuronal. In The Oxford Handbook of Event-Related Potential Components; Oxford University Press: Oxford, UK, 2011; pp. 31–50. [Google Scholar]
- Besne, G.M.; Evans, N.; Panagiotopoulou, M.; Smith, B.; Chowdhury, F.A.; Diehl, B.; Duncan, J.S.; McEvoy, A.W.; Miserocchi, A.; de Tisi, J.; et al. Anti-seizure medication tapering correlates with daytime delta band power reduction in the cortex. Brain Commun. 2025, 7, fcaf020. [Google Scholar] [CrossRef] [PubMed]
- Anetakis, K.M.; Gedela, S.; Kochanek, P.M.; Clark, R.S.; Berger, R.P.; Fabio, A.; Angus, D.C.; Watson, R.S.; Callaway, C.W.; Bell, M.J.; et al. Association of EEG and blood-based brain injury biomarker accuracy to prognosticate mortality after pediatric cardiac arrest: An exploratory study. Pediatr. Neurol. 2022, 134, 25–30. [Google Scholar] [CrossRef] [PubMed]
Reference | Proposed Biomarker Classifications |
---|---|
Weickert et al., 2013 [5] | Diagnostic: the defining characteristics shared by all patients with the disease (or most if there is more than one biomarker) Prognostic: the prediction of the possibility of the onset of disease Theranostics: prediction of response to treatment |
Davis et al., 2014 [6] | Biomarkers of risk: the identification of at-risk individuals Biomarkers of diagnosis/traits: reflect the presence of a disease state and allows for a definitive diagnosis of disease, ideally with no overlap between disorders or disruption by confounders Biomarkers of state/acuity: reflect the present severity of a particular disease process Biomarkers of stage: indicate an individual’s stage of illness (per extant classifications) Biomarkers of treatment response: an index of the probability of response to a given treatment Biomarkers of prognosis: predictors of the likely course and outcome of an illness |
Disorder(s) Related to the Study | Features Analyzed | Sample Size | Main Results | Task(s) or Test(s) Used | Analysis Methods | Biomarker | Biomarker Class (Davis et al., 2014) [6] | Reference |
---|---|---|---|---|---|---|---|---|
Mild cognitive impairment | Power spectra ratios for delta, theta, alpha, beta, and gamma using single channel on frontotemporal area | 10 patients with dementia; 33 patients with MCI; 77 patients with HC | Single electrode on Fp1; delta bands are increased for HC compared to dementia group and MCI group Alpha-1 bands are increased for dementia group | Resting-state EEG Eyes closed for 100 s | SDW algorithm, EEMD, STFT, SVM | Frontotemporal EEG | Diagnostic | Mitsukura et al., 2022 [7] |
Tau-driven neurodegeneration | Relative gamma power | 7 patients with AD with significant amyloid and tau deposition; 9 patients with either SCD or OCD without tau deposition | Gamma oscillations are increased in frontal and parietal regions (as compared to gamma oscillations in presence of amyloid) | Resting-state EEG | PSD using single Hanninf taper | Gamma power | Diagnosis/trait | Nencha et al., 2024 [8] |
Subjective cognitive decline; mild cognitive decline; Alzheimer’s disease | Analyses (PSD, connectivity, and microstate markers) to identify differences between patients with SCD, MCI, and HC | 57 patients with SCD; 46 patients with MCI; 19 patients with HC | In spectral analysis, three-group comparison showed differences in global field power in delta, theta, and alpha bands In connectivity analysis, results did not show difference among groups in average strengths of connection between brain areas In microstate analysis, comparison demonstrated altered topographies of microstates A and D in each clinical condition compared to controls and differences between SCD and controls for microstate C | Resting-state EEG | PSD, eLORETA, 3D-mesh model, microstates, Hurst exponent | Microstate analysis | Risk, diagnostic, stage | Lassi et al., 2023 [9] |
Monitoring of early cognitive decline in Alzheimer’s disease | PSD in each frequency band (delta, slow-theta, theta, slow-alpha, alpha, slow-beta, beta, and gamma), TAR, and grand average ERP waveforms | 38 patients with MCI; 44 patients with HC | In resting state with eyes closed, MCI group exhibited reduced power in slow-beta, increased power in theta, increased TAR, and no significant decline in alpha power In ERP tasks, MCI group exhibited reduced ERP and late positive potential, delayed ERP and early component latency, slower reaction time, and lower response accuracy | Resting-state EEG, 3CVT, SIR memory task | PSD, machine learning to build model that combines multiple EEG/ERP measures to obtain single unified score of MCI and SVM | Power of each EEG/ERP predictor, TAR, power in theta and beta bands, MCIsc | Diagnosis, state/acuity, treatment response | Meghdadi et al., 2024 [10] |
Alzheimer’s disease | Features for delta, theta, alpha, beta, gamma, and full frequency bands using WC and RHHT in eyes closed, eyes open and eyes closed and eyes open tests | 20 patients with AD; 20 patients with HC | Machine learning classification accuracy (%) shows that RHHT performs better in full band in frontocentral midline and occipital regions For WC method, best accuracy was achieved in theta band In time-frequency functional connectivity, RHHT and WC have dominating power in alpha band | Resting-state EEG | WC and RHHT, PFoCSs, CEEMDAN algorithm, PSD, machine learning | Peak frequency of cross-spectrums, estimated from RHHT | Diagnostic | Cao et al., 2022 [11] |
Lewy body dementia and Alzheimer’s disease | Alpha rhythm from occipital region (peak frequency, reactivity, and power) | 41 patients with Lewy body dementia (24 patients with Lewy body dementia; 17 patients with Parkinson’s disease dementia); 40 patients with HC | Marked reduction in alpha Reactivity in dementia with Lewy bodies as compared to AD and PDD | Resting-state EEG | PSD using Bartlett’s method | EEG alpha reactivity | Diagnostic (discrimination between types of dementia) | Schumacher et al., 2020 [12] |
Mild cognitive impairment in Parkinson’s disease | Power average of delta, deltatheta, theta, and alpha frequency bands in frontal areas for therapeutic joint effect of interventions (CT and PA) | Patients with PD under cognitive (10 patients) or physical (9 patients) training | Positive joint effect of interventions (CT and PA) was positive on cognitive abilities and executive functions | Resting-state EEG | Power spectrum | Theta and alpha power at frontal areas | Intervention efficacy | Trenado et al., 2023 [13] |
Dementia due to Parkinson’s disease | Reactivity of posterior (central, parietal, and occipital) EEG alpha rhythm | 73 patients with PDD; 35 patients with ADD; 25 patients with HC | Posterior EEG alpha source activities manifested lower reactivity in parietal region | Resting-state EEG | TF, BGF, eLORETA, alpha reactivity (%) | Resting-state electroencephalographic alpha source reactivity | State/treatment response | Babiloni et al., 2024 [14] |
Parkinson’s disease | Time percentage that frequency peak is within theta or alpha band; relative powers of delta, theta, alpha, beta, and gamma bands; spectral exponent; alpha/theta ratio; slope of non-oscillatory activity from average PSD | 13 cognitively normal patients with PD with age-matched HC | Higher relative theta power, higher time percentage with frequency peak in theta band and reduced alpha/theta ratio, steeper non-oscillatory spectral slope activity, less alpha and beta reactivity to eyes open test | Resting-state EEG | PSD | In EO, alpha reactivity, beta reactivity, percentage of theta band, and spectral slope In EC, relative theta power and reduction in alpha/theta ratio. | Risk; diagnostic | Gimenez-Aparisi et al., 2023 [15] |
Cognitive decline after mild SARS-CoV-2 infection | Features for delta, theta, alpha, beta, gamma, and full frequency using spatial, linear, and nonlinear analysis | 185 patients in four age categories (<10; 10–20; 20–27; >27) | Reductions in connectivity around temporal region to frontal region; reductions in connectivity were mainly intra-hemispheric; alterations in frequency within delta and theta bands | Resting-state EEG | Source connectivity analysis using dDTF, KMeans clustering method for microstate analysis, Hjorth parameter, Kolmogorov complexity, sample entropy, Hurst index | Spatial, linear, and nonlinear biomarkers | Diagnosis/trait; state/acuity | Sun et al., 2024 [16] |
Post-COVID-19 subjective cognitive decline | Frontal, central, and parietal absolute power; theta/beta power ratio; interhemispheric coherence | 50 COVID-19 survivors; 50 patients with HC (aged 33–45) | Increased central and parietal theta/beta ratio; significantly lower frontal, central, and parietal coherence | Neuropsychological tests | Fast Fourier transformation Coherence (method not specified) | Coherence; theta/beta ratio | Diagnostic/trait; stage (potentially) | Gaber et al., 2024 [17] |
TBI | Spectral phase and power of alpha, theta, and delta frequency bands and connectivity using debiased weighted phase lag index in order to provide diagnostic and prognostic information at 3 and 6 months post-injury | 20 patients with HC | Mean relative alpha power and outcome at 3 months suggests potential for simple and standard EEG measure to augment prognostication in post-traumatic states of unresponsiveness | Resting-state EEG | Machine learning: graph theory analyses | Relative alpha power | Prognostic | O’Donnell et al., 2021 [18] |
Traumatic brain injury (TBI) | RWC across EEG frequency bands within frontal, central, parietal, occipital, and temporal regions; Halstead–Reitan categorization task scores and latencies | 8 patients with TBI; 8 patients with HC | Coherence values in parietal and occipital regions, in beta and gamma bands, and coherence values in temporal region in delta and theta bands | Resting-state EEG and Halstead–Reitan categorization task | EEG Spectral Power Analysis, EEG-EEG Cortico-Cortical Coherence, RWC | Higher coherence in beta and gamma frequency bands in parietal region Lower delta and theta frequency bands in temporal region | Prognostic | Méndez-Balbuena et al., 2024 [19] |
Depression in healthy adults | Spatial filtering, fPCA, and conventional frequency analyses in theta band CSD and eLORETA analyses in alpha band | 35 patients with HC | Weak theta band activity in resting-state EEG; posterior alpha frequency was prominent, reliably quantified, and persistent across data transformation | Resting-state EEG | CSD, fPCA, eLoreta | Alpha and theta spectral components | Diagnostic/trait | Smith et al., 2019 [20] |
Prescription of antidepressants in MDD | EEG features (IED, APF, and FAA) to select among three different antidepressants (escitalopram, sertraline, or venlafaxine) as compared to TAU | 122 patients: 70 with EEG informed prescription; 52 patients undergoing treatment as usual | EEG-informed prescription group demonstrated significantly better response relative to TAU group Sertraline was used in abnormal EEG activity (IEDs, slowing of the EEG, and APF below 8 Hz) Escitalopram or sertraline was advised for right-sided FAA Venlafaxine was advised for left-sided FAA | Resting-state EEG | Decision tree algorithm | IEDs or slowing of EEG, AFP below 8 Hz, FAA | Treatment response | van der Vinne et al., 2020 [21] |
Depression recognition | Linear features, nonlinear features, and functional connectivity features (PLI) in EEG signals | 24 diagnosed patients, 29 patients with HC | Highest accuracy (82.31%) in linear, nonlinear, and PLI using LR classifier and method ReliefF, set Number of functional connectivity features (PLI) is higher than number of nonlinear and linear features PLI and nonlinear features showed significant differences Connection edges of left hemisphere > connection edges of left hemisphere Intrahemispheric connection edges > inter hemispheric connection edges | Resting-state EEG | Machine learning: CFS, Information Gain, and ReliefF LR, KNN, DT, and NB classifiers | Intrahemispheric connection edges of PLI | Diagnostic | Sun et al., 2020 [22] |
Epilepsy in childhood | Rates of ripples, spikes ripples, and spikes per minute | 26 patients with epilepsy; 30 patients with HC | Higher rates of ripples and spike ripples in early EEG Ripple rate was significantly higher in seizure group than in no-seizure group | EEG awake and/or asleep | Machine learning: ROC curves, AUC, Youden index | High frequency oscillations | Risk, diagnostic/trait | Klotz et al., 2020 [23] |
Migraine | Resting-state alpha band oscillations in visual area of brain | 13 patients with migraine; 17 patients with HC | Lower alpha band (8 to 10 Hz) augmented power | Resting-state EEG before and after contrast detection task | Spectral analysis | Increase in lower alpha band power | Basic research; has potential as biomarker of risk | O’Hare et al., 2018 [24] |
Epilepsy and migraine | Classification accuracy and effect of number of neurons in BilLSTM, RSNN, and NeuCube models from Fp1, Fp2, C3, C4, O1, O2, F7, F8, T3, T6, and Cz EEG channels | 6 patients with epilepsy; 15 patients with migraine; 15 patients with HC; both sexes, aged 6 to 57 | BiLSTM identifies F8, T3, and T6 as crucial EEG channels on classification, while RSNN highlights F7 and T6, and NeuCube suggests C4, F8, T6, and F7 as discriminative channels BiLSTM models and reveals asymmetry between high and low activity in some channels, particularly in occipital lobe | Resting-state EEG | Machine learning methods: deep BilLSTM classifier, RSNN, and NeuCube | Stronger EEG channel activities across models, especially F8 and C4, contribute to understanding of epilepsy and migraine disorders; spike generation and spike exchange in NeuroCube model | Diagnosis (discrimination between epilepsy and migraine; prediction of crises) | Saeedinia et al., 2024 [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huidobro, N.; Meza-Andrade, R.; Méndez-Balbuena, I.; Trenado, C.; Tello Bello, M.; Tepichin Rodríguez, E. Electroencephalographic Biomarkers for Neuropsychiatric Diseases: The State of the Art. Bioengineering 2025, 12, 295. https://doi.org/10.3390/bioengineering12030295
Huidobro N, Meza-Andrade R, Méndez-Balbuena I, Trenado C, Tello Bello M, Tepichin Rodríguez E. Electroencephalographic Biomarkers for Neuropsychiatric Diseases: The State of the Art. Bioengineering. 2025; 12(3):295. https://doi.org/10.3390/bioengineering12030295
Chicago/Turabian StyleHuidobro, Nayeli, Roberto Meza-Andrade, Ignacio Méndez-Balbuena, Carlos Trenado, Maribel Tello Bello, and Eduardo Tepichin Rodríguez. 2025. "Electroencephalographic Biomarkers for Neuropsychiatric Diseases: The State of the Art" Bioengineering 12, no. 3: 295. https://doi.org/10.3390/bioengineering12030295
APA StyleHuidobro, N., Meza-Andrade, R., Méndez-Balbuena, I., Trenado, C., Tello Bello, M., & Tepichin Rodríguez, E. (2025). Electroencephalographic Biomarkers for Neuropsychiatric Diseases: The State of the Art. Bioengineering, 12(3), 295. https://doi.org/10.3390/bioengineering12030295