The Effect of Electrical Stimulation on the Cellular Response of Human Mesenchymal Stem Cells Grown on Silicon Carbide-Coated Carbon Nanowall Scaffolds
Abstract
1. Introduction
2. Materials and Methods
2.1. Deposition of SiC on CNWs
2.2. Evaluation of Surface Morphology of Scaffolds
2.3. Cell Culture
2.4. Immunofluorescence Microscopy
2.5. MTS Assay
2.6. qRT-PCR
2.7. Data Analysis
3. Results and Discussion
3.1. Surface Observation of the Scaffold
3.2. Immunofluorescence Staining
3.3. Cell Proliferation Assay
3.4. Cell Differentiation Assay
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guvendiren, M.; Burdick, J.A. The Control of Stem Cell Morphology and Differentiation by Hydrogel Surface Wrinkles. Biomaterials 2010, 31, 6511–6518. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.; Zhang, Z.; Rouabhia, M. Accelerated Osteoblast Mineralization on a Conductive Substrate by Multiple Electrical Stimulation. J. Bone Miner. Metab. 2011, 29, 535–544. [Google Scholar] [CrossRef]
- Hiramatsu, M.; Shiji, K.; Amano, H.; Hori, M. Fabrication of Vertically Aligned Carbon Nanowalls Using Capacitively Coupled Plasma-Enhanced Chemical Vapor Deposition Assisted by Hydrogen Radical Injection. Appl. Phys. Lett. 2004, 84, 4708–4710. [Google Scholar] [CrossRef]
- Hiramatsu, M.; Hori, M. Carbon Nanowalls: Synthesis and Emerging Applications, 1st ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Wu, Y.; Yang, B.; Zong, B.; Sun, H.; Shen, Z.; Feng, Y. Carbon Nanowalls and Related Materials. J. Mater. Chem. 2004, 14, 469–477. [Google Scholar] [CrossRef]
- Yerlanuly, Y.; Zhumadilov, R.; Nemkayeva, R.; Uzakbaiuly, B.; Beisenbayev, A.R.; Bakenov, Z.; Ramazanov, T.; Gabdullin, M.; Ng, A.; Brus, V.V.; et al. Physical Properties of Carbon Nanowalls Synthesized by the ICP-PECVD Method vs. the Growth Time. Sci. Rep. 2021, 11, 19287. [Google Scholar] [CrossRef]
- Cui, L.; Chen, J.; Yang, B.; Sun, D.; Jiao, T. RF-PECVD Synthesis of Carbon Nanowalls and Their Field Emission Properties. Appl. Surf. Sci. 2015, 357, 1–7. [Google Scholar] [CrossRef]
- Bita, B.; Vizireanu, S.; Stoica, D.; Ion, V.; Yehia, S.; Radu, A.; Iftimie, S.; Dinescu, G. On the Structural, Morphological, and Electrical Properties of Carbon Nanowalls Obtained by Plasma-Enhanced Chemical Vapor Deposition. J. Nanomater. 2020, 2020, 8814459. [Google Scholar] [CrossRef]
- Stancu, E.C.; Stanciuc, A.-M.; Vizireanu, S.; Luculescu, C.; Moldovan, L.; Achour, A.; Dinescu, G. Plasma Functionalization of Carbon Nanowalls and Its Effect on Attachment of Fibroblast-like Cells. J. Phys. D Appl. Phys. 2014, 47, 265203. [Google Scholar] [CrossRef]
- Stancu, E.C.; Ionita, M.D.; Vizireanu, S.; Stanciuc, A.M.; Moldovan, L.; Dinescu, G. Wettability Properties of Carbon Nanowalls Layers Deposited by a Radiofrequency Plasma Beam Discharge. Mater. Sci. Eng. B 2010, 169, 119–122. [Google Scholar] [CrossRef]
- Ion, R.; Vizireanu, S.; Stancu, C.E.; Luculescu, C.; Cimpean, A.; Dinescu, G. Surface Plasma Functionalization Influences Macrophage Behavior on Carbon Nanowalls. Mater. Sci. Eng. C 2015, 48, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Ion, R.; Vizireanu, S.; Luculescu, C.; Cimpean, A.; Dinescu, G. Vertically, Interconnected Carbon Nanowalls as Biocompatible Scaffolds for Osteoblast Cells. J. Phys. D Appl. Phys. 2016, 49, 274004. [Google Scholar] [CrossRef]
- Kumar, V.; Mohamed, M.S.; Veeranarayanan, S.; Maekawa, T.; Kumar, D.S. Functionalized Carbon Nanowalls as Pro-Angiogenic Scaffolds for Endothelial Cell Activation. ACS Appl. Bio Mater. 2019, 2, 1119–1130. [Google Scholar] [CrossRef]
- Ichikawa, T.; Kondo, H.; Ishikawa, K.; Tsutsumi, T.; Tanaka, H.; Sekine, M.; Hori, M. Gene Expression of Osteoblast-like Cells on Carbon-Nanowall as Scaffolds during Incubation with Electrical Stimulation. ACS Appl. Bio Mater. 2019, 2, 2698–2702. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, Y.; Ding, S.; Zhang, K.; Mao, H.; Yang, Y. Application of Conductive PPy/SF Composite Scaffold and Electrical Stimulation for Neural Tissue Engineering. Biomaterials 2020, 255, 120164. [Google Scholar] [CrossRef]
- Kämmerer, P.W.; Engel, N.; Bader, R.; Engel, V.; Frerich, B.; Heimes, D.; Kröger, J.; Lembcke, L.; Plocksties, F.; Raben, H.; et al. Safety and Preliminary Efficacy of an Electrically Stimulated Implant for Mandibular Bone Regeneration: A Pilot Study in a Large Animal Model. Clin. Oral Investig. 2025, 29, 226. [Google Scholar] [CrossRef]
- Shin, S.R.; Li, Y.-C.; Jang, H.L.; Khoshakhlagh, P.; Akbari, M.; Nasajpour, A.; Zhang, Y.S.; Tamayol, A.; Khademhosseini, A. Graphene-Based Materials for Tissue Engineering. Adv. Drug Deliv. Rev. 2016, 105, 255–274. [Google Scholar] [CrossRef]
- Saddow, S.E.; Frewin, C.L.; Coletti, C.; Schettini, N.; Weeber, E.; Oliveros, A.; Jarosezski, M. Single-Crystal Silicon Carbide: A Biocompatible and Hemocompatible Semiconductor for Advanced Biomedical Applications. MSF 2011, 679–680, 824–830. [Google Scholar] [CrossRef]
- Coletti, C.; Jaroszeski, M.J.; Hoff, A.M.; Saddow, S.E. Culture of Mammalian Cells on Single Crystal SiC Substrates. Mater. Res. Soc. Symp. Proc. 2006, 950, 0950-D04-22. [Google Scholar] [CrossRef]
- Reddy, J.D.; Volinsky, A.A.; Frewin, C.L.; Locke, C.; Saddow, S.E. Mechanical Properties of 3C-SiC Films for MEMS Applications. Mater. Res. Soc. Symp. Proc 2007, 1049, 1049-AA03-06. [Google Scholar] [CrossRef]
- Knaack, G.L.; McHail, D.G.; Borda, G.; Koo, B.; Peixoto, N.; Cogan, S.F.; Dumas, T.C.; Pancrazio, J.J. In Vivo Characterization of Amorphous Silicon Carbide as a Biomaterial for Chronic Neural Interfaces. Front. Neurosci. 2016, 10, 301. [Google Scholar] [CrossRef] [PubMed]
- Saddow, S. Silicon Carbide Technology for Advanced Human Healthcare Applications. Micromachines 2022, 13, 346. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Lin, L.; Qin, Y.-X. Enhancement of Cell Ingrowth, Proliferation, and Early Differentiation in a Three-Dimensional Silicon Carbide Scaffold Using Low-Intensity Pulsed Ultrasound. Tissue Eng. Part A 2015, 21, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Bonaventura, G.; Iemmolo, R.; La Cognata, V.; Zimbone, M.; La Via, F.; Fragalà, M.E.; Barcellona, M.L.; Pellitteri, R.; Cavallaro, S. Biocompatibility between Silicon or Silicon Carbide Surface and Neural Stem Cells. Sci. Rep. 2019, 9, 11540. [Google Scholar] [CrossRef]
- Ono, K.; Koide, T.; Ishikawa, K.; Tanaka, H.; Kondo, H.; Sugawara-Narutaki, A.; Jin, Y.; Yasuhara, S.; Hori, M.; Takeuchi, W. Biocompatibility of Conformal Silicon Carbide on Carbon Nanowall Scaffolds. Jpn. J. Appl. Phys. 2023, 62, SA1017. [Google Scholar] [CrossRef]
- Cho, H.J.; Kondo, H.; Ishikawa, K.; Sekine, M.; Hiramatsu, M.; Hori, M. Density Control of Carbon Nanowalls Grown by CH4/H2 Plasma and Their Electrical Properties. Carbon 2014, 68, 380–388. [Google Scholar] [CrossRef]
- Mobini, S.; Leppik, L.; Parameswaran, V.T.; Barker, J.H. In Vitro Effect of Direct Current Electrical Stimulation on Rat Mesenchymal Stem Cells. PeerJ 2017, 5, e2821. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, M.; Kang, E.-T.; Neoh, K.G. Electrical Stimulation of Adipose-Derived Mesenchymal Stem Cells in Conductive Scaffolds and the Roles of Voltage-Gated Ion Channels. Acta Biomater. 2016, 32, 46–56. [Google Scholar] [CrossRef]
- Moon, H.; Lee, M.; Kwon, S. Effect of Direct Current Electrical Stimulation on Osteogenic Differentiation and Calcium Influx. Korean J. Chem. Eng. 2023, 40, 344–351. [Google Scholar] [CrossRef]
- O’Brien, F.J.; Harley, B.A.; Yannas, I.V.; Gibson, L.J. The Effect of Pore Size on Cell Adhesion in Collagen-GAG Scaffolds. Biomaterials 2005, 26, 433–441. [Google Scholar] [CrossRef]
- Komori, T. Functions of Osteocalcin in Bone, Pancreas, Testis, and Muscle. IJMS 2020, 21, 7513. [Google Scholar] [CrossRef]
- Maeda, T.; Matsunuma, A.; Kurahashi, I.; Yanagawa, T.; Yoshida, H.; Horiuchi, N. Induction of Osteoblast Differentiation Indices by Statins in MC3T3-E1 Cells. J. Cell. Biochem. 2004, 92, 458–471. [Google Scholar] [CrossRef] [PubMed]
- Leppik, L.; Zhihua, H.; Mobini, S.; Parameswaran, V.T.; Eischen-Loges, M.; Slavici, A.; Helbing, J.; Pindur, L.; Oliveira, K.M.C.; Bhavsar, M.B.; et al. Combining Electrical Stimulation and Tissue Engineering to Treat Large Bone Defects in a Rat Model. Sci. Rep. 2018, 8, 6307. [Google Scholar] [CrossRef]
- Phadke, A.; Hwang, Y.; Kim, S.H.; Kim, S.H.; Yamaguchi, T.; Masuda, K.; Varghese, S. Effect of Scaffold Microarchitecture on Osteogenic Differentiation of Human Mesenchymal Stem Cells. Eur. Cells Mater. 2013, 25, 114–129. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Jurczak, K.M.; Ge, L.; Van Rijn, P. High-Throughput Screening and Hierarchical Topography-Mediated Neural Differentiation of Mesenchymal Stem Cells. Adv. Healthc. Mater. 2020, 9, 2000117. [Google Scholar] [CrossRef] [PubMed]
Sample Name | SiC5 | SiC15 | SiC30 |
---|---|---|---|
Vinylsilane flow rate (sccm) | 5 | ||
Ar gas flow rate (sccm) | 500 | ||
Surface temp. (°C) | 700 | ||
Pressure (Torr) | 1 | ||
Growth time (min) | 5 | 15 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ono, K.; Tanaka, A.; Ishikawa, K.; Takeuchi, W.; Uehara, K.; Yasuhara, S.; Hori, M.; Tanaka, H. The Effect of Electrical Stimulation on the Cellular Response of Human Mesenchymal Stem Cells Grown on Silicon Carbide-Coated Carbon Nanowall Scaffolds. Bioengineering 2025, 12, 1073. https://doi.org/10.3390/bioengineering12101073
Ono K, Tanaka A, Ishikawa K, Takeuchi W, Uehara K, Yasuhara S, Hori M, Tanaka H. The Effect of Electrical Stimulation on the Cellular Response of Human Mesenchymal Stem Cells Grown on Silicon Carbide-Coated Carbon Nanowall Scaffolds. Bioengineering. 2025; 12(10):1073. https://doi.org/10.3390/bioengineering12101073
Chicago/Turabian StyleOno, Koki, Ayako Tanaka, Kenji Ishikawa, Wakana Takeuchi, Kenichi Uehara, Shigeo Yasuhara, Masaru Hori, and Hiromasa Tanaka. 2025. "The Effect of Electrical Stimulation on the Cellular Response of Human Mesenchymal Stem Cells Grown on Silicon Carbide-Coated Carbon Nanowall Scaffolds" Bioengineering 12, no. 10: 1073. https://doi.org/10.3390/bioengineering12101073
APA StyleOno, K., Tanaka, A., Ishikawa, K., Takeuchi, W., Uehara, K., Yasuhara, S., Hori, M., & Tanaka, H. (2025). The Effect of Electrical Stimulation on the Cellular Response of Human Mesenchymal Stem Cells Grown on Silicon Carbide-Coated Carbon Nanowall Scaffolds. Bioengineering, 12(10), 1073. https://doi.org/10.3390/bioengineering12101073