Gene Therapy for Wet Age-Related Macular Degeneration
Abstract
1. Introduction
2. Gene and Cell Therapy
3. Phase 3 Clinical Trials
4. Phase 2 Clinical Trials
5. Phase 1 Clinical Trials
6. Emerging Molecular Editing Therapy for AMD: CRSPR-CAS13
7. Weaknesses of Ocular Gene Therapy
8. Summary Statement
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seddon, J.M.; Cote, J.; Page, W.F.; Aggen, S.H.; Neale, M.C. The US Twin Study of Age-Related Macular Degeneration: Relative Roles of Genetic and Environmental Influences. Arch. Ophthalmol. 2005, 123, 321–327. [Google Scholar] [CrossRef]
- Orozco, L.D.; Owen, L.A.; Hofmann, J.; Stockwell, A.D.; Tao, J.; Haller, S.; Mukundan, V.T.; Clarke, C.; Lund, J.; Sridhar, A. A systems biology approach uncovers novel disease mechanisms in age-related macular degeneration. Cell Genom. 2023, 3, 100302. [Google Scholar] [CrossRef]
- Spilsbury, K.; Garrett, K.L.; Shen, W.-Y.; Constable, I.J.; Rakoczy, P.E. Overexpression of vascular endothelial growth factor (VEGF) in the retinal pigment epithelium leads to the development of choroidal neovascularization. Am. J. Pathol. 2000, 157, 135–144. [Google Scholar] [CrossRef]
- Heloterä, H.; Kaarniranta, K. A linkage between angiogenesis and inflammation in neovascular age-related macular degeneration. Cells 2022, 11, 3453. [Google Scholar] [CrossRef]
- Seddon, J.M.; Francis, P.J.; George, S.; Schultz, D.W.; Rosner, B.; Klein, M.L. Association of CFH Y402H and LOC387715 A69S with Progression of Age-Related Macular Degeneration. JAMA 2007, 297, 1793–1800. [Google Scholar] [CrossRef]
- de Córdoba, S.R.g.; Esparza-Gordillo, J.; de Jorge, E.G.; Lopez-Trascasa, M.; Sánchez-Corral, P. The human complement factor H: Functional roles, genetic variations and disease associations. Mol. Immunol. 2004, 41, 355–367. [Google Scholar] [CrossRef]
- Paudel, N.; Brady, L.; Stratieva, P.; Galvin, O.; Lui, B.; Van den Brande, I.; Malkowski, J.-P.; Rebeira, M.; MacAllister, S.; O’Riordan, T.; et al. Economic Burden of Late-Stage Age-Related Macular Degeneration in Bulgaria, Germany, and the US. JAMA Ophthalmol. 2024, 142, 1123–1130. [Google Scholar] [CrossRef]
- Patel, S. Medicare spending on anti–vascular endothelial growth factor medications. Ophthalmol. Retin. 2018, 2, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Meer, E.A.; Oh, D.H.; Brodie, F.L. Time and distance cost of longer acting anti-VEGF therapies for macular degeneration: Contributions to drug cost comparisons. Clin. Ophthalmol. 2022, 16, 4273. [Google Scholar] [CrossRef]
- MacLaren, R.E.; Groppe, M.; Barnard, A.R.; Cottriall, C.L.; Tolmachova, T.; Seymour, L.; Clark, K.R.; During, M.J.; Cremers, F.P.; Black, G.C. Retinal gene therapy in patients with choroideremia: Initial findings from a phase 1/2 clinical trial. Lancet 2014, 383, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Maguire, A.M.; Simonelli, F.; Pierce, E.A.; Pugh, E.N., Jr.; Mingozzi, F.; Bennicelli, J.; Banfi, S.; Marshall, K.A.; Testa, F.; Surace, E.M. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N. Engl. J. Med. 2008, 358, 2240–2248. [Google Scholar] [CrossRef] [PubMed]
- Trapani, I.; Colella, P.; Sommella, A.; Iodice, C.; Cesi, G.; De Simone, S.; Marrocco, E.; Rossi, S.; Giunti, M.; Palfi, A. Effective delivery of large genes to the retina by dual AAV vectors. EMBO Mol. Med. 2014, 6, 194–211. [Google Scholar] [CrossRef]
- Maddalena, A.; Tornabene, P.; Tiberi, P.; Minopoli, R.; Manfredi, A.; Mutarelli, M.; Rossi, S.; Simonelli, F.; Naggert, J.K.; Cacchiarelli, D. Triple vectors expand AAV transfer capacity in the retina. Mol. Ther. 2018, 26, 524–541. [Google Scholar] [CrossRef]
- Cehajic-Kapetanovic, J.; Xue, K.; Martinez-Fernandez de la Camara, C.; Nanda, A.; Davies, A.; Wood, L.J.; Salvetti, A.P.; Fischer, M.D.; Aylward, J.W.; Barnard, A.R. Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR. Nat. Med. 2020, 26, 354–359. [Google Scholar] [CrossRef]
- Maeder, M.L.; Stefanidakis, M.; Wilson, C.J.; Baral, R.; Barrera, L.A.; Bounoutas, G.S.; Bumcrot, D.; Chao, H.; Ciulla, D.M.; DaSilva, J.A. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat. Med. 2019, 25, 229–233. [Google Scholar] [CrossRef]
- Shchaslyvyi, A.Y.; Antonenko, S.V.; Tesliuk, M.G.; Telegeev, G.D. Current state of human gene therapy: Approved products and vectors. Pharmaceuticals 2023, 16, 1416. [Google Scholar] [CrossRef] [PubMed]
- Naso, M.F.; Tomkowicz, B.; Perry III, W.L.; Strohl, W.R. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs 2017, 31, 317–334. [Google Scholar] [CrossRef]
- Hanany, M.; Rivolta, C.; Sharon, D. Worldwide carrier frequency and genetic prevalence of autosomal recessive inherited retinal diseases. Proc. Natl. Acad. Sci. USA 2020, 117, 2710–2716. [Google Scholar] [CrossRef]
- Wang, D.; Tai, P.W.; Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 2019, 18, 358–378. [Google Scholar] [CrossRef]
- Davidsson, M.; Negrini, M.; Hauser, S.; Svanbergsson, A.; Lockowandt, M.; Tomasello, G.; Manfredsson, F.P.; Heuer, A. A comparison of AAV-vector production methods for gene therapy and preclinical assessment. Sci. Rep. 2020, 10, 21532. [Google Scholar] [CrossRef] [PubMed]
- Ehrhardt, A.; Xu, H.; Kay, M.A. Episomal persistence of recombinant adenoviral vector genomes during the cell cycle in vivo. J. Virol. 2003, 77, 7689–7695. [Google Scholar] [CrossRef]
- Chen, M.; Luo, C.; Zhao, J.; Devarajan, G.; Xu, H. Immune regulation in the aging retina. Prog. Retin. Eye Res. 2019, 69, 159–172. [Google Scholar] [CrossRef]
- Avery, R.L.; Castellarin, A.A.; Steinle, N.C.; Dhoot, D.S.; Pieramici, D.J.; See, R.; Couvillion, S.; Nasir, M.A.; Rabena, M.D.; Maia, M. Systemic pharmacokinetics and pharmacodynamics of intravitreal aflibercept, bevacizumab, and ranibizumab. Retina 2017, 37, 1847–1858. [Google Scholar] [CrossRef]
- Cui, M.; Su, Q.; Yip, M.; McGowan, J.; Punzo, C.; Gao, G.; Tai, P.W. The AAV2. 7m8 capsid packages a higher degree of heterogeneous vector genomes than AAV2. Gene Ther. 2024, 31, 489–498. [Google Scholar] [CrossRef]
- Chen, M.; Li, X.; Liu, J.; Han, Y.; Cheng, L. Safety and pharmacodynamics of suprachoroidal injection of triamcinolone acetonide as a controlled ocular drug release model. J. Control. Release 2015, 203, 109–117. [Google Scholar] [CrossRef]
- Campochiaro, P.A.; Avery, R.; Brown, D.M.; Heier, J.S.; Ho, A.C.; Huddleston, S.M.; Jaffe, G.J.; Khanani, A.M.; Pakola, S.; Pieramici, D.J. Gene therapy for neovascular age-related macular degeneration by subretinal delivery of RGX-314: A phase 1/2a dose-escalation study. Lancet 2024, 403, 1563–1573. [Google Scholar] [CrossRef]
- Issa, S.S.; Shaimardanova, A.A.; Solovyeva, V.V.; Rizvanov, A.A. Various AAV serotypes and their applications in gene therapy: An overview. Cells 2023, 12, 785. [Google Scholar] [CrossRef]
- Calcedo, R.; Vandenberghe, L.H.; Gao, G.; Lin, J.; Wilson, J.M. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J. Infect. Dis. 2009, 199, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Gray, S.J.; Foti, S.B.; Schwartz, J.W.; Bachaboina, L.; Taylor-Blake, B.; Coleman, J.; Ehlers, M.D.; Zylka, M.J.; McCown, T.J.; Samulski, R.J. Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum. Gene Ther. 2011, 22, 1143–1153. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, N.; Damico, L.; Shams, N.; Lowman, H.; Kim, R. Development of ranibizumab, an anti–vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina 2006, 26, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Grishanin, R.; Vuillemenot, B.; Sharma, P.; Keravala, A.; Greengard, J.; Gelfman, C.; Blumenkrantz, M.; Lawrence, M.; Hu, W.; Kiss, S. Preclinical evaluation of ADVM-022, a novel gene therapy approach to treating wet age-related macular degeneration. Mol. Ther. 2019, 27, 118–129. [Google Scholar] [CrossRef]
- Khabou, H.; Desrosiers, M.; Winckler, C.; Fouquet, S.; Auregan, G.; Bemelmans, A.P.; Sahel, J.A.; Dalkara, D. Insight into the mechanisms of enhanced retinal transduction by the engineered AAV2 capsid variant-7m8. Biotechnol. Bioeng. 2016, 113, 2712–2724. [Google Scholar] [CrossRef]
- Bennett, A.; Keravala, A.; Makal, V.; Kurian, J.; Belbellaa, B.; Aeran, R.; Tseng, Y.-S.; Sousa, D.; Spear, J.; Gasmi, M. Structure comparison of the chimeric AAV2. 7m8 vector with parental AAV2. J. Struct. Biol. 2020, 209, 107433. [Google Scholar] [CrossRef]
- Khanani, A.M.; Boyer, D.S.; Wykoff, C.C.; Regillo, C.D.; Busbee, B.G.; Pieramici, D.; Danzig, C.J.; Joondeph, B.C.; Major, J.C.; Turpcu, A. Safety and efficacy of ixoberogene soroparvovec in neovascular age-related macular degeneration in the United States (OPTIC): A prospective, two-year, multicentre phase 1 study. eClinicalMedicine 2024, 67, 102394. [Google Scholar] [CrossRef] [PubMed]
- Biotechnologies, A. Adverum Biotechnologies Initiates ARTEMIS Phase 3 Study Evaluating Ixo-vec for Wet AMD. Available online: https://investors.adverum.com/press_releases/news-details/2025/Adverum-Biotechnologies-Initiates-ARTEMIS-Phase-3-Study-Evaluating-Ixo-vecfor-Wet-AMD/default.aspx (accessed on 26 May 2025).
- Zhou, Y.; Zhu, X.; Cui, H.; Shi, J.; Yuan, G.; Shi, S.; Hu, Y. The role of the VEGF family in coronary heart disease. Front. Cardiovasc. Med. 2021, 8, 738325. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.M.; Li, M.Z.; Chang, K.; Ge, W.; Golding, M.C.; Rickles, R.J.; Siolas, D.; Hu, G.; Paddison, P.J.; Schlabach, M.R. Second-generation shRNA libraries covering the mouse and human genomes. Nat. Genet. 2005, 37, 1281–1288. [Google Scholar] [CrossRef] [PubMed]
- Calton, M.A.; Croze, R.H.; Burns, C.; Beliakoff, G.; Vazin, T.; Szymanski, P.; Schmitt, C.; Klein, A.; Leong, M.; Quezada, M. Design and Characterization of a Novel Intravitreal Dual-Transgene Genetic Medicine for Neovascular Retinopathies. Investig. Ophthalmol. Vis. Sci. 2024, 65, 1. [Google Scholar] [CrossRef]
- Therapeutics, D.M. 4D Molecular Therapeutics Announces Interim Clinical Data from On-Going Phase 1/2 Clinical Trial of Intravitreal 4D-150 for Wet Age-Related Macular Degeneration (Wet AMD). Available online: https://ir.4dmoleculartherapeutics.com/news-releases/news-release-details/4d-molecular-therapeutics-announces-interim-clinical-data-going (accessed on 1 June 2025).
- Khanani, A.M.; Hershberger, V.S.; Kay, C.N.; Hu, A.; Eichenbaum, D.A.; Jaffe, G.J.; Chung, C.; Honarmand, S.; Nien, C.; Lee, S. Interim results for the Phase 1/2 PRISM Trial evaluating 4D-150, a dual-transgene intravitreal genetic medicine in individuals with neovascular (wet) age-related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2023, 64, 5055. [Google Scholar]
- Therapeutics, D.M. 4DMT Presents Positive Interim Data from Randomized Phase 2 PRISM Clinical Trial of Intravitreal 4D-150 Demonstrating Favorable Tolerability & Clinical Activity in Wet AMD. Available online: https://ir.4dmoleculartherapeutics.com/news-releases/news-release-details/4dmt-presents-positive-interim-data-randomized-phase-2-prism (accessed on 27 May 2025).
- Therapeutics, D.M. 4DMT Highlights Robust and Durable Clinical Activity for 4D-150 and Design of 4FRONT Phase 3 Program at 4D-150 Wet AMD Development Day. Available online: https://ir.4dmoleculartherapeutics.com/news-releases/news-release-details/4dmt-highlights-robust-and-durable-clinical-activity-4d-150-and (accessed on 1 June 2025).
- Cursiefen, C.; Chen, L.; Borges, L.P.; Jackson, D.; Cao, J.; Radziejewski, C.; D’Amore, P.A.; Dana, M.R.; Wiegand, S.J.; Streilein, J.W. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J. Clin. Investig. 2004, 113, 1040–1050. [Google Scholar] [CrossRef]
- Song, M.; Liu, Y.; Feng, J.; Gong, Y.; Wang, H.; Li, L.; Wang, F. Subretinal LX102 gene therapy for neovascular age-related macular degeneration (nAMD): 9-month follow-up of a phase 1 clinical trial. Investig. Ophthalmol. Vis. Sci. 2024, 65, 6107. [Google Scholar]
- Ahmad, S.; Hewett, P.W.; Al-Ani, B.; Sissaoui, S.; Fujisawa, T.; Cudmore, M.J.; Ahmed, A. Autocrine activity of soluble Flt-1 controls endothelial cell function and angiogenesis. Vasc. Cell 2011, 3, 15. [Google Scholar] [CrossRef]
- Hornig, C.; Barleon, B.; Ahmad, S.; Vuorela, P.; Ahmed, A.; Weich, H.A. Release and complex formation of soluble VEGFR-1 from endothelial cells and biological fluids. Lab. Investig. 2000, 80, 443–454. [Google Scholar] [CrossRef]
- Luo, L.; Uehara, H.; Zhang, X.; Das, S.K.; Olsen, T.; Holt, D.; Simonis, J.M.; Jackman, K.; Singh, N.; Miya, T.R. Photoreceptor avascular privilege is shielded by soluble VEGF receptor-1. eLife 2013, 2, e00324. [Google Scholar] [CrossRef] [PubMed]
- Rakoczy, E.P.; Lai, C.-M.; Magno, A.L.; Wikstrom, M.E.; French, M.A.; Pierce, C.M.; Schwartz, S.D.; Blumenkranz, M.S.; Chalberg, T.W.; Degli-Esposti, M.A. Gene therapy with recombinant adeno-associated vectors for neovascular age-related macular degeneration: 1 year follow-up of a phase 1 randomised clinical trial. Lancet 2015, 386, 2395–2403. [Google Scholar] [CrossRef] [PubMed]
- Rakoczy, E.P.; Magno, A.L.; Lai, C.-M.; Pierce, C.M.; Degli-Esposti, M.A.; Blumenkranz, M.S.; Constable, I.J. Three-year follow-up of phase 1 and 2a rAAV. sFLT-1 subretinal gene therapy trials for exudative age-related macular degeneration. Am. J. Ophthalmol. 2019, 204, 113–123. [Google Scholar] [CrossRef]
- Shim, J.; Kim, Y.; Bak, J.; Shin, S.; Lee, K.; Hwang, Y.H.; Kong, H.Y.; Han, J.S. Preclinical evaluation of NG101, a potential AAV gene therapy for wet age-related macular degeneration. Mol. Ther. Methods Clin. Dev. 2024, 32, 101366. [Google Scholar] [CrossRef] [PubMed]
- Therapeutics, F. Frontera Therapeutics Receives FDA Clearance for Phase 2 Clinical Trial of FT-003 for Diabetic Macular Edema (DME). Available online: https://fronteratherapeutics.com/news/211.html (accessed on 4 June 2025).
- Ke, X.; Jiang, H.; Li, Q.; Luo, S.; Qin, Y.; Li, J.; Xie, Q.; Zheng, Q. Preclinical evaluation of KH631, a novel rAAV8 gene therapy product for neovascular age-related macular degeneration. Mol. Ther. 2023, 31, 3308–3321. [Google Scholar] [CrossRef]
- Barleon, B.; Totzke, F.; Herzog, C.; Blanke, S.; Kremmer, E.; Siemeister, G.; Marmé, D.; Martiny-Baron, G. Mapping of the sites for ligand binding and receptor dimerization at the extracellular domain of the vascular endothelial growth factor receptor FLT-1. J. Biol. Chem. 1997, 272, 10382–10388. [Google Scholar] [CrossRef]
- Bagley, R.G.; Kurtzberg, L.; Weber, W.; Nguyen, T.-H.; Roth, S.; Krumbholz, R.; Yao, M.; Richards, B.; Zhang, M.; Pechan, P. sFLT01: A novel fusion protein with antiangiogenic activity. Mol. Cancer Ther. 2011, 10, 404–415. [Google Scholar] [CrossRef]
- Pechan, P.; Rubin, H.; Lukason, M.; Ardinger, J.; DuFresne, E.; Hauswirth, W.; Wadsworth, S.; Scaria, A. Novel anti-VEGF chimeric molecules delivered by AAV vectors for inhibition of retinal neovascularization. Gene Ther. 2009, 16, 10–16. [Google Scholar] [CrossRef]
- Heier, J.S.; Kherani, S.; Desai, S.; Dugel, P.; Kaushal, S.; Cheng, S.H.; Delacono, C.; Purvis, A.; Richards, S.; Le-Halpere, A. Intravitreous injection of AAV2-sFLT01 in patients with advanced neovascular age-related macular degeneration: A phase 1, open-label trial. Lancet 2017, 390, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yang, Y.; Qi, H.; Cui, W.; Zhang, L.; Fu, X.; He, X.; Liu, M.; Li, P.-f.; Yu, T. CRISPR/Cas9 therapeutics: Progress and prospects. Signal Transduct. Target. Ther. 2023, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Sciences TRSAo. The Nobel Prize in Chemistry. 2020. Available online: https://www.nobelprize.org/prizes/chemistry/2020/press-release/ (accessed on 12 June 2025).
- Leonard, A.; Tisdale, J.F. A new frontier: FDA approvals for gene therapy in sickle cell disease. Mol. Ther. 2024, 32, 264–267. [Google Scholar] [CrossRef]
- Frangoul, H.; Locatelli, F.; Sharma, A.; Bhatia, M.; Mapara, M.; Molinari, L.; Wall, D.; Liem, R.I.; Telfer, P.; Shah, A.J. Exagamglogene autotemcel for severe sickle cell disease. N. Engl. J. Med. 2024, 390, 1649–1662. [Google Scholar] [CrossRef]
- Tong, H.; Huang, J.; Xiao, Q.; He, B.; Dong, X.; Liu, Y.; Yang, X.; Han, D.; Wang, Z.; Wang, X. High-fidelity Cas13 variants for targeted RNA degradation with minimal collateral effects. Nat. Biotechnol. 2023, 41, 108–119. [Google Scholar] [CrossRef]
- Xu, C.; Zhou, Y.; Xiao, Q.; He, B.; Geng, G.; Wang, Z.; Cao, B.; Dong, X.; Bai, W.; Wang, Y. Programmable RNA editing with compact CRISPR–Cas13 systems from uncultivated microbes. Nat. Methods 2021, 18, 499–506. [Google Scholar] [CrossRef]
- Cai, Y.; Gu, Y.; Zhang, J.; Zhu, Y.; Ma, Z.; He, Q.; Sun, Y.; Yuan, M.; Li, X.; Zhu, K. An Engineered Intravitreal Injection Retinal-Pigment-Epithelium-Tropic Adeno-Associated Virus Vector Expressing a Bispecific Antibody Binding VEGF-A and ANG-2 Rescues Neovascular Age-Related Macular Degeneration in Animal Models and Patients. Research 2025, 8, 0717. [Google Scholar] [CrossRef]
- Mahlangu, J.; Kaczmarek, R.; Von Drygalski, A.; Shapiro, S.; Chou, S.-C.; Ozelo, M.C.; Kenet, G.; Peyvandi, F.; Wang, M.; Madan, B. Two-year outcomes of valoctocogene roxaparvovec therapy for hemophilia A. N. Engl. J. Med. 2023, 388, 694–705. [Google Scholar] [CrossRef]
- Pipe, S.W.; Leebeek, F.W.; Recht, M.; Key, N.S.; Castaman, G.; Miesbach, W.; Lattimore, S.; Peerlinck, K.; Van der Valk, P.; Coppens, M. Gene therapy with etranacogene dezaparvovec for hemophilia B. N. Engl. J. Med. 2023, 388, 706–718. [Google Scholar] [CrossRef] [PubMed]
Drug Name | Mechanism | Vector | Clinical Phase | Study Design | Population Type | Sample Size | Intervention | Primary Endpoint | Key Results |
---|---|---|---|---|---|---|---|---|---|
RGX-314 | Gene Replacement | Non-replicating adeno-associated virus serotype 8 | Phase 3 | Quadruple, Randomized, Parallel Assign ment | Multicenter (US, Canada, France, Germany, Hungary, Italy, Japan, Puerto Rico, Spain, UK) | 660 | Subretinal Injection Suprachoroidal Injection | Mean Change from baseline BCVA | -Decrease Injection rate -Sustained improvement in BCVA |
4D-150 | Gene Replacement + RNA modulation | Non-replicating adeno-associated virus | Phase 3 | Quadruple Randomized, Parallel Assignment | Multicenter (US, Puerto Rico, and Canada) | 400 | Intravitreal Injection | Mean Change from baseline BCVA | -Safe and tolerated -up to 2.5 years of sustained BCVA and CST Reduction |
rAAV.sFlt-1 | Gene Replacement | Non-replicating adeno-associated virus | Phase 1/2a | Single, Randomized, Parallel Assignment | Single site (Australia) | 40 | Subretinal Injection | Tolerability and safety | -51 Ocular AEs -No fluid control |
AAV2-sFLT01 | Gene Replacement | Non-replicating adeno-associated virus serotype 2 | Phase 1 | Open-Label Non-Randomized Dose Escalation Parallel Assignment | Multicenter (US) | 19 | Intravitreal Injection | Maximum tolerated dose | -44 AEs -55% with significant fluid control and VA improvement |
Ixo-vec (ADVM-022) | Gene Replacement | Non-replicating Adeno-associated virus—2.7m8 | Phase 3 | Double Randomized Parallel Assignment | Multicenter (US) | 284 | Intravitreal Injection | Mean Change from baseline BCVA | -Safe and tolerated -up to 3.5 years of sustained fluid control |
HG202 | RNA modulation | Non-replicating adeno- associated virus | Phase 1 | Open-Label Sequential Assignment | N/A | 15 | Subretinal Injection | Adverse Events Incidence | N/A |
KH631 | Gene Replacement | Non-replicating adeno-associated virus serotype 8 | Phase 1 | Open-Label Single Group Assignment | Multicenter (US & China) | 42 | Subretinal Injection | Adverse Events Incidence | N/A |
KH658 | Gene Replacement | Non-replicating adeno-associated virus | Phase 1 | Open-Label Non-Randomized Sequential Assignment | Multicenter (US & China) | 44 | Suprachoroidal Injection | Tolerability and safety | N/A |
FT-003 | Gene Replacement | Non-replicating Adeno-associated virus—2.7m8 | Phase 1/2 | Open-Label Non-Randomized Sequential Assignment | Single site (China) | 78 | Intraocular Injection | Adverse Events Incidence | N/A |
LX102 | Gene Replacement | Non-replicating adeno-associated virus serotype2 | Phase 2 | Open-Label Randomized parallel-assignment | Multicenter (China) | 50 | Subretinal Injection | Change in VA | N/A |
NG101 AAV | Gene Replacement | Non-replicating adeno-associated virus serotype 8 | Phase 1/2a | Open-Label Dose Escalation | Multicenter (US & Canada) | 18 | Subretinal Injection | Adverse Events Incidence | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barthelemy, N.; Sridhar, J.; Sengillo, J.D. Gene Therapy for Wet Age-Related Macular Degeneration. Bioengineering 2025, 12, 1072. https://doi.org/10.3390/bioengineering12101072
Barthelemy N, Sridhar J, Sengillo JD. Gene Therapy for Wet Age-Related Macular Degeneration. Bioengineering. 2025; 12(10):1072. https://doi.org/10.3390/bioengineering12101072
Chicago/Turabian StyleBarthelemy, Normila, Jayanth Sridhar, and Jesse D. Sengillo. 2025. "Gene Therapy for Wet Age-Related Macular Degeneration" Bioengineering 12, no. 10: 1072. https://doi.org/10.3390/bioengineering12101072
APA StyleBarthelemy, N., Sridhar, J., & Sengillo, J. D. (2025). Gene Therapy for Wet Age-Related Macular Degeneration. Bioengineering, 12(10), 1072. https://doi.org/10.3390/bioengineering12101072