Artificial and Bioengineered Therapeutic Options for Corneal Endothelial Disease
Abstract
1. Introduction
2. Literature Search Strategy
3. Techniques for Sourcing and Culturing Corneal Endothelial Cells
4. Methods of Administration for Corneal Endothelial Cell Therapy
5. Composition and Fabrication of Scaffolds for Endothelial Replacement
6. Artificial Therapeutic Options for Corneal Endothelial Disease
Surgical Feasibility, Graft Survival, Postoperative Complications
Study | Study Type | Number of Eyes | Pre-op CCT (µm) | Percentage Reduction of CCT | Visual Acuity Improved | Final Visual Acuity (LogMAR) | Indication for Surgery | Co-Morbidities | Postop Complications |
---|---|---|---|---|---|---|---|---|---|
Auffarth et al., 2021 [82] | Case report | 2 | 745 ± 22 | 34% | n/a | n/a | Failed DMEK | Case 1: treated endophthalmitis | Rebubbling rate 100% |
Abusayf et al., 2023 [96] | Case report | 1 | 911 | 24% | Yes | 0.7 | PBK | Glaucoma, previous vitrectomy | No |
Kobayashi et al., 2024 [79] | Case report | 1 | 845 | 37% | Yes | 2 | Failed DMEK | Epiretinal membrane | Rebubbling |
Wiedemann et al., 2024 [97] | Case series | 3 | 719 ± 145 | 18% | Yes | 1.1 ± 0.6 | GDD, failed DMEK | Glaucoma | Raised IOP (n = 1) CMO (n = 1) Subepithelial corneal opacity (n = 1) Rebubbling rate 33% |
Romano et al., 2024 [80] | Case report | 2 | 887 ± 268 | 30% | Yes | Case 1: 0.30 Case 2: 1.70 | Failed DSAEK and PK | No | |
Fontana et al., 2025 [98] | Case series | 7 | 805 ± 131 | 28% | Yes | 0.95 ± 0.28 | Failed DMEK, DSEK, GDD | Glaucoma | Rebubbling rate 57% |
Daphna et al., 2025 [92] | Clinical Trial | 24 | 759 ± 116 | 19% | Yes | 1.34 ± 0.57 | Failed DMEK, DSEK, DSO | Glaucoma, pars plana vitrectomy, macular disease | Explantation rate 25% Rebubble rate 2.9 ± 2.0 procedures per patient |
7. Limitations of Current Evidence and Future Directions
7.1. Methodological Limitations of Current Evidence
7.2. Regulatory and Translational Considerations
7.3. Future Research Directions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pascolini, D.; Mariotti, S.P. Global estimates of visual impairment: 2010. Br. J. Ophthalmol. 2012, 96, 614–618. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.Y.; Kong, X.; Wolle, M.; Gasquet, N.; Ssekasanvu, J.; Mariotti, S.P.; Bourne, R.; Taylor, H.; Resnikoff, S.; West, S. Global Trends in Blindness and Vision Impairment Resulting from Corneal Opacity 1984–2020: A Meta-analysis. Ophthalmology 2023, 130, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Zirm, E.K. Eine erfolgreiche totale Keratoplastik (A successful total keratoplasty) 1906. Refract. Corneal Surg. 1989, 5, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Stuart, A.J.; Romano, V.; Virgili, G.; Shortt, A.J. Descemet’s membrane endothelial keratoplasty (DMEK) versus Descemet’s stripping automated endothelial keratoplasty (DSAEK) for corneal endothelial failure. Cochrane Database Syst. Rev. 2018, 6, CD012097. [Google Scholar] [CrossRef] [PubMed]
- Melles, G.R.; Eggink, F.A.; Lander, F.; Pels, E.; Rietveld, F.J.; Beekhuis, W.H.; Binder, P.S. A surgical technique for posterior lamellar keratoplasty. Cornea 1998, 17, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Melles, G.R.; Wijdh, R.H.; Nieuwendaal, C.P. A technique to excise the descemet membrane from a recipient cornea (descemetorhexis). Cornea 2004, 23, 286–288. [Google Scholar] [CrossRef] [PubMed]
- Melles, G.R.; Ong, T.S.; Ververs, B.; van der Wees, J. Descemet membrane endothelial keratoplasty (DMEK). Cornea 2006, 25, 987–990. [Google Scholar] [CrossRef] [PubMed]
- Koo, E.H.; Pineda, R.; Afshari, N.; Eghrari, A. Learning Descemet Membrane Endothelial Keratoplasty: A Survey of U.S. Corneal Surgeons. Cornea 2020, 39, 590–593. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Hollick, E.J. Rebubbling and graft detachment in Descemet membrane endothelial keratoplasty using a standardised protocol. Eye 2023, 37, 2494–2498. [Google Scholar] [CrossRef] [PubMed]
- Ruzza, A.; Grassetto, A.; Favaro, E.; Baruzzo, M.; Romano, V.; Ponzin, D.; Ferrari, S.; Parekh, M. Preloaded DMEK with endo-in technique: Standardising and minimising the learning curve over 5 years using 599 corneal tissues. Eur. J. Ophthalmol. 2024, 34, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Dohlman, C. The Boston Keratoprosthesis-The First 50 Years: Some Reminiscences. Annu. Rev. Vis. Sci. 2022, 8, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Klawe, J.; Utine, C.A.; Srikumaran, D.; Jimenez, J.; Akpek, E. Survival of penetrating keratoplasty: A claims-based longitudinal analysis. Can. J. Ophthalmol. 2021, 56, 12–16. [Google Scholar] [CrossRef]
- Kanu, L.N.; Niparugs, M.; Nonpassopon, M.; Karas, F.I.; de la Cruz, J.M.; Cortina, M.S. Predictive factors of Boston Type I Keratoprosthesis outcomes: A long-term analysis. Ocul. Surf. 2020, 18, 613–619. [Google Scholar] [CrossRef]
- De Wit-Carter, G.; Hernández-Chavarría, C.; Navarro-Naranjo, P.I.; Manzanillo-Rosario, C.; Navarro-Saucedo, R.; García-Albisua, A.M.; Hernandez-Quintela, E.; Cabrera-Martínez, E.; Ordoñez-Ranz, G.; Sanchez-Huerta, V. Boston Keratoprosthesis type 1 (KPro) without contact lens wearing in end-stage corneal disease: The APEC experience. Eur. J. Ophthalmol. 2024, 34, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Thuret, G.; Courrier, E.; Poinard, S.; Gain, P.; Baud’Huin, M.; Martinache, I.; Cursiefen, C.; Maier, P.; Hjortdal, J.; Sanchez Ibanez, J.; et al. One threat, different answers: The impact of COVID-19 pandemic on cornea donation and donor selection across Europe. Br. J. Ophthalmol. 2022, 106, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Anitha, V.; Tandon, R.; Shah, S.G.; Radhakrishnan, N.; Singh, S.; Murugesan, V.; Patwardhan, V.; Ravindran, M. Corneal blindness and eye banking: Current strategies and best practices. Indian J. Ophthalmol. 2023, 71, 3142–3148. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Chaurasia, S. Recent and Evolving Therapies in the Management of Endothelial Diseases. Semin. Ophthalmol. 2023, 38, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Spinozzi, D.; Miron, A.; Bruinsma, M.; Dapena, I.; Kocaba, V.; Jager, M.J.; Melles, G.R.J.; Ni Dhubhghaill, S.; Oellerich, S. New developments in corneal endothelial cell replacement. Acta Ophthalmol. 2021, 99, 712–729. [Google Scholar] [CrossRef] [PubMed]
- Navaratnam, J.; Utheim, T.P.; Rajasekhar, V.K.; Shahdadfar, A. Substrates for Expansion of Corneal Endothelial Cells towards Bioengineering of Human Corneal Endothelium. J. Funct. Biomater. 2015, 6, 917–945. [Google Scholar] [CrossRef]
- Shao, C.; Fu, Y.; Lu, W.; Fan, X. Bone marrow-derived endothelial progenitor cells: A promising therapeutic alternative for corneal endothelial dysfunction. Cells Tissues Organs 2011, 193, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Joyce, N.C.; Harris, D.L.; Markov, V.; Zhang, Z.; Saitta, B. Potential of human umbilical cord blood mesenchymal stem cells to heal damaged corneal endothelium. Mol. Vis. 2012, 18, 547–564. [Google Scholar] [PubMed]
- Dai, Y.; Guo, Y.; Wang, C.; Liu, Q.; Yang, Y.; Li, S.; Guo, X.; Lian, R.; Yu, R.; Liu, H.; et al. Non-genetic direct reprogramming and biomimetic platforms in a preliminary study for adipose-derived stem cells into corneal endothelia-like cells. PLoS ONE 2014, 9, e109856. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Pang, K.; Wu, X. Isolation and transplantation of corneal endothelial cell-like cells derived from in-vitro-differentiated human embryonic stem cells. Stem Cells Dev. 2014, 23, 1340–1354. [Google Scholar] [CrossRef] [PubMed]
- Zavala, J.; López Jaime, G.R.; Rodríguez Barrientos, C.A.; Valdez-Garcia, J. Corneal endothelium: Developmental strategies for regeneration. Eye 2013, 27, 579–588. [Google Scholar] [CrossRef]
- Chen, K.H.; Azar, D.; Joyce, N.C. Transplantation of adult human corneal endothelium ex vivo: A morphologic study. Cornea 2001, 20, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Roy, O.; Leclerc, V.B.; Bourget, J.M.; Thériault, M.; Proulx, S. Understanding the process of corneal endothelial morphological change in vitro. Investig. Ophthalmol. Vis. Sci. 2015, 56, 1228–1237. [Google Scholar] [CrossRef] [PubMed]
- Engelmann, K.; Friedl, P. Optimization of culture conditions for human corneal endothelial cells. Vitr. Cell Dev. Biol. 1989, 25, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Joyce, N.C. Proliferative response of corneal endothelial cells from young and older donors. Investig. Ophthalmol. Vis. Sci. 2004, 45, 1743–1751. [Google Scholar] [CrossRef] [PubMed]
- Peh, G.S.; Chng, Z.; Ang, H.P.; Cheng, T.Y.; Adnan, K.; Seah, X.Y.; George, B.L.; Toh, K.P.; Tan, D.T.; Yam, G.H.; et al. Propagation of human corneal endothelial cells: A novel dual media approach. Cell Transplant. 2015, 24, 287–304. [Google Scholar] [CrossRef]
- Spinozzi, D.; Miron, A.; Bruinsma, M.; Lie, J.T.; Dapena, I.; Oellerich, S.; Melles, G.R.J. Improving the success rate of human corneal endothelial cell cultures from single donor corneas with stabilization medium. Cell Tissue Bank. 2018, 19, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Riento, K.; Ridley, A.J. Rocks: Multifunctional kinases in cell behaviour. Nat. Rev. Mol. Cell Biol. 2003, 4, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Zwingelberg, S.B.; Karabiyik, G.; Gehle, P.; von Brandenstein, M.; Eibichova, S.; Lotz, C.; Groeber-Becker, F.; Kampik, D.; Jurkunas, U.; Geerling, G.; et al. Advancements in bioengineering for descemet membrane endothelial keratoplasty (DMEK). NPJ Regen. Med. 2025, 10, 10. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Williams, J.K.; Greven, M.; Walter, K.A.; Laber, P.W.; Khang, G.; Soker, S. Bioengineering endothelialized neo-corneas using donor-derived corneal endothelial cells and decellularized corneal stroma. Biomaterials 2010, 31, 6738–6745. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Chen, D.; Liu, Z.; Li, C.; Liu, Y.; Zhou, J.; Wan, P.; Mou, Y.G.; Wang, Z. Enhanced survival in vitro of human corneal endothelial cells using mouse embryonic stem cell conditioned medium. Mol. Vis. 2010, 16, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Kim, E.Y.; Kim, M.J.; Khan, F.A.; Giegengack, M.; D’Agostino, R., Jr.; Criswell, T.; Khang, G.; Soker, S. Factors affecting successful isolation of human corneal endothelial cells for clinical use. Cell Transplant. 2014, 23, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Soh, W.W.M.; Zhu, J.; Song, X.; Jain, D.; Yim, E.K.F.; Li, J. Detachment of bovine corneal endothelial cell sheets by cooling-induced surface hydration of poly(R)-3-hydroxybutyrate-based thermoresponsive copolymer coating. J. Mater. Chem. B 2022, 10, 8407–8418. [Google Scholar] [CrossRef] [PubMed]
- Koo, S.; Muhammad, R.; Peh, G.S.; Mehta, J.S.; Yim, E.K. Micro- and nanotopography with extracellular matrix coating modulate human corneal endothelial cell behavior. Acta Biomater. 2014, 10, 1975–1984. [Google Scholar] [CrossRef] [PubMed]
- Kassumeh, S.A.; Wertheimer, C.M.; von Studnitz, A.; Hillenmayer, A.; Priglinger, C.; Wolf, A.; Mayer, W.J.; Teupser, D.; Holdt, L.M.; Priglinger, S.G.; et al. Poly(lactic-co-glycolic) Acid as a Slow-Release Drug-Carrying Matrix for Methotrexate Coated onto Intraocular Lenses to Conquer Posterior Capsule Opacification. Curr. Eye Res. 2018, 43, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, S.; Lace, R.; Carserides, C.; Gallagher, A.G.; Wellings, D.A.; Williams, R.L.; Levis, H.J. Poly-ε-lysine based hydrogels as synthetic substrates for the expansion of corneal endothelial cells for transplantation. J. Mater. Sci. Mater. Med. 2019, 30, 102. [Google Scholar] [CrossRef] [PubMed]
- Ross, M.; Amaral, N.; Taiyab, A.; Sheardown, H. Delivery of Cells to the Cornea Using Synthetic Biomaterials. Cornea 2022, 41, 1325–1336. [Google Scholar] [CrossRef] [PubMed]
- Ng, X.Y.; Peh, G.S.L.; Yam, G.H.; Tay, H.G.; Mehta, J.S. Corneal Endothelial-like Cells Derived from Induced Pluripotent Stem Cells for Cell Therapy. Int. J. Mol. Sci. 2023, 24, 12433. [Google Scholar] [CrossRef] [PubMed]
- Gomes, P.; Srinivas, S.P.; Van Driessche, W.; Vereecke, J.; Himpens, B. ATP release through connexin hemichannels in corneal endothelial cells. Investig. Ophthalmol. Vis. Sci. 2005, 46, 1208–1218. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Zhu, Y.; Tighe, S.; Liu, Y.; Hu, M. Engineering of Human Corneal Endothelial Cells In Vitro. Int. J. Med. Sci. 2019, 16, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Li, Y.; Zhang, Y.; Zhu, X.; Mei, Y.; Xu, D.; Huang, G. The Response of Corneal Endothelial Cells to Shear Stress in an In Vitro Flow Model. J. Ophthalmol. 2021, 2021, 9217866. [Google Scholar] [CrossRef]
- Weant, J.; Eveleth, D.D.; Subramaniam, A.; Jenkins-Eveleth, J.; Blaber, M.; Li, L.; Ornitz, D.M.; Alimardanov, A.; Broadt, T.; Dong, H.; et al. Regenerative responses of rabbit corneal endothelial cells to stimulation by fibroblast growth factor 1 (FGF1) derivatives, TTHX1001 and TTHX1114. Growth Factors 2021, 39, 14–27. [Google Scholar] [CrossRef]
- Maurizi, E.; Merra, A.; Macaluso, C.; Schiroli, D.; Pellegrini, G. GSK-3 inhibition reverts mesenchymal transition in primary human corneal endothelial cells. Eur. J. Cell Biol. 2023, 102, 151302. [Google Scholar] [CrossRef]
- Zhu, Q.; Wu, R.; Gao, J.; Guo, J.; Xu, D.; Xu, W.; Liu, Z.; Zhou, Y.; Yu, H. Glycogen synthase kinase 3 inhibition promotes expansion of human corneal endothelial cells with normal karyotype and functional properties. Exp. Eye Res. 2023, 225, 109418. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, S.; Koizumi, N.; Ueno, M.; Okumura, N.; Imai, K.; Tanaka, H.; Yamamoto, Y.; Nakamura, T.; Inatomi, T.; Bush, J.; et al. Injection of Cultured Cells with a ROCK Inhibitor for Bullous Keratopathy. N. Engl. J. Med. 2018, 378, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Mimura, T.; Yamagami, S.; Usui, T.; Seiichi Honda, N.; Amano, S. Necessary prone position time for human corneal endothelial precursor transplantation in a rabbit endothelial deficiency model. Curr. Eye Res. 2007, 32, 617–623. [Google Scholar] [CrossRef]
- Parikumar, P.; Haraguchi, K.; Senthilkumar, R.; Abraham, S.J. Human corneal endothelial cell transplantation with nanocomposite gel sheet preserves corneal stability in post-corneal transplant bullous keratopathy: A 16-year follow-up. Am. J. Stem Cells 2024, 13, 162–168. [Google Scholar] [CrossRef]
- Khalili, M.; Asadi, M.; Kahroba, H.; Soleyman, M.R.; Andre, H.; Alizadeh, E. Corneal endothelium tissue engineering: An evolution of signaling molecules, cells, and scaffolds toward 3D bioprinting and cell sheets. J. Cell Physiol. 2020, 236, 3275–3303. [Google Scholar] [CrossRef] [PubMed]
- Tayebi, T.; Baradaran-Rafii, A.; Hajifathali, A.; Rahimpour, A.; Zali, H.; Shaabani, A.; Niknejad, H. Biofabrication of chitosan/chitosan nanoparticles/polycaprolactone transparent membrane for corneal endothelial tissue engineering. Sci. Rep. 2021, 11, 7060. [Google Scholar] [CrossRef] [PubMed]
- Petrela, R.B.; Patel, S.P. The soil and the seed: The relationship between Descemet’s membrane and the corneal endothelium. Exp. Eye Res. 2023, 227, 109376. [Google Scholar] [CrossRef] [PubMed]
- Hernández, J.; Santos, N.; Ahumada, M. Advances in 3D Bioprinting for Corneal Regeneration. Gels 2025, 11, 422. [Google Scholar] [CrossRef]
- Du, L.; Wu, X. Development and characterization of a full-thickness acellular porcine cornea matrix for tissue engineering. Artif. Organs 2011, 35, 691–705. [Google Scholar] [CrossRef] [PubMed]
- Chi, M.; Yuan, B.; Xie, Z.; Hong, J. The Innovative Biomaterials and Technologies for Developing Corneal Endothelium Tissue Engineering Scaffolds: A Review and Prospect. Bioengineering 2023, 10, 1284. [Google Scholar] [CrossRef]
- Guarnieri, A.; Triunfo, M.; Scieuzo, C.; Ianniciello, D.; Tafi, E.; Hahn, T.; Zibek, S.; Salvia, R.; De Bonis, A.; Falabella, P. Antimicrobial properties of chitosan from different developmental stages of the bioconverter insect Hermetia illucens. Sci. Rep. 2022, 12, 8084. [Google Scholar] [CrossRef] [PubMed]
- Ozcelik, B.; Brown, K.D.; Blencowe, A.; Daniell, M.; Stevens, G.W.; Qiao, G.G. Ultrathin chitosan-poly(ethylene glycol) hydrogel films for corneal tissue engineering. Acta Biomater. 2013, 9, 6594–6605. [Google Scholar] [CrossRef] [PubMed]
- Biazar, E.; Baradaran-Rafii, A.; Heidari-keshel, S.; Tavakolifard, S. Oriented nanofibrous silk as a natural scaffold for ocular epithelial regeneration. J. Biomater. Sci. Polym. Ed. 2015, 26, 1139–1151. [Google Scholar] [CrossRef] [PubMed]
- Stoppato, M.; Stevens, H.Y.; Carletti, E.; Migliaresi, C.; Motta, A.; Guldberg, R.E. Effects of silk fibroin fiber incorporation on mechanical properties, endothelial cell colonization and vascularization of PDLLA scaffolds. Biomaterials 2013, 34, 4573–4581. [Google Scholar] [CrossRef]
- Bhogal, M.; Lwin, C.N.; Seah, X.Y.; Peh, G.; Mehta, J.S. Allogeneic Descemet’s Membrane Transplantation Enhances Corneal Endothelial Monolayer Formation and Restores Functional Integrity Following Descemet’s Stripping. Investig. Ophthalmol. Vis. Sci. 2017, 58, 4249–4260. [Google Scholar] [CrossRef] [PubMed]
- Català, P.; Thuret, G.; Skottman, H.; Mehta, J.S.; Parekh, M.; Ní Dhubhghaill, S.; Collin, R.W.J.; Nuijts, R.M.M.A.; Ferrari, S.; LaPointe, V.L.S.; et al. Approaches for corneal endothelium regenerative medicine. Prog. Retin. Eye Res. 2022, 87, 100987. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hu, Z.; Qu, J.; Xie, H.; Zhao, J.; Fan, T.; Liu, X.; Zhang, M. Tissue-Engineered Corneal Endothelial Sheets Using Ultrathin Acellular Porcine Corneal Stroma Substrates for Endothelial Keratoplasty. ACS Biomater. Sci. Eng. 2022, 8, 1301–1311. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Lin, H.; Li, J.; Feng, Y. Deciphering the molecular symphony: Unraveling endothelial-to-mesenchymal transition in corneal endothelial cells. Exp. Eye Res. 2024, 240, 109795. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.C.; Daniels, J.T. The impact of biomechanics on corneal endothelium tissue engineering. Exp. Eye Res. 2021, 209, 108690. [Google Scholar] [CrossRef]
- Suamte, L.; Tirkey, A.; Barman, J.; Babu, P.J. Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications. Smart Mater. Manuf. 2023, 1, 100011. [Google Scholar] [CrossRef]
- Fernández-Pérez, J.; Ahearne, M. The impact of decellularization methods on extracellular matrix derived hydrogels. Sci. Rep. 2019, 9, 14933. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Zhao, L.; Wang, F.; Hu, X.; Li, H.; Liu, T.; Zhou, Q.; Shi, W. Rapid porcine corneal decellularisation through the use of sodium N-lauroyl glutamate and supernuclease. J. Tissue Eng. 2019, 10, 2041731419875876. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.L.; Sidney, L.E.; Dunphy, S.E.; Dua, H.S.; Hopkinson, A. Corneal Decellularization: A Method of Recycling Unsuitable Donor Tissue for Clinical Translation? Curr. Eye Res. 2016, 41, 769–782. [Google Scholar] [CrossRef] [PubMed]
- Alio del Barrio, J.L.; Chiesa, M.; Garagorri, N.; Garcia-Urquia, N.; Fernandez-Delgado, J.; Bataille, L.; Rodriguez, A.; Arnalich-Montiel, F.; Zarnowski, T.; Álvarez de Toledo, J.P.; et al. Acellular human corneal matrix sheets seeded with human adipose-derived mesenchymal stem cells integrate functionally in an experimental animal model. Exp. Eye Res. 2015, 132, 91–100. [Google Scholar] [CrossRef]
- Luo, X.; He, X.; Zhao, H.; Ma, J.; Tao, J.; Zhao, S.; Yan, Y.; Li, Y.; Zhu, S. Research Progress of Polymer Biomaterials as Scaffolds for Corneal Endothelium Tissue Engineering. Nanomaterials 2023, 13, 1976. [Google Scholar] [CrossRef] [PubMed]
- McKay, T.B.; Hutcheon, A.E.K.; Guo, X.; Zieske, J.D.; Karamichos, D. Modeling the cornea in 3-dimensions: Current and future perspectives. Exp. Eye Res. 2020, 197, 108127. [Google Scholar] [CrossRef] [PubMed]
- Isaacson, A.; Swioklo, S.; Connon, C.J. 3D bioprinting of a corneal stroma equivalent. Exp. Eye Res. 2018, 173, 188–193. [Google Scholar] [CrossRef]
- Kim, K.W.; Lee, S.J.; Park, S.H.; Kim, J.C. Ex Vivo Functionality of 3D Bioprinted Corneal Endothelium Engineered with Ribonuclease 5-Overexpressing Human Corneal Endothelial Cells. Adv. Healthc. Mater. 2018, 7, e1800398. [Google Scholar] [CrossRef] [PubMed]
- Grönroos, P.; Mörö, A.; Puistola, P.; Hopia, K.; Huuskonen, M.; Viheriälä, T.; Ilmarinen, T.; Skottman, H. Bioprinting of human pluripotent stem cell derived corneal endothelial cells with hydrazone crosslinked hyaluronic acid bioink. Stem Cell Res. Ther. 2024, 15, 81. [Google Scholar] [CrossRef]
- Fu, L.; Hollick, E.J. Long-term Outcomes of Descemet Stripping Endothelial Keratoplasty: Ten-Year Graft Survival and Endothelial Cell Loss. Am. J. Ophthalmol. 2022, 234, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Snyder, A.J.; Bauer, A.J.; Straiko, M.D.; Terry, M.A.; Chen, J. Long-term Outcomes of Descemet Stripping Automated Endothelial Keratoplasty Versus Descemet Membrane Endothelial Keratoplasty Under a Failed Penetrating Keratoplasty Graft. Cornea 2025. [Google Scholar] [CrossRef]
- Alshaker, S.; Mimouni, M.; Batawi, H.; Cohen, E.; Trinh, T.; Santaella, G.; Chan, C.C.; Slomovic, A.R.; Rootman, D.S.; Sorkin, N. Four-Year Survival Comparison of Endothelial Keratoplasty Techniques in Patients with Previous Glaucoma Surgery. Cornea 2021, 40, 1282–1289. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, A.; Hayashi, T.; Igarashi, A.; Shimizu, T.; Yokogawa, H.; Yuda, K.; Bachmann, B.; Yamagami, S.; Sugiyama, K. Busin Glide-Assisted Pull-Through Insertion of Artificial Corneal Endothelium (EndoArt). Int. Med. Case Rep. J. 2024, 17, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Romano, D.; Ventura, M.; Vaccaro, S.; Forbice, E.; Hau, S.; Semeraro, F.; Romano, V. Corneal Artificial Endothelial Layer (EndoArt): Literature Review and Our Experience. J. Clin. Med. 2024, 13, 6520. [Google Scholar] [CrossRef]
- Eye-Yon Medical. EndoArt® Implantation in Subjects with Chronic Corneal Edema, Clinicaltrials.Gov. 2024. Available online: https://clinicaltrials.gov/study/NCT05139771 (accessed on 25 July 2025).
- Auffarth, G.U.; Son, H.S.; Koch, M.; Weindler, J.; Merz, P.; Daphna, O.; Marcovich, A.L.; Augustin, V.A. Implantation of an Artificial Endothelial Layer for Treatment of Chronic Corneal Edema. Cornea 2021, 40, 1633–1638. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.H.; Ang, M.; Htoon, H.M.; Tan, D. Descemet membrane endothelial keratoplasty versus Descemet stripping automated endothelial keratoplasty and penetrating keratoplasty. Am. J. Ophthalmol. 2019, 207, 288–303. [Google Scholar] [CrossRef] [PubMed]
- Rose-Nussbaumer, J.; Lin, C.C.; Austin, A.; Liu, Z.; Clover, J.; McLeod, S.D.; Porco, T.C.; Lietman, T.M.; Dresner, S.M.; Benetz, B.A.; et al. Descemet Endothelial Thickness Comparison Trial: Two-Year Results from a Randomized Trial Comparing Ultrathin Descemet Stripping Automated Endothelial Keratoplasty with Descemet Membrane Endothelial Keratoplasty. Ophthalmology 2020, 128, 1238–1240. [Google Scholar] [CrossRef] [PubMed]
- Price, D.A.; Kelley, M.; Price, F.W., Jr.; Price, M.O. Five-year graft survival of Descemet membrane endothelial keratoplasty (EK) versus Descemet stripping EK and the effect of donor sex matching. Ophthalmology 2018, 125, 1508–1514. [Google Scholar] [CrossRef] [PubMed]
- Vasiliauskaitė, I.; Oellerich, S.; Ham, L.; Dapena, I.; Baydoun, L.; van Dijk, K.; Melles, G.R.J. Descemet Membrane Endothelial Keratoplasty: Ten-Year Graft Survival and Clinical Outcomes. Am. J. Ophthalmol. 2020, 217, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Hollick, E.J. Comparison of Long-Term Outcomes of DSEK and DMEK in Fuchs Endothelial Dystrophy. Cornea 2024, 43, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Romano, D.; Shimizu, T.; Kobayashi, A.; Yamagami, S.; Romano, V.; Hayashi, T. Descemet Membrane Endothelial Keratoplasty in Aphakic, Aniridic, and Vitrectomized Eyes: A Review. Cornea 2024, 43, 1448–1455. [Google Scholar] [CrossRef]
- Fontana, L.; di Geronimo, N.; Cennamo, M.; Mencucci, R.; Versura, P.; Moramarco, A. Early Outcomes of an Artificial Endothelial Replacement Membrane Implantation After Failed Repeat Endothelial Keratoplasty. Cornea 2024, 43, 1088–1094. [Google Scholar] [CrossRef] [PubMed]
- Wiedemann, J.; Mestanoglu, M.; Rekate, A.; Gietzelt, C.; Cursiefen, C.; Bachmann, B. EndoArt®: Ergebnisse bei Patienten mit Glaukom-Drainage-Implantaten EndoArt®: Results in patients with glaucoma drainage devices. Ophthalmologie 2024, 121, 803–813. (In German) [Google Scholar] [CrossRef] [PubMed]
- Cesaro, B.; Ferrara, M.; Morescalchi, F.; Bergamaschi, N.; Gandolfo, F.; Semeraro, F.; Romano, V. Atypical Endophthalmitis Following Artificial Corneal Endothelial Implantation. Cornea 2025. [Google Scholar] [CrossRef]
- Daphna, O.; Auffarth, G.U.; Lapid-Gortzak, R.; Chaurasia, S.; Gilboa, E.; Lemze, A.; Dover, M.; Marcovich, A.L. A Novel Artificial Endothelial Replacement Membrane for the Treatment of Chronic Corneal Edema. Cornea 2025, 44, 1240–1247. [Google Scholar] [CrossRef] [PubMed]
- Donner, R.; Klimek, M.; Schmidinger, G. Influence of Posterior Corneal Surface Irregularities on the Attachment of an Artificial Endothelial Layer (EndoART). J. Clin. Med. 2025, 14, 3395. [Google Scholar] [CrossRef]
- Nicole, M.; Damien, G.; Alain, S. Spontaneous Artificial Corneal Endothelial Graft Reattachment: Case Report. Cornea 2025. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Li, J.; Yang, K.; Zhao, L.; Chen, X.; Long, Y.; Huang, Y.; Du, Y.; Wang, L. Potential of an amphiphilic artificial corneal endothelial layer as a replacement option for damaged corneal endothelium. Adv. Healthc. Mater. 2024, 13, e2401563. [Google Scholar] [CrossRef] [PubMed]
- Abusayf, M.M.; Tan, G.S.; Mehta, J.S. Pull-through insertion of EndoArt for complex eyes. Am. J. Ophthalmol. Case Rep. 2023, 32, 101878. [Google Scholar] [CrossRef] [PubMed]
- Wiedemann, J.; Hos, D.; Mestanoglu, M.; Cursiefen, C.; Bachmann, B. Corneal Endothelial Keratoprosthesis EndoArt in Patients with Glaucoma at High Risk of Graft Failure After Keratoplasty. Cornea 2024, 202, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Fontana, L.; di Geronimo, N.; Versura, P.; Moramarco, A. Long-Term Clinical Outcomes and Anterior Segment Optical Coherence Tomography Findings After Artificial Endothelial Replacement Membrane Implantation. Cornea 2025. [Google Scholar] [CrossRef] [PubMed]
Modality | Study (Year) | Design | Model/ Population | N (Eyes) | Scaffold/ Carrier | Key Procedural Details | Follow-Up | Main Efficacy Outcomes | Safety/Adverse Events | Key Limitations |
---|---|---|---|---|---|---|---|---|---|---|
Cell injection therapy (hCEC + ROCK inhibitor) | Kinoshita et al. (2018) [48] | Prospective, single-arm clinical study | Human, bullous keratopathy | 11 | None (cell suspension) | Intracameral injection of cultured hCECs with ROCK inhibitor; prolonged prone positioning | 5 years | Restoration of clarity in 10/11 eyes; mean ECD ≈ 1257 cells/mm2 (range 601–2067) | No major safety signal reported by authors | Small cohort; no control; specialized postop positioning; generalizability uncertain. |
Cell injection—prone time optimization | Mimura et al. (2007) [49] | Preclinical | Rabbit model | — | None | Evaluated necessary prone time after cell delivery | Acute | Identified posture-dependent adhesion dynamics | Preclinical only | Translational parameters extrapolated to humans. |
Cell sheet on nanocomposite gel | Parikumar et al. (2024) [50] | Clinical case series | Human, post-PK bullous keratopathy | 3 | Nanocomposite gel sheet | Transplantation of cultured hCECs expanded from discarded corneas on gel sheets | 16-year follow-up reported | Sustained corneal stability and visual improvement reported | Long duration single-center; device/material specifics unique | Very small sample; selection bias; lacks standardized endpoints. |
Allogeneic Descemet’s membrane scaffold to promote host CEC monolayer | Bhogal et al. (2017) [61] | Experimental (ex vivo/in vivo translational) | Post-descemetorhexis models | — | Donor Descemet’s membrane | DM transplantation as “soil” to guide endothelial monolayer restoration | Short- to mid-term | Enhanced monolayer formation and functional restoration signals | Immunologic and variability concerns inherent to biologic scaffold | Non-standardized models; clinical evidence pending. |
Decellularized stroma/DM (porcine or human) as ultrathin substrate for endothelial sheets | Du & Wu (2011) [55]; Zhang et al. (2022) [63] | Preclinical | Porcine/human tissues; animal implantation | — | Decellularized full-thickness porcine matrix; ultrathin acellular porcine stroma | Scaffold fabrication, optical/mechanical testing; seeding with hCEC | Short-term | High transparency; good permeability; supported CEC adhesion/proliferation | Potential residual immunogenicity if decellularization incomplete | Heterogeneous protocols; no clinical trials yet. |
Synthetic/biohybrid thin films (e.g., chitosan-PEG; chitosan/PCL; gelatin-based composites) | Ozcelik et al. (2013) [58]; Tayebi et al. (2021) [52] | Preclinical | Ex vivo / animal | — | Chitosan-PEG hydrogel; chitosan/PCL; gelatin–chondroitin sulfate–hydroxyethyl chitosan | Fabrication of ultrathin transparent films; CEC seeding; ex vivo transplant feasibility | Short-term | High optical transmission; adequate permeability; CEC attachment and proliferation demonstrated | Material-specific risks; mechanical handling vs. DM; regulatory path unknown | Mostly bench/ex vivo; limited in vivo duration. |
Bioprinted endothelial constructs (hPSC-derived or hCEC-based) | Kim et al. (2018) [74]; Grönroos et al. (2024) [75] | Preclinical | Animal/ex vivo; in vitro | — | Decellularized amniotic membrane or HA-based bioink | Extrusion bioprinting of endothelial layers; RNASE5 overexpression to enhance survival; hydrazone-crosslinked HA for hPSC-CEC bioprinting | Short-term | Expression of endothelial markers (e.g., Na+/K+-ATPase); viability and sheet formation | No clinical translation yet; bioink standardization pending | Early-stage feasibility; durability and function in vivo not established. |
Induced pluripotent stem cell–derived CECs | Ng et al. (2023) [41] | Preclinical review and experimental reports | In vitro | — | Various | Differentiation protocols for iPSC-to-CEC; delivery concepts | — | Phenotypic and functional characteristics reported | Genetic/epigenetic stability; scalability | Heterogeneous methods; clinical trials lacking. |
ECM-mimetic substrates/coatings to stabilize phenotype and reduce EMT | Peh et al. (2015) [29]; Koo et al. (2014) [37] | Preclinical | In vitro hCEC culture | — | Collagen, fibronectin, poly-ε-lysine hydrogels; micro/nanotopography | Dual-media propagation; ECM coatings; topography-guided culture | — | Improved proliferation with preserved morphology; reduced EMT risk | Culture-to-clinic translation untested | Surrogate outcomes; lacks clinical endpoints. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, L.; Perez, A.V.; Maqsood, S.; Kopsachilis, N.; Foti, R.; D’Esposito, F.; Musa, M.; Tognetto, D.; Gagliano, C.; Zeppieri, M. Artificial and Bioengineered Therapeutic Options for Corneal Endothelial Disease. Bioengineering 2025, 12, 1064. https://doi.org/10.3390/bioengineering12101064
Fu L, Perez AV, Maqsood S, Kopsachilis N, Foti R, D’Esposito F, Musa M, Tognetto D, Gagliano C, Zeppieri M. Artificial and Bioengineered Therapeutic Options for Corneal Endothelial Disease. Bioengineering. 2025; 12(10):1064. https://doi.org/10.3390/bioengineering12101064
Chicago/Turabian StyleFu, Lanxing, Alfonso Vasquez Perez, Sundas Maqsood, Nick Kopsachilis, Roberta Foti, Fabiana D’Esposito, Mutali Musa, Daniele Tognetto, Caterina Gagliano, and Marco Zeppieri. 2025. "Artificial and Bioengineered Therapeutic Options for Corneal Endothelial Disease" Bioengineering 12, no. 10: 1064. https://doi.org/10.3390/bioengineering12101064
APA StyleFu, L., Perez, A. V., Maqsood, S., Kopsachilis, N., Foti, R., D’Esposito, F., Musa, M., Tognetto, D., Gagliano, C., & Zeppieri, M. (2025). Artificial and Bioengineered Therapeutic Options for Corneal Endothelial Disease. Bioengineering, 12(10), 1064. https://doi.org/10.3390/bioengineering12101064