Comparative Analysis of Knee Biomechanics in Total Knee Arthroplasty Patients Across Daily Activities
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Protocols
2.3. Motion Data Analysis
2.4. Knee Biomechanics Index
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
OA | Osteoarthritis |
KBI | Knee Biomechanics Index |
TKA | Total knee arthroplasty |
TUG | Time up and go |
STS | Sit-to-stand |
LW | level walking |
RU | ramp up |
RD | ramp down |
SA | stair ascending |
SD | stair descending |
FERoM | flexion–extension range of motion |
VVRoM | varus–valgus range of motion |
INTRoM | internal–external rotation range of motion |
FEM | flexion–extension moment |
AAM | abduction–adduction moment |
IEM | internal–external rotation moment |
KCF | knee contact force |
References
- Zeni, J.A., Jr.; Axe, M.J.; Snyder-Mackler, L. Clinical predictors of elective total joint replacement in persons with end-stage knee osteoarthritis. BMC Musculoskelet. Disord. 2010, 11, 86. [Google Scholar] [CrossRef]
- Feng, J.E.; Novikov, D.; Anoushiravani, A.A.; Schwarzkopf, R. Total knee arthroplasty: Improving outcomes with a multidisciplinary approach. J. Multidiscip. Healthc. 2018, 11, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.; Ong, K.; Lau, E.; Mowat, F.; Halpern, M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Jt. Surg. Am. 2007, 89, 780–785. [Google Scholar] [CrossRef]
- Moffet, H.; Collet, J.P.; Shapiro, S.H.; Paradis, G.; Marquis, F.; Roy, L. Effectiveness of intensive rehabilitation on functional ability and quality of life after first total knee arthroplasty: A single-blind randomized controlled trial. Arch. Phys. Med. Rehabil. 2004, 85, 546–556. [Google Scholar] [CrossRef]
- Jones, G.; Glisson, M.; Hynes, K.; Cicuttini, F. Sex and site differences in cartilage development: A possible explanation for variations in knee osteoarthritis in later life. Arthritis Rheum. 2000, 43, 2543–2549. [Google Scholar] [CrossRef] [PubMed]
- Ethgen, O.; Bruyere, O.; Richy, F.; Dardennes, C.; Reginster, J.Y. Health-related quality of life in total hip and total knee arthroplasty. A qualitative and systematic review of the literature. J. Bone Jt. Surg. Am. 2004, 86, 963–974. [Google Scholar] [CrossRef]
- Farquhar, S.J.; Reisman, D.S.; Snyder-Mackler, L. Persistence of Altered Movement Patterns During a Sit-to-Stand Task 1 Year Following Unilateral Total Knee Arthroplasty. Phys. Ther. 2008, 88, 567–579. [Google Scholar] [CrossRef]
- Catani, F.; Ensini, A.; Belvedere, C.; Feliciangeli, A.; Benedetti, M.G.; Leardini, A.; Giannini, S. In vivo kinematics and kinetics of a bi-cruciate substituting total knee arthroplasty: A combined fluoroscopic and gait analysis study. J. Orthop. Res. 2009, 27, 1569–1575. [Google Scholar] [CrossRef]
- Benedetti, M.G.; Catani, F.; Bilotta, T.W.; Marcacci, M.; Mariani, E.; Giannini, S. Muscle activation pattern and gait biomechanics after total knee replacement. Clin. Biomech. 2003, 18, 871–876. [Google Scholar] [CrossRef]
- Levinger, P.; Menz, H.B.; Morrow, A.D.; Feller, J.A.; Bartlett, J.R.; Bergman, N.R. Lower limb biomechanics in individuals with knee osteoarthritis before and after total knee arthroplasty surgery. J. Arthroplast. 2013, 28, 994–999. [Google Scholar] [CrossRef] [PubMed]
- Mandeville, D.; Osternig, L.R.; Lantz, B.A.; Mohler, C.G.; Chou, L.S. The effect of total knee replacement on the knee varus angle and moment during walking and stair ascent. Clin. Biomech. 2008, 23, 1053–1058. [Google Scholar] [CrossRef]
- Haggerty, M.; Dickin, D.C.; Popp, J.; Wang, H. The influence of incline walking on joint mechanics. Gait Posture 2014, 39, 1017–1021. [Google Scholar] [CrossRef]
- Kuster, M.; Sakurai, S.; Wood, G.A. Kinematic and kinetic comparison of downhill and level walking. Clin. Biomech. 1995, 10, 79–84. [Google Scholar] [CrossRef]
- Lay, A.N.; Hass, C.J.; Gregor, R.J. The effects of sloped surfaces on locomotion: A kinematic and kinetic analysis. J. Biomech. 2006, 39, 1621–1628. [Google Scholar] [CrossRef]
- Simon, J.C.; Della Valle, C.J.; Wimmer, M.A. Level and Downhill Walking to Assess Implant Functionality in Bicruciate- and Posterior Cruciate-Retaining Total Knee Arthroplasty. J. Arthroplast. 2018, 33, 2884–2889. [Google Scholar] [CrossRef]
- Wen, C.; Cates, H.E.; Weinhandl, J.T.; Crouter, S.E.; Zhang, S. Knee biomechanics of patients with total knee replacement during downhill walking on different slopes. J. Sport Health Sci. 2022, 11, 50–57. [Google Scholar] [CrossRef]
- Wen, C.; Cates, H.E.; Zhang, S. Is knee biomechanics different in uphill walking on different slopes for older adults with total knee replacement? J. Biomech. 2019, 89, 40–47. [Google Scholar] [CrossRef] [PubMed]
- McClelland, J.A.; Feller, J.A.; Menz, H.B.; Webster, K.E. Patterns in the knee flexion-extension moment profile during stair ascent and descent in patients with total knee arthroplasty. J. Biomech. 2014, 47, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, K.A.; Zhang, S.; Schroeder, L.E.; Weinhandl, J.T.; Cates, H.E. Increased knee loading in stair ambulation in patients dissatisfied with their total knee replacement. Clin. Biomech. 2019, 67, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Mandeville, D.; Osternig, L.R.; Chou, L.S. The effect of total knee replacement on dynamic support of the body during walking and stair ascent. Clin. Biomech. 2007, 22, 787–794. [Google Scholar] [CrossRef]
- Ouellet, D.; Moffet, H. Locomotor deficits before and two months after knee arthroplasty. Arthritis Rheum. 2002, 47, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Seymour, H.; Chen, F.; Zheng, N.N. Patient-Reported Outcome Measures and Biomechanical Variables That May Be Related to Knee Functions Following Total Knee Arthroplasty. Bioengineering 2024, 11, 938. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Cordova, M.L.; Zheng, N.N. Three-dimensional joint kinematics of ACL-deficient and ACL-reconstructed knees during stair ascent and descent. Hum. Mov. Sci. 2012, 31, 222–235. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, N.N.; Piasecki, D.P.; Fleischli, J.E. Influence of graft type on sagittal plane knee biomechanics during stair ambulation following anterior cruciate ligament reconstruction. Clin. Biomech. 2021, 81, 105233. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.L.; Pedersen, D.R.; Brand, R.A. A Comparison of the Accuracy of Several Hip Center Location Prediction Methods. J. Biomech. 1990, 23, 617–621. [Google Scholar] [CrossRef]
- Yocum, D.S.; Valenzuela, K.A.; Standifird, T.W.; Cates, H.E.; Zhang, S. Altered biomechanics in bilateral total knee replacement patients during stair negotiation. Knee 2022, 34, 9–16. [Google Scholar] [CrossRef]
- Spoor, C.W.; Veldpaus, F.E. Rigid Body Motion Calculated from Spatial Coordinates of Markers. J. Biomech. 1980, 13, 391–393. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, N.N. Knee jointsecondary motion accuracy improved by quaternion-based optimizer with bony landmark constraints. J. Biomech. Eng. 2010, 132, 124502. [Google Scholar] [CrossRef]
- Wang, H.; Fleischli, J.E.; Hutchinson, I.D.; Zheng, N.N. Knee moment and shear force are correlated with femoral tunnel orientation after single-bundle anterior cruciate ligament reconstruction. Am. J. Sports Med. 2014, 42, 2377–2385. [Google Scholar] [CrossRef]
- Andriacchi, T.P.; Stanwyck, T.S.; Galante, J.O. Knee biomechanics and total knee replacement. J. Arthroplast. 1986, 1, 211–219. [Google Scholar] [CrossRef]
- Bolanos, A.A.; Colizza, W.A.; McCann, P.D.; Gotlin, R.S.; Wootten, M.E.; Kahn, B.A.; Insall, J.N. A comparison of isokinetic strength testing and gait analysis in patients with posterior cruciate-retaining and substituting knee arthroplasties. J. Arthroplast. 1998, 13, 906–915. [Google Scholar] [CrossRef]
- Catani, F.; Benedetti, M.G.; De Felice, R.; Buzzi, R.; Giannini, S.; Aglietti, P. Mobile and fixed bearing total knee prosthesis functional comparison during stair climbing. Clin. Biomech. 2003, 18, 410–418. [Google Scholar] [CrossRef]
- Hatfield, G.L.; Hubley-Kozey, C.L.; Astephen Wilson, J.L.; Dunbar, M.J. The effect of total knee arthroplasty on knee joint kinematics and kinetics during gait. J. Arthroplast. 2011, 26, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.J.; Lloyd, D.G.; Wood, D.J. Pre-surgery knee joint loading patterns during walking predict the presence and severity of anterior knee pain after total knee arthroplasty. J. Orthop. Res. 2004, 22, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Fantozzi, S.; Benedetti, M.G.; Leardini, A.; Banks, S.A.; Cappello, A.; Assirelli, D.; Catani, F. Fluoroscopic and gait analysis of the functional performance in stair ascent of two total knee replacement designs. Gait Posture 2003, 17, 225–234. [Google Scholar] [CrossRef]
- Standifird, T.W.; Saxton, A.M.; Coe, D.P.; Cates, H.E.; Reinbolt, J.A.; Zhang, S. Influence of Total Knee Arthroplasty on Gait Mechanics of the Replaced and Non-Replaced Limb During Stair Negotiation. J. Arthroplast. 2016, 31, 278–283. [Google Scholar] [CrossRef]
- Sumner, B.; McCamley, J.; Jacofsky, D.J.; Jacofsky, M.C. Comparison of Knee Kinematics and Kinetics during Stair Descent in Single- and Multi-Radius Total Knee Arthroplasty. J. Knee Surg. 2020, 33, 1020–1028. [Google Scholar] [CrossRef]
- Christiansen, C.L.; Bade, M.J.; Judd, D.L.; Stevens-Lapsley, J.E. Weight-bearing asymmetry during sit-stand transitions related to impairment and functional mobility after total knee arthroplasty. Arch. Phys. Med. Rehabil. 2011, 92, 1624–1629. [Google Scholar] [CrossRef]
- Davidson, B.S.; Judd, D.L.; Thomas, A.C.; Mizner, R.L.; Eckhoff, D.G.; Stevens-Lapsley, J.E. Muscle activation and coactivation during five-time-sit-to-stand movement in patients undergoing total knee arthroplasty. J. Electromyogr. Kinesiol. 2013, 23, 1485–1493. [Google Scholar] [CrossRef] [PubMed]
- Ritter, M.A.; Carr, K.D.; Keating, E.M.; Faris, P.M. Long-term outcomes of contralateral knees after unilateral total knee arthroplasty for osteoarthritis. J. Arthroplast. 1994, 9, 347–349. [Google Scholar] [CrossRef]
- Saari, T.; Tranberg, R.; Zugner, R.; Uvehammer, J.; Karrholm, J. Total knee replacement influences both knee and hip joint kinematics during stair climbing. Int. Orthop. 2004, 28, 82–86. [Google Scholar] [CrossRef]
- Fenner, V.U.; Behrend, H.; Kuster, M.S. Joint Mechanics After Total Knee Arthroplasty While Descending Stairs. J. Arthroplast. 2017, 32, 575–580. [Google Scholar] [CrossRef]
- Riener, R.; Rabuffetti, M.; Frigo, C. Stair ascent and descent at different inclinations. Gait Posture 2002, 15, 32–44. [Google Scholar] [CrossRef]
- Wilson, S.A.; McCann, P.D.; Gotlin, R.S.; Ramakrishnan, H.K.; Wootten, M.E.; Insall, J.N. Comprehensive gait analysis in posterior-stabilized knee arthroplasty. J. Arthroplast. 1996, 11, 359–367. [Google Scholar] [CrossRef]
- Franz, J.R.; Kram, R. Advanced age and the mechanics of uphill walking: A joint-level, inverse dynamic analysis. Gait Posture 2014, 39, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.W.; Leu, T.H.; Li, J.D.; Wang, T.M.; Ho, W.P.; Lu, T.W. Influence of inclination angles on intra- and inter-limb load-sharing during uphill walking. Gait Posture 2014, 39, 29–34. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, A.S.; Beatty, K.T.; Dwan, L.N.; Vickers, D.R. Gait dynamics on an inclined walkway. J. Biomech. 2006, 39, 2491–2502. [Google Scholar] [CrossRef]
- Mizner, R.L.; Petterson, S.C.; Stevens, J.E.; Vandenborne, K.; Snyder-Mackler, L. Early Quadriceps Strength Loss After Total Knee Arthroplasty: The Contributions of Muscle Atrophy and Failure of Voluntary Muscle Activation. J. Bone Jt. Surg. 2005, 87, 1047–1053. [Google Scholar] [CrossRef]
- Paquette, M.R.; Zhang, S.; Milner, C.E.; Fairbrother, J.T.; Reinbolt, J.A. Effects of increased step width on frontal plane knee biomechanics in healthy older adults during stair descent. Knee 2014, 21, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Walter, J.P.; D’Lima, D.D.; Colwell, C.W., Jr.; Fregly, B.J. Decreased knee adduction moment does not guarantee decreased medial contact force during gait. J. Orthop. Res. 2010, 28, 1348–1354. [Google Scholar] [CrossRef]
- Connelly, D.M.; Vandervoort, A.A. Effects of detraining on knee extensor strength and functional mobility in a group of elderly women. J. Orthop. Sports Phys. Ther. 1997, 26, 340–346. [Google Scholar] [CrossRef] [PubMed]
Posterior Stabilized | Bi-Cruciate Stabilized | Control Group | p-Value | |
---|---|---|---|---|
Age (years) | 64.9 ± 5.8 | 65.4 ± 6.5 | 63.4 ± 7.5 | 0.357 |
Gender (M/F) | 11/9 | 11/9 | 11/9 | NA |
Height (m) | 1.72 ± 0.10 | 1.70 ± 0.10 | 1.70 ± 0.10 | 0.481 |
BMI (kg/m2) | 30.7 ± 4.6 | 30.6 ± 4.3 | 27.1 ± 4.4 | 0.15 |
Pre-Op | Post-Op | Control Group | |
---|---|---|---|
TUG(s) | 11.8 ± 6.4 | 9.9 ± 2.5 | 9.0 ± 1.9 |
STS(s) | 33.9 ± 10.2 ab | 28.9 ± 8.6 a | 25.45 ± 4.8 b |
Variable | Group | LW | RU | RD | SA | SD |
---|---|---|---|---|---|---|
FERoM *^abc (degree) | Pre-op | 49.07 ± 6.37 | 44.58 ± 6.61 | 49.35 ± 7.37 | 74.09 ± 5.19 | 72.04 ± 7.25 |
Post-op | 56.05 ± 6.64 | 50.9 ± 7.02 | 55.48 ± 6.81 | 84.2 ± 6.55 | 80.46 ± 5.7 | |
CG | 59.59 ± 3.53 | 55.34 ± 5.03 | 59.16 ± 5.57 | 91.97 ± 4.78 | 88.35 ± 6.21 | |
VVRoM (degree) | Pre-op | 9.7 ± 2.65 | 9.08 ± 3.16 | 9.47 ± 3.56 | 10.65 ± 3.6 | 9.75 ± 3.36 |
Post-op | 10.11 ± 4.58 | 11.87 ± 8.72 | 11.14 ± 9.02 | 14.06 ± 5.64 | 12.22 ± 4.41 | |
CG | 12.35 ± 5.72 | 11.08 ± 4.28 | 13.43 ± 5.5 | 11.51 ± 4.08 | 11.33 ± 5.15 | |
INTRoM abc (degree) | Pre-op | 14.53 ± 5.21 | 14.26 ± 4.66 | 15.21 ± 4.97 | 13.22 ± 4.38 | 14.12 ± 4.24 |
Post-op | 17.66 ± 5.08 | 17.11 ± 5.55 | 16.57 ± 4.92 | 18.2 ± 5.45 | 19.08 ± 6.16 | |
CG | 18.86 ± 6.22 | 18.91 ± 5.19 | 19.99 ± 6.52 | 22.11 ± 7.6 | 21.82 ± 6.04 |
Variable | Group | LW | RU | RD | SA | SD |
---|---|---|---|---|---|---|
FEM *^abc (%BWxH) | Pre-op | 2.68 ± 0.95 | 2.83 ± 1.23 | 3.14 ± 1.22 | 5.83 ± 1.60 | 7.65 ± 2.24 |
Post-op | 3.70 ± 1.16 | 3.36 ± 0.91 | 4.51 ± 1.33 | 7.90 ± 2.40 | 8.89 ± 2.78 | |
CG | 4.43 ± 1.11 | 4.58 ± 1.46 | 5.29 ± 1.27 | 9.21 ± 1.93 | 9.37 ± 1.78 | |
IEM (%BWxH) | Pre-op | 0.78 ± 0.46 | 0.78 ± 0.47 | 0.74 ± 0.40 | 0.92 ± 0.88 | 0.88 ± 0.64 |
Post-op | 0.82 ± 0.33 | 0.73 ± 0.32 | 0.75 ± 0.51 | 0.90 ± 0.73 | 0.84 ± 0.61 | |
CG | 0.60 ± 0.27 | 0.47 ± 0.29 | 0.59 ± 0.28 | 0.57 ± 0.52 | 0.45 ± 0.31 | |
AAM *abc (%BWxH) | Pre-op | 2.95 ± 1.35 | 3.02 ± 1.39 | 3.10 ± 1.34 | 3.81 ± 0.66 | 3.81 ± 0.73 |
Post-op | 2.58 ± 0.89 | 2.16 ± 0.88 | 2.41 ± 1.19 | 3.51 ± 0.63 | 3.64 ± 1.13 | |
CG | 1.62 ± 0.62 | 1.53 ± 0.71 | 1.87 ± 0.88 | 2.85 ± 0.24 | 2.87 ± 0.36 | |
Bilateral ratio of KCF *^abc | Pre-op | 0.82 ± 0.03 | 0.82 ± 0.04 | 0.8 ± 0.04 | 0.78 ± 0.07 | 0.77 ± 0.08 |
Post-op | 0.9 ± 0.04 | 0.88 ± 0.06 | 0.85 ± 0.08 | 0.84 ± 0.06 | 0.83 ± 0.08 | |
CG | 1.02 ± 0.04 | 1.03 ± 0.03 | 1.00 ± 0.05 | 1.03 ± 0.08 | 0.95 ± 0.07 |
KBI *^ | Pre-Op | Post-Op | CG |
---|---|---|---|
Level Walking cd | 1.86 ± 0.2 | 2.91 ± 0.28 | 3.48 ± 0.23 |
Ramp Up fg | 1.93 ± 0.18 | 2.84 ± 0.31 | 3.48 ± 0.19 |
Ramp Down ik | 1.89 ± 0.22 | 2.66 ± 0.37 | 3.5 ± 0.23 |
Stair Ascending | 1.31 ± 0.39 | 2.21 ± 0.43 | 3.21 ± 0.22 |
Stair Descending | 1.17 ± 0.42 | 2.01 ± 0.57 | 3.35 ± 0.2 |
Activity | Pre–Post | TUG | STS | Gait Speed | |||
---|---|---|---|---|---|---|---|
r | p | r | p | r | p | ||
Level walking | pre | 0.12 | 0.46 | 0.05 | 0.76 | −0.06 | 0.71 |
post | −0.23 | 0.15 | −0.32 | 0.04 * | 0.24 | 0.13 | |
Ramping up | pre | 0.20 | 0.22 | 0.05 | 0.76 | −0.27 | 0.09 |
post | −0.41 | 0.01 ** | −0.23 | 0.15 | 0.16 | 0.32 | |
Ramping down | pre | 0.35 | 0.03 * | 0.03 | 0.85 | −0.12 | 0.46 |
post | −0.38 | 0.02 * | −0.27 | 0.09 | 0.27 | 0.09 | |
Stair ascending | pre | −0.33 | 0.04 * | −0.11 | 0.50 | −0.14 | 0.39 |
post | −0.41 | 0.01 ** | −0.50 | 0 ** | 0.11 | 0.50 | |
Stair descending | pre | −0.32 | 0.04 * | −0.17 | 0.29 | 0.11 | 0.50 |
post | −0.45 | 0 ** | −0.50 | 0 ** | 0.13 | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, F.; Seymour, H.; Zheng, N. Comparative Analysis of Knee Biomechanics in Total Knee Arthroplasty Patients Across Daily Activities. Bioengineering 2025, 12, 1018. https://doi.org/10.3390/bioengineering12101018
Chen F, Seymour H, Zheng N. Comparative Analysis of Knee Biomechanics in Total Knee Arthroplasty Patients Across Daily Activities. Bioengineering. 2025; 12(10):1018. https://doi.org/10.3390/bioengineering12101018
Chicago/Turabian StyleChen, Fangjian, Hannah Seymour, and Naiquan (Nigel) Zheng. 2025. "Comparative Analysis of Knee Biomechanics in Total Knee Arthroplasty Patients Across Daily Activities" Bioengineering 12, no. 10: 1018. https://doi.org/10.3390/bioengineering12101018
APA StyleChen, F., Seymour, H., & Zheng, N. (2025). Comparative Analysis of Knee Biomechanics in Total Knee Arthroplasty Patients Across Daily Activities. Bioengineering, 12(10), 1018. https://doi.org/10.3390/bioengineering12101018