Body Size Modulates the Impact of the Dispersive Patch Position During Radiofrequency Cardiac Ablation
Abstract
1. Introduction
2. Materials and Methods
2.1. Geometry Description
2.2. Governing Equations and Boundary Conditions
2.3. Material Properties
2.4. Statistics
3. Results
4. Discussion
4.1. Effect of the DP Position
4.2. Effect of the Body Size
4.3. Clinical Impact
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Askarinejad, A.; Arya, A.; Zangiabadian, M.; Ghahramanipour, Z.; Hesami, H.; Farmani, D.; Ghanbari Mardasi, K.; Kohansal, E.; Haghjoo, M. Catheter ablation as first-line treatment for ventricular tachycardia in patients with structural heart disease and preserved left ventricular ejection fraction: A systematic review and meta-analysis. Sci. Rep. 2024, 14, 18536. [Google Scholar] [CrossRef]
- Venkateswaran, R.V.; Kataoka, S.; Kwon, C.H.; Lee, S.H.; Gerstenfeld, E.P. Effect of Anterior vs Posterior Dispersive Patch Placement on Radiofrequency Ablation Lesion Size in Swine. JACC Clin. Electrophysiol. 2025, 11, 1797–1806. [Google Scholar] [CrossRef]
- Nath, S.; DiMarco, J.P.; Gallop, R.G.; McRury, I.D.; Haines, D.E. Effects of dispersive electrode position and surface area on electrical parameters and temperature during radiofrequency catheter ablation. Am. J. Cardiol. 1996, 77, 765–767. [Google Scholar] [CrossRef]
- Futyma, P.; Burda, N.; Surowiec, A.; Kogut, A.; Iwanski, M.; Swierczek Futyma, M.; Kulakowski, P. Anterior position of dispersive patch for esophageal protection during atrial fibrillation ablation. A pilot feasibility study. EP Eur. 2021, 23 (Suppl. S3), euab116-237. [Google Scholar] [CrossRef]
- Jain, M.K.; Tomassoni, G.; Riley, R.E.; Wolf, P.D. Effect of skin electrode location on radiofrequency ablation lesions: An in vivo and a three-dimensional finite element study. J. Cardiovasc. Electrophysiol. 1998, 9, 1325–1335. [Google Scholar] [CrossRef] [PubMed]
- Irastorza, R.M.; Maher, T.; Barkagan, M.; Liubasuskas, R.; Berjano, E.; d’Avila, A. Anterior vs. posterior position of dispersive patch during radiofrequency catheter ablation: Insights from in silico modelling. Europace 2023, 25, 1135–1143. [Google Scholar] [CrossRef]
- González-Suárez, A.; Pérez, J.J.; Irastorza, R.M.; D’Avila, A.; Berjano, E. Computer modeling of radiofrequency cardiac ablation: 30 years of bioengineering research. Comput. Methods Programs Biomed. 2022, 214, 106546. [Google Scholar] [CrossRef]
- Tangwongsan, C.; Will, J.A.; Webster, J.G.; Meredith, K.L., Jr.; Mahvi, D.M. In vivo measurement of swine endocardial convective heat transfer coefficient. IEEE Trans. Biomed. Eng. 2004, 51, 1478–1486. [Google Scholar] [CrossRef] [PubMed]
- Haines, D.E. Letter by Haines regarding article, “Direct measurement of the lethal isotherm for radiofrequency ablation of myocardial tissue”. Circ. Arrhythm. Electrophysiol. 2011, 4. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, C.; Hasgall, P.A.; Di Gennaro, F.; Neufeld, E.; Lloyd, B.; Gosselin, M.C.; Payne, D.; Klingenböck, A.; Kuster, N. IT’IS Database for Thermal and Electromagnetic Parameters of Biological Tissues. Version 4.2, 6 April 2024. Available online: https://itis.swiss/virtual-population/tissue-properties/ (accessed on 29 August 2025).
- Pérez, J.J.; Ewertowska, E.; Berjano, E. Computer Modeling for Radiofrequency Bipolar Ablation Inside Ducts and Vessels: Relation Between Pullback Speed and Impedance Progress. Lasers Surg. Med. 2020, 52, 897–906. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, P.S.; Gonna, H.; Li, A.; Wong, T.; Ward, D.E. Skin burns associated with radiofrequency catheter ablation of cardiac arrhythmias. Pacing Clin. Electrophysiol. 2013, 36, 764–767. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, A.V.; Savard, P. A finite element model for radiofrequency ablation of the myocardium. IEIEEE Trans. Biomed. Eng. 1994, 41, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Anees, M.; Moreno Weidmann, Z.; Viladés Medel, D.; Guerra, J.M.; Gerardo-Giorda, L.; Petras, A. Impact of the dispersive patch placement on dissipated power in radiofrequency ablation for pulmonary vein isolation via a virtual patient study. Sci. Rep. 2025, 15, 6986. [Google Scholar] [CrossRef] [PubMed]
- Irastorza, R.M.; Maher, T.; Barkagan, M.; Liubasuskas, R.; Pérez, J.J.; Berjano, E.; d’Avila, A. Limitations of Baseline Impedance, Impedance Drop and Current for Radiofrequency Catheter Ablation Monitoring: Insights from In Silico Modeling. J. Cardiovasc. Dev. Dis. 2022, 9, 336. [Google Scholar] [CrossRef] [PubMed]
- Irastorza, R.M.; Hadid, C.; Berjano, E. Effect of dispersive electrode position (anterior vs. posterior) in epicardial radiofrequency ablation of ventricular wall: A computer simulation study. Int. J. Numer. Methods Biomed. Eng. 2024, 40, e3847. [Google Scholar] [CrossRef] [PubMed]
- Berjano, E.; d’Avila, A. Lumped Element Electrical Model based on Three Resistors for Electrical Impedance in Radiofrequency Cardiac Ablation: Estimations from Analytical Calculations and Clinical Data. Open Biomed. Eng. J. 2013, 7, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Borganelli, M.; El-Atassi, R.; Leon, A.; Kalbfleisch, S.J.; Calkins, H.; Morady, F.; Langberg, J.J. Determinants of impedance during radiofrequency catheter ablation in humans. Am. J. Cardiol. 1992, 69, 1095–1097. [Google Scholar] [CrossRef] [PubMed][Green Version]
Element/Material | σ (S/m) | k (W/m·K) | ρ (kg/m3) | c (J/kg·K) |
---|---|---|---|---|
Electrode/Platinum–Iridium | 4.6 × 106 | 71 | 21,500 | 132 |
Catheter/Polyurethane | 10−5 | 23 | 1440 | 1050 |
Cardiac wall/Myocardium | 0.281 | 0.56 | 1081 | 3686 |
Cardiac chamber/Blood | 0.748 | |||
Muscle | 0.446 | 0.49 | 1090 | 3421 |
Subcutaneous fat (infiltrated fat) | 0.0438 | 0.21 | 911 | 2348 |
Lungs | 0.215 | 0.39 | 722 | 3886 |
Spine, sternum/bone | 0.055 | 0.315 | 1543 | 1793 |
Posterior DP (Discordant) | Anterior DP (Concordant) | |||||
---|---|---|---|---|---|---|
MW | SW | D | MW | SW | D | |
Small swine | 7.65 ± 0.32 | 5.48 ± 0.20 | 4.63 ± 0.27 | 8.71 ± 0.30 | 6.15 ± 0.19 | 5.28 ± 0.25 |
Big swine | 7.62 ± 0.31 | 5.48 ± 0.20 | 4.66 ± 0.28 | 8.53 ± 0.31 | 6.09 ± 0.20 | 5.25 ± 0.27 |
Human | 7.41 ± 0.31 | 5.38 ± 0.25 | 4.46 ± 0.25 | 8.25 ± 0.31 | 5.96 ± 0.20 | 4.97 ± 0.25 |
Posterior DP (Discordant) | Anterior DP (Concordant) | |||
---|---|---|---|---|
Baseline Impedance (Ω) | RF Current (mA) | Baseline Impedance (Ω) | RF Current (mA) | |
Small swine | 131 ± 2 | 486 ± 2 | 110 ± 2 | 533 ± 3 |
Big swine | 130 ± 2 | 487 ± 2 | 112 ± 2 | 528 ± 2 |
Human | 130 ± 2 | 486 ± 2 | 112 ± 2 | 526 ± 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irastorza, R.M.; Berjano, E. Body Size Modulates the Impact of the Dispersive Patch Position During Radiofrequency Cardiac Ablation. Bioengineering 2025, 12, 1017. https://doi.org/10.3390/bioengineering12101017
Irastorza RM, Berjano E. Body Size Modulates the Impact of the Dispersive Patch Position During Radiofrequency Cardiac Ablation. Bioengineering. 2025; 12(10):1017. https://doi.org/10.3390/bioengineering12101017
Chicago/Turabian StyleIrastorza, Ramiro M., and Enrique Berjano. 2025. "Body Size Modulates the Impact of the Dispersive Patch Position During Radiofrequency Cardiac Ablation" Bioengineering 12, no. 10: 1017. https://doi.org/10.3390/bioengineering12101017
APA StyleIrastorza, R. M., & Berjano, E. (2025). Body Size Modulates the Impact of the Dispersive Patch Position During Radiofrequency Cardiac Ablation. Bioengineering, 12(10), 1017. https://doi.org/10.3390/bioengineering12101017