Aberrant Flexibility of Dynamic Brain Network in Patients with Autism Spectrum Disorder
Abstract
:1. Introduction
- A multi-site resting-state fMRI dataset of ASD patients was used, which had a much larger sample (~500 participants in total) than most of the previous studies on ASD-related alterations in dynamic FCs.
- A widely used, validated functional atlas (Dosenbach atlas) was used during the construction of the brain networks, which may provide more accurate brain parcellations and more reliable results.
- Brain network flexibility was compared between patients with ASD and TD controls at both the global and local (subnetwork) levels, which will contribute to a deeper understanding of the pathobiology of ASD at the level of brain subnetworks.
2. Materials and Methods
2.1. Study Steps
2.2. Participants
2.3. Neuroimaging Data Acquisition and Preprocessing
2.4. Construction of Dynamic Brain Networks
2.5. Estimating Brain Network Flexibility
2.6. Statistics
2.7. Supplementary Analyses
3. Results
3.1. The Structures of Results
3.2. Sample Characteristics
3.3. Group Comparisons on Flexibilities
3.4. Correlation Analyses
3.5. Results of Supplementary Analyses
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hirota, T.; King, B.H. Autism Spectrum Disorder. JAMA 2023, 329, 157. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, B.; Wu, C.; Wang, J.; Sun, M. Autism Spectrum Disorder: Neurodevelopmental Risk Factors, Biological Mechanism, and Precision Therapy. Int. J. Mol. Sci. 2023, 24, 1819. [Google Scholar] [CrossRef] [PubMed]
- Talantseva, O.I.; Romanova, R.S.; Shurdova, E.M.; Dolgorukova, T.A.; Sologub, P.S.; Titova, O.S.; Kleeva, D.F.; Grigorenko, E.L. The Global Prevalence of Autism Spectrum Disorder: A Three-Level Meta-Analysis. Front. Psychiatry 2023, 14, 1071181. [Google Scholar] [CrossRef] [PubMed]
- Willsey, H.R.; Willsey, A.J.; Wang, B.; State, M.W. Genomics, Convergent Neuroscience and Progress in Understanding Autism Spectrum Disorder. Nat. Rev. Neurosci. 2022, 23, 323–341. [Google Scholar] [CrossRef]
- Long, Y.; Li, X.; Cao, H.; Zhang, M.; Lu, B.; Huang, Y.; Liu, M.; Xu, M.; Liu, Z.; Yan, C.; et al. Common and Distinct Functional Brain Network Abnormalities in Adolescent, Early-Middle Adult, and Late Adult Major Depressive Disorders. Psychol. Med. 2024, 54, 582–591. [Google Scholar] [CrossRef]
- Lin, Z.; Long, Y.; Wu, Z.; Xiang, Z.; Ju, Y.; Liu, Z. Associations between Brain Abnormalities and Common Genetic Variants for Schizophrenia: A Narrative Review of Structural and Functional Neuroimaging Findings. Ann. Palliat. Med. 2021, 10, 10031–10052. [Google Scholar] [CrossRef]
- Li, X.; Huang, Y.; Liu, M.; Zhang, M.; Liu, Y.; Teng, T.; Liu, X.; Yu, Y.; Jiang, Y.; Ouyang, X.; et al. Childhood Trauma Is Linked to Abnormal Static-Dynamic Brain Topology in Adolescents with Major Depressive Disorder. Int. J. Clin. Health Psychol. 2023, 23, 100401. [Google Scholar] [CrossRef]
- Hua, Z.; Hu, J.; Zeng, H.; Li, J.; Cao, Y.; Gan, Y. Auditory Language Comprehension among Children and Adolescents with Autism Spectrum Disorder: An ALE Meta-analysis of FMRI Studies. Autism Res. 2024, 17, 482–496. [Google Scholar] [CrossRef]
- Larson, C.; Thomas, H.R.; Crutcher, J.; Stevens, M.C.; Eigsti, I.-M. Language Networks in Autism Spectrum Disorder: A Systematic Review of Connectivity-Based FMRI Studies. Rev. J. Autism Dev. Disord. 2023, 1–28. [Google Scholar] [CrossRef]
- Lee, Y.; Park, B.; James, O.; Kim, S.-G.; Park, H. Autism Spectrum Disorder Related Functional Connectivity Changes in the Language Network in Children, Adolescents and Adults. Front. Hum. Neurosci. 2017, 11, 418. [Google Scholar] [CrossRef]
- Xu, S.; Li, M.; Yang, C.; Fang, X.; Ye, M.; Wei, L.; Liu, J.; Li, B.; Gan, Y.; Yang, B.; et al. Altered Functional Connectivity in Children With Low-Function Autism Spectrum Disorders. Front. Neurosci. 2019, 13, 806. [Google Scholar] [CrossRef] [PubMed]
- Sizemore, A.E.; Bassett, D.S. Dynamic Graph Metrics: Tutorial, Toolbox, and Tale. Neuroimage 2018, 180, 417–427. [Google Scholar] [CrossRef]
- Long, Y.; Ouyang, X.; Yan, C.; Wu, Z.; Huang, X.; Pu, W.; Cao, H.; Liu, Z.; Palaniyappan, L. Evaluating Test–Retest Reliability and Sex-/Age-Related Effects on Temporal Clustering Coefficient of Dynamic Functional Brain Networks. Hum. Brain Mapp. 2023, 44, 2191–2208. [Google Scholar] [CrossRef]
- Rossi, A.; Deslauriers-Gauthier, S.; Natale, E. On Null Models for Temporal Small-Worldness in Brain Dynamics. Netw. Neurosci. 2024, 8, 377–394. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Liu, X.; Long, Y.; Xiang, Z.; Wu, Z.; Liu, Z.; Bian, D.; Tang, S. Problematic Smartphone Use Is Associated with Differences in Static and Dynamic Brain Functional Connectivity in Young Adults. Front. Neurosci. 2022, 16, 1010488. [Google Scholar] [CrossRef]
- Ouyang, X.; Long, Y.; Wu, Z.; Liu, D.; Liu, Z.; Huang, X. Temporal Stability of Dynamic Default Mode Network Connectivity Negatively Correlates with Suicidality in Major Depressive Disorder. Brain Sci. 2022, 12, 1263. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Liu, Z.; Chan, C.K.Y.; Wu, G.; Xue, Z.; Pan, Y.; Chen, X.; Huang, X.; Li, D.; Pu, W. Altered Temporal Variability of Local and Large-Scale Resting-State Brain Functional Connectivity Patterns in Schizophrenia and Bipolar Disorder. Front. Psychiatry 2020, 11, 422. [Google Scholar] [CrossRef]
- Han, S.; Cui, Q.; Wang, X.; Li, L.; Li, D.; He, Z.; Guo, X.; Fan, Y.S.; Guo, J.; Sheng, W.; et al. Resting State Functional Network Switching Rate Is Differently Altered in Bipolar Disorder and Major Depressive Disorder. Hum. Brain Mapp. 2020, 41, 3295–3304. [Google Scholar] [CrossRef]
- Yang, Z.; Telesford, Q.K.; Franco, A.R.; Lim, R.; Gu, S.; Xu, T.; Ai, L.; Castellanos, F.X.; Yan, C.G.; Colcombe, S.; et al. Measurement Reliability for Individual Differences in Multilayer Network Dynamics: Cautions and Considerations. Neuroimage 2021, 225, 117489. [Google Scholar] [CrossRef]
- Pedersen, M.; Zalesky, A.; Omidvarnia, A.; Jackson, G.D. Multilayer Network Switching Rate Predicts Brain Performance. Proc. Natl. Acad. Sci. USA 2018, 115, 13376–13381. [Google Scholar] [CrossRef]
- He, L.; Zhuang, K.; Li, Y.; Sun, J.; Meng, J.; Zhu, W.; Mao, Y.; Chen, Q.; Chen, X.; Qiu, J. Brain Flexibility Associated with Need for Cognition Contributes to Creative Achievement. Psychophysiology 2019, 56, e13464. [Google Scholar] [CrossRef] [PubMed]
- Braun, U.; Schäfer, A.; Bassett, D.S.; Rausch, F.; Schweiger, J.I.; Bilek, E.; Erk, S.; Romanczuk-Seiferth, N.; Grimm, O.; Geiger, L.S.; et al. Dynamic Brain Network Reconfiguration as a Potential Schizophrenia Genetic Risk Mechanism Modulated by NMDA Receptor Function. Proc. Natl. Acad. Sci. USA 2016, 113, 12568–12573. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Zhang, S.; Mo, Z.; Chattun, M.R.; Wang, Q.; Wang, L.; Zhu, R.; Shao, J.; Wang, X.; Yao, Z.; et al. Antidepressants Normalize Brain Flexibility Associated with Multi-Dimensional Symptoms in Major Depressive Patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020, 100, 109866. [Google Scholar] [CrossRef] [PubMed]
- Lei, T.; Liao, X.; Chen, X.; Zhao, T.; Xu, Y.; Xia, M.; Zhang, J.; Xia, Y.; Sun, X.; Wei, Y.; et al. Progressive Stabilization of Brain Network Dynamics during Childhood and Adolescence. Cereb. Cortex 2022, 32, 1024–1039. [Google Scholar] [CrossRef]
- Yin, W.; Li, T.; Mucha, P.J.; Cohen, J.R.; Zhu, H.; Zhu, Z.; Lin, W. Altered Neural Flexibility in Children with Attention-Deficit/Hyperactivity Disorder. Mol. Psychiatry 2022, 27, 4673–4679. [Google Scholar] [CrossRef]
- Betzel, R.F.; Satterthwaite, T.D.; Gold, J.I.; Bassett, D.S. Positive Affect, Surprise, and Fatigue Are Correlates of Network Flexibility. Sci. Rep. 2017, 7, 520. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, X.; Shu, Z.; Han, J.; Yu, N. A Dynamic Brain Network Decomposition Method Discovers Effective Brain Hemodynamic Sub-Networks for Parkinson’s Disease. J. Neural Eng. 2024, 21, 026047. [Google Scholar] [CrossRef]
- Broeders, T.A.A.; Linsen, F.; Louter, T.S.; Nawijn, L.; Penninx, B.W.J.H.; van Tol, M.J.; van der Wee, N.J.A.; Veltman, D.J.; van der Werf, Y.D.; Schoonheim, M.M.; et al. Dynamic Reconfigurations of Brain Networks in Depressive and Anxiety Disorders: The Influence of Antidepressants. Psychiatry Res. 2024, 334, 115774. [Google Scholar] [CrossRef]
- Harlalka, V.; Bapi, R.S.; Vinod, P.K.; Roy, D. Atypical Flexibility in Dynamic Functional Connectivity Quantifies the Severity in Autism Spectrum Disorder. Front. Hum. Neurosci. 2019, 13, 6. [Google Scholar] [CrossRef]
- Huang, D.; Liu, Z.; Cao, H.; Yang, J.; Wu, Z.; Long, Y. Childhood Trauma Is Linked to Decreased Temporal Stability of Functional Brain Networks in Young Adults. J. Affect. Disord. 2021, 290, 23–30. [Google Scholar] [CrossRef]
- Long, Y.; Liu, X.; Liu, Z. Temporal Stability of the Dynamic Resting-State Functional Brain Network: Current Measures, Clinical Research Progress, and Future Perspectives. Brain Sci. 2023, 13, 429. [Google Scholar] [CrossRef]
- Cao, H.; McEwen, S.C.; Forsyth, J.K.; Gee, D.G.; Bearden, C.E.; Addington, J.; Goodyear, B.; Cadenhead, K.S.; Mirzakhanian, H.; Cornblatt, B.A.; et al. Toward Leveraging Human Connectomic Data in Large Consortia: Generalizability of Fmri-Based Brain Graphs across Sites, Sessions, and Paradigms. Cereb. Cortex 2019, 29, 1263–1279. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Sao, A.K.; Minhas, A.S. Analyzing the Effect of Resolution of Network Nodes on the Resting State Functional Connectivity Maps of Schizophrenic Human Brains. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Guadalajara, Mexico, 1–5 November 2021; pp. 6695–6698. [Google Scholar]
- Di Martino, A.; Yan, C.-G.; Li, Q.; Denio, E.; Castellanos, F.X.; Alaerts, K.; Anderson, J.S.; Assaf, M.; Bookheimer, S.Y.; Dapretto, M.; et al. The Autism Brain Imaging Data Exchange: Towards a Large-Scale Evaluation of the Intrinsic Brain Architecture in Autism. Mol. Psychiatry 2014, 19, 659–667. [Google Scholar] [CrossRef]
- Cameron, C.; Yassine, B.; Carlton, C.; Francois, C.; Alan, E.; András, J.; Budhachandra, K.; John, L.; Qingyang, L.; Michael, M.; et al. The Neuro Bureau Preprocessing Initiative: Open Sharing of Preprocessed Neuroimaging Data and Derivatives. Front. Neuroinform 2013, 7, 5. [Google Scholar] [CrossRef]
- Lord, C.; Risi, S.; Lambrecht, L.; Cook, E.H.; Leventhal, B.L.; Dilavore, P.C.; Pickles, A.; Rutter, M. The Autism Diagnostic Observation Schedule-Generic: A Standard Measure of Social and Communication Deficits Associated with the Spectrum of Autism. J. Autism Dev. Disord. 2000, 30, 205–223. [Google Scholar] [CrossRef]
- Tang, S.; Wu, Z.; Cao, H.; Chen, X.; Wu, G.; Tan, W.; Liu, D.; Yang, J.; Long, Y.; Liu, Z. Age-Related Decrease in Default-Mode Network Functional Connectivity Is Accelerated in Patients With Major Depressive Disorder. Front. Aging Neurosci. 2022, 13, 809853. [Google Scholar] [CrossRef] [PubMed]
- Long, Y.; Cao, H.; Yan, C.; Chen, X.; Li, L.; Castellanos, F.X.; Bai, T.; Bo, Q.; Chen, G.; Chen, N.; et al. Altered Resting-State Dynamic Functional Brain Networks in Major Depressive Disorder: Findings from the REST-Meta-MDD Consortium. Neuroimage Clin. 2020, 26, 102163. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.G.; Chen, X.; Li, L.; Castellanos, F.X.; Bai, T.J.; Bo, Q.J.; Cao, J.; Chen, G.M.; Chen, N.X.; Chen, W.; et al. Reduced Default Mode Network Functional Connectivity in Patients with Recurrent Major Depressive Disorder. Proc. Natl. Acad. Sci. USA 2019, 116, 9078–9083. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Chen, X.; Chen, Z.B.; Li, L.; Li, X.Y.; Castellanos, F.X.; Bai, T.J.; Bo, Q.J.; Cao, J.; Chang, Z.K.; et al. Disrupted Intrinsic Functional Brain Topology in Patients with Major Depressive Disorder. Mol. Psychiatry 2021, 26, 7363–7371. [Google Scholar] [CrossRef]
- Aquino, K.M.; Fulcher, B.D.; Parkes, L.; Sabaroedin, K.; Fornito, A. Identifying and Removing Widespread Signal Deflections from FMRI Data: Rethinking the Global Signal Regression Problem. Neuroimage 2020, 212, 116614. [Google Scholar] [CrossRef]
- Wanger, T.J.; Janes, A.C.; Frederick, B.B. Spatial Variation of Changes in Test–Retest Reliability of Functional Connectivity after Global Signal Regression: The Effect of Considering Hemodynamic Delay. Hum. Brain Mapp. 2023, 44, 668–678. [Google Scholar] [CrossRef]
- Dosenbach, N.U.; Nardos, B.; Cohen, A.L.; Fair, D.A.; Power, J.D.; Church, J.A.; Nelson, S.M.; Wig, G.S.; Vogel, A.C.; Lessov-Schlaggar, C.N.; et al. Prediction of Individual Brain Maturity Using FMRI. Science 2010, 329, 1358–1361. [Google Scholar] [CrossRef]
- Tan, W.; Ouyang, X.; Huang, D.; Wu, Z.; Liu, Z.; He, Z.; Long, Y. Disrupted Intrinsic Functional Brain Network in Patients with Late-Life Depression: Evidence from a Multi-Site Dataset. J. Affect. Disord. 2023, 323, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wu, Z.; Liu, Z.; Liu, D.; Huang, D.; Long, Y. Acute Effect of Betel Quid Chewing on Brain Network Dynamics: A Resting-State Functional Magnetic Resonance Imaging Study. Front. Psychiatry 2021, 12, 701420. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.; Wan, D.; Zhao, R.; Canario, E.; Meng, C.; Biswal, B.B. The Complexity of Spontaneous Brain Activity Changes in Schizophrenia, Bipolar Disorder, and ADHD Was Examined Using Different Variations of Entropy. Hum. Brain Mapp. 2023, 44, 94–118. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Zhang, Z.; Wang, J.; Wang, L.; Shen, X.; Bai, L.; Li, Z.; Dong, M.; Liu, C.; Yi, G.; et al. Evolution of Brain Network Dynamics in Early Parkinson’s Disease with Mild Cognitive Impairment. Cogn. Neurodyn 2023, 17, 681–694. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, Y.; Ye, H.; Jiang, W.; Zhang, Y.; Kong, Y.; Yuan, Y. Abnormal Changes of Dynamic Topological Characteristics in Patients with Major Depressive Disorder. J. Affect. Disord. 2024, 345, 349–357. [Google Scholar] [CrossRef]
- Hu, Z.; Zhou, C.; He, L. Abnormal Dynamic Functional Network Connectivity in Patients with Early-Onset Bipolar Disorder. Front. Psychiatry 2023, 14, 1169488. [Google Scholar] [CrossRef]
- Sun, Y.; Collinson, S.L.; Suckling, J.; Sim, K. Dynamic Reorganization of Functional Connectivity Reveals Abnormal Temporal Efficiency in Schizophrenia. Schizophr. Bull. 2019, 45, 659–669. [Google Scholar] [CrossRef]
- Long, Y.; Chen, C.; Deng, M.; Huang, X.; Tan, W.; Zhang, L.; Fan, Z.; Liu, Z. Psychological Resilience Negatively Correlates with Resting-State Brain Network Flexibility in Young Healthy Adults: A Dynamic Functional Magnetic Resonance Imaging Study. Ann. Transl. Med. 2019, 7, 809. [Google Scholar] [CrossRef]
- Mucha, P.J.; Richardson, T.; Macon, K.; Porter, M.A.; Onnela, J.P. Community Structure in Time-Dependent, Multiscale, and Multiplex Networks. Science 2010, 328, 876–878. [Google Scholar] [CrossRef]
- Braun, U.; Schäfer, A.; Walter, H.; Erk, S.; Romanczuk-Seiferth, N.; Haddad, L.; Schweiger, J.I.; Grimm, O.; Heinz, A.; Tost, H.; et al. Dynamic Reconfiguration of Frontal Brain Networks during Executive Cognition in Humans. Proc. Natl. Acad. Sci. USA 2015, 112, 11678–11683. [Google Scholar] [CrossRef] [PubMed]
- Jeub, L.G.S.; Bazzi, M.; Jutla, I.S.; Mucha, P.J. A Generalized Louvain Method for Community Detection Implemented in MATLAB. Available online: https://github.com/GenLouvain/GenLouvain (accessed on 1 April 2024).
- Bassett, D.S.; Wymbs, N.F.; Porter, M.A.; Mucha, P.J.; Carlson, J.M.; Grafton, S.T. Dynamic Reconfiguration of Human Brain Networks during Learning. Proc. Natl. Acad. Sci. USA 2011, 108, 7641–7646. [Google Scholar] [CrossRef]
- Paban, V.; Modolo, J.; Mheich, A.; Hassan, M. Psychological Resilience Correlates with EEG Source-Space Brain Network Flexibility. Netw. Neurosci. 2019, 3, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Mash, L.E.; Linke, A.C.; Olson, L.A.; Fishman, I.; Liu, T.T.; Müller, R. Transient States of Network Connectivity Are Atypical in Autism: A Dynamic Functional Connectivity Study. Hum. Brain Mapp. 2019, 40, 2377–2389. [Google Scholar] [CrossRef]
- Xie, Y.; Xu, Z.; Xia, M.; Liu, J.; Shou, X.; Cui, Z.; Liao, X.; He, Y. Alterations in Connectome Dynamics in Autism Spectrum Disorder: A Harmonized Mega- and Meta-Analysis Study Using the Autism Brain Imaging Data Exchange Dataset. Biol. Psychiatry 2022, 91, 945–955. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Rees, G. Brain Network Dynamics in High-Functioning Individuals with Autism. Nat. Commun. 2017, 8, 16048. [Google Scholar] [CrossRef]
- Whitfield-Gabrieli, S.; Ford, J.M. Default Mode Network Activity and Connectivity in Psychopathology. Annu. Rev. Clin. Psychol. 2012, 8, 49–76. [Google Scholar] [CrossRef]
- Wise, T.; Marwood, L.; Perkins, A.M.; Herane-Vives, A.; Joules, R.; Lythgoe, D.J.; Luh, W.-M.; Williams, S.C.R.; Young, A.H.; Cleare, A.J.; et al. Instability of Default Mode Network Connectivity in Major Depression: A Two-Sample Confirmation Study. Transl. Psychiatry 2017, 7, e1105. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, S.; Lu, B.; Liao, J.; Yang, Z.; Li, H.; Pei, H.; Li, J.; Iturria-Medina, Y.; Yao, D.; et al. The Role of the Primary Sensorimotor System in Generalized Epilepsy: Evidence from the Cerebello–Cerebral Functional Integration. Hum. Brain Mapp. 2024, 45, e26551. [Google Scholar] [CrossRef]
- Javaheripour, N.; Li, M.; Chand, T.; Krug, A.; Kircher, T.; Dannlowski, U.; Nenadić, I.; Hamilton, J.P.; Sacchet, M.D.; Gotlib, I.H.; et al. Altered Resting-State Functional Connectome in Major Depressive Disorder: A Mega-Analysis from the PsyMRI Consortium. Transl. Psychiatry 2021, 11, 511. [Google Scholar] [CrossRef]
- Lombardo, M.V.; Barnes, J.L.; Wheelwright, S.J.; Baron-Cohen, S. Self-Referential Cognition and Empathy in Autism. PLoS ONE 2007, 2, e883. [Google Scholar] [CrossRef]
- Burrows, C.A.; Usher, L.V.; Mundy, P.C.; Henderson, H.A. The Salience of the Self: Self-referential Processing and Internalizing Problems in Children and Adolescents with Autism Spectrum Disorder. Autism Res. 2017, 10, 949–960. [Google Scholar] [CrossRef]
- Padmanabhan, A.; Lynch, C.J.; Schaer, M.; Menon, V. The Default Mode Network in Autism. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2017, 2, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Harikumar, A.; Evans, D.W.; Dougherty, C.C.; Carpenter, K.L.H.; Michael, A.M. A Review of the Default Mode Network in Autism Spectrum Disorders and Attention Deficit Hyperactivity Disorder. Brain Connect. 2021, 11, 253–263. [Google Scholar] [CrossRef]
- Mosconi, M.W.; Sweeney, J.A. Sensorimotor Dysfunctions as Primary Features of Autism Spectrum Disorders. Sci. China Life Sci. 2015, 58, 1016–1023. [Google Scholar] [CrossRef] [PubMed]
- Hannant, P.; Cassidy, S.; Tavassoli, T.; Mann, F. Sensorimotor Difficulties Are Associated with the Severity of Autism Spectrum Conditions. Front. Integr. Neurosci. 2016, 10, 28. [Google Scholar] [CrossRef] [PubMed]
- Coll, S.-M.; Foster, N.E.V.; Meilleur, A.; Brambati, S.M.; Hyde, K.L. Sensorimotor Skills in Autism Spectrum Disorder: A Meta-Analysis. Res. Autism Spectr. Disord. 2020, 76, 101570. [Google Scholar] [CrossRef]
- Beffara, B.; Hadj-Bouziane, F.; Hamed, S.B.; Boehler, C.N.; Chelazzi, L.; Santandrea, E.; Macaluso, E. Separate and Overlapping Mechanisms of Statistical Regularities and Salience Processing in the Occipital Cortex and Dorsal Attention Network. Hum. Brain Mapp. 2023, 44, 6439–6458. [Google Scholar] [CrossRef]
- Jung, M.; Tu, Y.; Lang, C.A.; Ortiz, A.; Park, J.; Jorgenson, K.; Kong, X.-J.; Kong, J. Decreased Structural Connectivity and Resting-State Brain Activity in the Lateral Occipital Cortex Is Associated with Social Communication Deficits in Boys with Autism Spectrum Disorder. Neuroimage 2019, 190, 205–212. [Google Scholar] [CrossRef]
- Matsuoka, K.; Makinodan, M.; Kitamura, S.; Takahashi, M.; Yoshikawa, H.; Yasuno, F.; Ishida, R.; Kishimoto, N.; Yasuda, Y.; Hashimoto, R.; et al. Increased Dendritic Orientation Dispersion in the Left Occipital Gyrus Is Associated with Atypical Visual Processing in Adults with Autism Spectrum Disorder. Cereb. Cortex 2020, 30, 5617–5625. [Google Scholar] [CrossRef] [PubMed]
Site | ASD | TD | Total |
---|---|---|---|
NYU | 65 | 83 | 148 |
OLIN | 11 | 6 | 17 |
SDSU | 8 | 15 | 23 |
TRINITY | 17 | 19 | 36 |
UCLA | 20 | 15 | 35 |
UM_1 | 26 | 43 | 69 |
UM_2 | 12 | 18 | 30 |
USM | 32 | 18 | 50 |
YALE | 17 | 10 | 27 |
Total | 208 | 227 | 435 |
ASD (n = 208), Mean ± SD | TD (n = 227), Mean ± SD | Group Comparisons | |
---|---|---|---|
Age (years) | 16.35 ± 6.72 | 15.86 ± 5.16 | t = 0.847, p = 0.398 |
Sex (male/female) | 179/29 | 171/56 | χ2 = 7.945, p = 0.005 |
Mean FD (mm) | 0.09 ± 0.05 | 0.06 ± 0.03 | t = 5.715, p < 0.001 |
AODS total score a | 8.48 ± 5.90 | 0.08 ± 0.44 | t = 20.385, p < 0.001 |
Node Label | MNI Coordinates (x, y, z) | Results of Comparisons between ASD and TD Groups |
---|---|---|
Precuneus | 9, −43, 25 | F = 11.228, corrected-p = 0.035 |
Post-cingulate | −5, −52, 17 | F = 10.446, corrected-p = 0.042 |
Post-cingulate | 10, −55, 17 | F = 12.145, corrected-p = 0.032 |
Precuneus | −6, −56, 29 | F = 9.734, corrected-p = 0.047 |
Post-cingulate | −11, −58, 17 | F = 9.369, corrected-p = 0.047 |
Angular–gyrus | 51, −59, 34 | F = 13.002, corrected-p = 0.032 |
Occipital | 9, −76, 14 | F = 11.953, corrected-p = 0.032 |
Post-occipital | −5, −80, 9 | F = 9.587, corrected-p = 0.047 |
Node Label | MNI Coordinates (x, y, z) | Results of the Correlation between the AODS Total Score and Nodal Flexibility |
---|---|---|
Precuneus | 9, −43, 25 | r = 0.137, corrected-p = 0.013 |
Post-cingulate | −5, −52, 17 | r = 0.106, corrected-p = 0.034 |
Post-cingulate | 10, −55, 17 | r = 0.122, corrected-p = 0.019 |
Precuneus | −6, −56, 29 | r = 0.124, corrected-p = 0.019 |
Post-cingulate | −11, −58, 17 | r = 0.140, corrected-p = 0.013 |
Angular-gyrus | 51, −59, 34 | r = 0.142, corrected-p = 0.013 |
Occipital | 9, −76, 14 | r = −0.114, corrected-p = 0.025 |
Post-occipital | −5, −80, 9 | r = −0.082, corrected-p = 0.091 |
ASD (n = 208), Mean ± SD | TD (n = 115), Mean ± SD | Group Comparisons | |
---|---|---|---|
Age (years) | 16.35 ± 6.72 | 16.25 ± 5.31 | t = 0.147, p = 0.883 |
Sex (male/female) | 179/29 | 98/17 | χ2 = 0.043, p = 0.836 |
Mean FD (mm) | 0.09 ± 0.05 | 0.09 ± 0.03 | t = −0.648, p = 0.518 |
AODS total score a | 8.48 ± 5.90 | 0.16 ± 0.60 | t = 20.069, p < 0.001 |
Node Label | MNI Coordinates (x, y, z) | Results of Comparisons between ASD and TD Groups |
---|---|---|
Precuneus | 9, −43, 25 | F = 3.172, corrected-p = 0.076 |
Post-cingulate | −5, −52, 17 | F = 6.404, corrected-p = 0.019 |
Post-cingulate | 10, −55, 17 | F = 8.437, corrected-p = 0.008 |
Precuneus | −6, −56, 29 | F = 12.821, corrected-p = 0.002 |
Post-cingulate | −11, −58, 17 | F = 6.124, corrected-p = 0.019 |
Angular-gyrus | 51, −59, 34 | F = 16.923, corrected-p < 0.001 |
Occipital | 9, −76, 14 | F = 8.716, corrected-p = 0.008 |
Post-occipital | −5, −80, 9 | F = 3.487, corrected-p = 0.072 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Peng, D.; Tang, S.; Bi, A.; Long, Y. Aberrant Flexibility of Dynamic Brain Network in Patients with Autism Spectrum Disorder. Bioengineering 2024, 11, 882. https://doi.org/10.3390/bioengineering11090882
Zhang H, Peng D, Tang S, Bi A, Long Y. Aberrant Flexibility of Dynamic Brain Network in Patients with Autism Spectrum Disorder. Bioengineering. 2024; 11(9):882. https://doi.org/10.3390/bioengineering11090882
Chicago/Turabian StyleZhang, Hui, Dehong Peng, Shixiong Tang, Anyao Bi, and Yicheng Long. 2024. "Aberrant Flexibility of Dynamic Brain Network in Patients with Autism Spectrum Disorder" Bioengineering 11, no. 9: 882. https://doi.org/10.3390/bioengineering11090882
APA StyleZhang, H., Peng, D., Tang, S., Bi, A., & Long, Y. (2024). Aberrant Flexibility of Dynamic Brain Network in Patients with Autism Spectrum Disorder. Bioengineering, 11(9), 882. https://doi.org/10.3390/bioengineering11090882