Predictive Methods for Thrombus Formation in the Treatment of Aortic Dissection and Cerebral Aneurysms: A Comprehensive Review
Abstract
:1. Introduction
2. The Mechanism of Thrombosis
3. Treatments of Cardiovascular Diseases Involving Thrombosis
3.1. Treatment of Aortic Dissection and Thrombosis Formation
3.2. Treatment of Cerebral Aneurysms and Thrombosis Formation
3.3. Challenges and Requirements for Resolution
4. Efforts on Thrombosis Prediction in Aortic Dissection and Cerebral Aneurysm
5. Thrombosis Prediction Methods
6. Unresolved Issues and Future Directions
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paliwal, N.; Tutino, V.M.; Shallwani, H.; Beecher, J.S.; Damiano, R.J.; Shakir, H.J.; Atwal, G.S.; Fennell, V.S.; Natarajan, S.K.; Levy, E.I.; et al. Ostium Ratio and Neck Ratio Could Predict the Outcome of Sidewall Intracranial Aneurysms Treated with Flow Diverters. Am. J. Neuroradiol. 2019, 40, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.-L.; Deng, G.; Li, T.-X.; Jing, R.-W.; Teng, G.-J. Risk Factors of Incomplete Thrombosis in the False Lumen after Endovascular Treatment of Extensive Acute Type B Aortic Dissection. J. Vasc. Surg. 2012, 56, 1232–1238. [Google Scholar] [CrossRef]
- Kushner, A.; West, W.P.; Suheb, M.Z.K.; Pillarisetty, L.S. Virchow Triad. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Kwaan, H.C.; Wang, J. Hyperviscosity in Polycythemia Vera and Other Red Cell Abnormalities. In Seminars in Thrombosis and Hemostasis; Thieme Medical Publishers, Inc.: New York, NY, USA, 2003; Volume 29, pp. 451–458. [Google Scholar]
- Medina-Leyte, D.J.; Zepeda-García, O.; Domínguez-Pérez, M.; González-Garrido, A.; Villarreal-Molina, T.; Jacobo-Albavera, L. Endothelial Dysfunction, Inflammation and Coronary Artery Disease: Potential Biomarkers and Promising Therapeutical Approaches. Int. J. Mol. Sci. 2021, 22, 3850. [Google Scholar] [CrossRef] [PubMed]
- Waheed, S.M.; Kudaravalli, P.; Hotwagner, D.T. Deep Vein Thrombosis; StatPearls Publishing: Treasure Island, FL, USA, 2018. [Google Scholar]
- Siedlecki, C.A.; Lestini, B.J.; Kottke-Marchant, K.; Eppell, S.J.; Wilson, D.L.; Marchant, R.E. Shear-Dependent Changes in the Three-Dimensional Structure of Human von Willebrand Factor. Blood 1996, 88, 2393–2950. [Google Scholar]
- Libby, P. Mechanisms of Acute Coronary Syndromes and Their Implications for Therapy. N. Engl. J. Med. 2013, 368, 2004–2013. [Google Scholar] [CrossRef] [PubMed]
- Denis, C.V.; Wagner, D.D. Platelet Adhesion Receptors and Their Ligands in Mouse Models of Thrombosis. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 728–739. [Google Scholar] [CrossRef]
- Blair, P.; Flaumenhaft, R. Platelet α-Granules: Basic Biology and Clinical Correlates. Blood Rev. 2009, 23, 177–189. [Google Scholar] [CrossRef]
- Bovill, E.G.; van der Vliet, A. Venous Valvular Stasis-Associated Hypoxia and Thrombosis: What Is the Link? Annu. Rev. Physiol. 2011, 73, 527–545. [Google Scholar] [CrossRef]
- von Brühl, M.-L.; Stark, K.; Steinhart, A.; Chandraratne, S.; Konrad, I.; Lorenz, M.; Khandoga, A.; Tirniceriu, A.; Coletti, R.; Köllnberger, M.; et al. Monocytes, Neutrophils, and Platelets Cooperate to Initiate and Propagate Venous Thrombosis in Mice in Vivo. J. Exp. Med. 2012, 209, 819–835. [Google Scholar] [CrossRef]
- Brill, A.; Fuchs, T.A.; Chauhan, A.K.; Yang, J.J.; De Meyer, S.F.; Köllnberger, M.; Wakefield, T.W.; Lämmle, B.; Massberg, S.; Wagner, D.D. Von Willebrand Factor–Mediated Platelet Adhesion Is Critical for Deep Vein Thrombosis in Mouse Models. Blood 2011, 117, 1400–1407. [Google Scholar] [CrossRef]
- Martinod, K.; Wagner, D.D. Thrombosis: Tangled up in NETs. Blood J. Am. Soc. Hematol. 2014, 123, 2768–2776. [Google Scholar] [CrossRef] [PubMed]
- Ratner, B.D. Biomaterials Science: An Introduction to Materials in Medicine; Academic Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Major, T.C.; Handa, H.; Annich, G.M.; Bartlett, R.H. Development and Hemocompatibility Testing of Nitric Oxide Releasing Polymers Using a Rabbit Model of Thrombogenicity. J. Biomater. Appl. 2014, 29, 479–501. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.P. Arterial Thrombosis—Insidious, Unpredictable and Deadly. Nat. Med. 2011, 17, 1423–1436. [Google Scholar] [CrossRef]
- Anderson, F.A., Jr.; Spencer, F.A. Risk Factors for Venous Thromboembolism. Circulation 2003, 107, I-9–I-16. [Google Scholar] [CrossRef] [PubMed]
- Meszaros, I.; Morocz, J.; Szlavi, J.; Schmidt, J.; Tornoci, L.; Nagy, L.; Szep, L. Epidemiology and Clinicopathology of Aortic Dissection. Chest 2000, 117, 1271–1278. [Google Scholar] [CrossRef]
- Nienaber, C.A.; Kische, S.; Rousseau, H.; Eggebrecht, H.; Rehders, T.C.; Kundt, G.; Glass, A.; Scheinert, D.; Czerny, M.; Kleinfeldt, T.; et al. Endovascular Repair of Type B Aortic Dissection Long-Term Results of the Randomized Investigation of Stent Grafts in Aortic Dissection Trial. Circ. Cardiovasc. Interv. 2013, 6, 407–416. [Google Scholar] [CrossRef]
- Sueyoshi, E.; Sakamoto, I.; Hayashi, K.; Yamaguchi, T.; Imada, T. Growth Rate of Aortic Diameter in Patients with Type B Aortic Dissection during the Chronic Phase. Circulation 2004, 110, II256–II261. [Google Scholar] [CrossRef]
- Trimarchi, S.; Tolenaar, J.L.; Jonker, F.H.; Murray, B.; Tsai, T.T.; Eagle, K.A.; Rampoldi, V.; Verhagen, H.J.; van Herwaarden, J.A.; Moll, F.L.; et al. Importance of False Lumen Thrombosis in Type B Aortic Dissection Prognosis. J. Thorac. Cardiovasc. Surg. 2013, 145, S208–S212. [Google Scholar] [CrossRef]
- Chang, H.S. Simulation of the Natural History of Cerebral Aneurysms Based on Data from the International Study of Unruptured Intracranial Aneurysms. J. Neurosurg. 2006, 104, 188–194. [Google Scholar] [CrossRef]
- Wiebers, D.O. Unruptured Intracranial Aneurysms: Natural History, Clinical Outcome, and Risks of Surgical and Endovascular Treatment. Lancet 2003, 362, 103–110. [Google Scholar] [CrossRef]
- Petridis, A.K.; Kamp, M.A.; Cornelius, J.F.; Beez, T.; Beseoglu, K.; Turowski, B.; Steiger, H.-J. Aneurysmal Subarachnoid Hemorrhage: Diagnosis and Treatment. Dtsch. Ärzteblatt Int. 2017, 114, 226. [Google Scholar]
- Rowe, V.L.; Lee, W.; Weaver, F.A.; Etzioni, D. Patterns of Treatment for Peripheral Arterial Disease in the United States: 1996–2005. J. Vasc. Surg. 2009, 49, 910–917. [Google Scholar] [CrossRef]
- Mizoguchi, T.; Zempo, N.; Kaneda, Y. Early and Mid-Term Outcomes Following TEVAR for Chronic Type B Aortic Dissection. Jpn. J. Vasc. Surg. 2016, 25, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Foreman, P.M.; Salem, M.M.; Griessenauer, C.J.; Dmytriw, A.A.; Parra-Farinas, C.; Nicholson, P.; Limbucci, N.; Kühn, A.L.; Puri, A.S.; Renieri, L.; et al. Flow Diversion for Treatment of Partially Thrombosed Aneurysms: A Multicenter Cohort. World Neurosurg. 2020, 135, e164–e173. [Google Scholar] [CrossRef] [PubMed]
- Szikora, I.; Turányi, E.; Marosfoi, M. Evolution of Flow-Diverter Endothelialization and Thrombus Organization in Giant Fusiform Aneurysms after Flow Diversion: A Histopathologic Study. Am. J. Neuroradiol. 2015, 36, 1716–1720. [Google Scholar] [CrossRef] [PubMed]
- Kulcsár, Z.; Augsburger, L.; Reymond, P.; Pereira, V.M.; Hirsch, S.; Mallik, A.S.; Millar, J.; Wetzel, S.G.; Wanke, I.; Rüfenacht, D.A. Flow Diversion Treatment: Intra-Aneurismal Blood Flow Velocity and WSS Reduction Are Parameters to Predict Aneurysm Thrombosis. Acta Neurochir. 2012, 154, 1827–1834. [Google Scholar] [CrossRef]
- Butty, V.; Gudjonsson, K.; Buchel, P.; Makhijani, V.; Ventikos, Y.; Poulikakos, D. Residence Times and Basins of Attraction for a Realistic Right Internal Carotid Artery with Two Aneurysms. Biorheology 2002, 39, 387–393. [Google Scholar]
- Menichini, C.; Cheng, Z.; Gibbs, R.G.; Xu, X.Y. Predicting False Lumen Thrombosis in Patient-Specific Models of Aortic Dissection. J. R. Soc. Interface 2016, 13, 20160759. [Google Scholar] [CrossRef]
- Tsai, T.T.; Evangelista, A.; Nienaber, C.A.; Myrmel, T.; Meinhardt, G.; Cooper, J.V.; Smith, D.E.; Suzuki, T.; Fattori, R.; Llovet, A.; et al. Partial Thrombosis of the False Lumen in Patients with Acute Type B Aortic Dissection. N. Engl. J. Med. 2007, 357, 349–359. [Google Scholar] [CrossRef]
- Ruiz-Muñoz, A.; Guala, A.; Dux-Santoy, L.; Teixidó-Turà, G.; Valente, F.; Garrido-Oliver, J.; Galian-Gay, L.; Gutiérrez, L.; Fernandez-Galera, R.; Casas-Masnou, G.; et al. False Lumen Hemodynamics and Partial Thrombosis in Chronic Aortic Dissection of the Descending Aorta. Eur. Radiol. 2024, 34, 5190–5200. [Google Scholar] [CrossRef]
- Ruiz Munoz, A.; Guala, A.; Dux-Santoy, L.; Teixido-Tura, G.; Galian-Gay, L.; Garrido-Oliver, J.; Carrasco-Poves, A.; Morales, A.; Valente, F.; Cuellar-Calabria, H.; et al. False Lumen Flow Dynamics and Partial Thrombosis in Patients with Chronic Aortic Dissection of the Descending Aorta: A 4D Flow CMR Study. Eur. Heart J. Cardiovasc. Imaging 2023, 24, jead119-055. [Google Scholar] [CrossRef]
- Jiang, X.; Li, D.; Wu, P.; Li, X.; Zheng, T. A Two-Fluid Blood Stasis Model for False Lumen Thrombosis after Type B Dissection Repair. Comput. Methods Biomech. Biomed. Eng. 2022, 25, 1499–1508. [Google Scholar] [CrossRef] [PubMed]
- Ab Naim, W.N.W.; Ganesan, P.B.; Sun, Z.; Liew, Y.M.; Qian, Y.; Lee, C.-J.; Jansen, S.; Hashim, S.A.; Lim, E. Prediction of Thrombus Formation Using Vortical Structures Presentation in Stanford Type B Aortic Dissection: A Preliminary Study Using CFD Approach. Appl. Math. Model. 2016, 40, 3115–3127. [Google Scholar] [CrossRef]
- Perera, R.; Isoda, H.; Ishiguro, K.; Mizuno, T.; Takehara, Y.; Terada, M.; Tanoi, C.; Naito, T.; Sakahara, H.; Hiramatsu, H.; et al. Assessing the Risk of Intracranial Aneurysm Rupture Using Morphological and Hemodynamic Biomarkers Evaluated from Magnetic Resonance Fluid Dynamics and Computational Fluid Dynamics. Magn. Reson. Med. Sci. 2020, 19, 333–344. [Google Scholar] [CrossRef]
- Beppu, M.; Tsuji, M.; Ishida, F.; Shirakawa, M.; Suzuki, H.; Yoshimura, S. Computational Fluid Dynamics Using a Porous Media Setting Predicts Outcome after Flow-Diverter Treatment. Am. J. Neuroradiol. 2020, 41, 2107–2113. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, D.R.; Vallecilla, C.; Chodzynski, K.; Jerez, R.C.; Malaspinas, O.; Eker, O.F.; Ouared, R.; Vanhamme, L.; Legrand, A.; Chopard, B.; et al. Determination of a Shear Rate Threshold for Thrombus Formation in Intracranial Aneurysms. J. Neurointerventional Surg. 2015, 8, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Rayz, V.; Boussel, L.; Ge, L.; Leach, J.; Martin, A.; Lawton, M.; McCulloch, C.; Saloner, D. Flow Residence Time and Regions of Intraluminal Thrombus Deposition in Intracranial Aneurysms. Ann. Biomed. Eng. 2010, 38, 3058–3069. [Google Scholar] [CrossRef]
- Rayz, V.; Boussel, L.; Lawton, M.; Acevedo-Bolton, G.; Ge, L.; Young, W.; Higashida, R.; Saloner, D. Numerical Modeling of the Flow in Intracranial Aneurysms: Prediction of Regions Prone to Thrombus Formation. Ann. Biomed. Eng. 2008, 36, 1793–1804. [Google Scholar] [CrossRef]
- Ouared, R.; Chopard, B.; Stahl, B.; Rüfenacht, D.A.; Yilmaz, H.; Courbebaisse, G. Thrombosis Modeling in Intracranial Aneurysms: A Lattice Boltzmann Numerical Algorithm. Comput. Phys. Commun. 2008, 179, 128–131. [Google Scholar] [CrossRef]
- Wang, K.; Armour, C.H.; Gibbs, R.G.; Xu, X.Y. A Numerical Study of the Effect of Thrombus Breakdown on Predicted Thrombus Formation and Growth. Biomech. Model. Mechanobiol. 2023, 23, 61–71. [Google Scholar] [CrossRef]
- Jafarinia, A.; Armour, C.H.; Gibbs, R.G.; Xu, X.Y.; Hochrainer, T. Shear-Driven Modelling of Thrombus Formation in Type B Aortic Dissection. Front. Bioeng. Biotechnol. 2022, 10, 1033450. [Google Scholar] [CrossRef] [PubMed]
- Chong, M.Y.; Gu, B.; Armour, C.H.; Dokos, S.; Ong, Z.C.; Xu, X.Y.; Lim, E. An Integrated Fluid–Structure Interaction and Thrombosis Model for Type B Aortic Dissection. Biomech. Model. Mechanobiol. 2022, 21, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Luo, K.; Qiao, Y.; Fan, J. An Integrated Fluid-Chemical Model toward Modeling the Thrombus Formation in an Idealized Model of Aortic Dissection. Comput. Biol. Med. 2021, 136, 104709. [Google Scholar] [CrossRef] [PubMed]
- Armour, C.H.; Guo, B.; Pirola, S.; Saitta, S.; Liu, Y.; Dong, Z.; Xu, X.Y. The Influence of Inlet Velocity Profile on Predicted Flow in Type B Aortic Dissection. Biomech. Model. Mechanobiol. 2021, 20, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, A.; Li, H.; Bersi, M.R.; Di Achille, P.; Insley, J.; Humphrey, J.D.; Karniadakis, G.E. Data-Driven Modeling of Hemodynamics and Its Role on Thrombus Size and Shape in Aortic Dissections. Sci. Rep. 2018, 8, 2515. [Google Scholar] [CrossRef]
- Menichini, C.; Cheng, Z.; Gibbs, R.G.; Xu, X.Y. A Computational Model for False Lumen Thrombosis in Type B Aortic Dissection Following Thoracic Endovascular Repair. J. Biomech. 2018, 66, 36–43. [Google Scholar] [CrossRef]
- Menichini, C.; Xu, X.Y. Mathematical Modeling of Thrombus Formation in Idealized Models of Aortic Dissection: Initial Findings and Potential Applications. J. Math. Biol. 2016, 73, 1205–1226. [Google Scholar] [CrossRef]
- Sarrami-Foroushani, A.; Lassila, T.; Hejazi, S.M.; Nagaraja, S.; Bacon, A.; Frangi, A.F. A Computational Model for Prediction of Clot Platelet Content in Flow-Diverted Intracranial Aneurysms. J. Biomech. 2019, 91, 7–13. [Google Scholar] [CrossRef]
- Ou, C.; Huang, W.; Yuen, M.M.-F. A Computational Model Based on Fibrin Accumulation for the Prediction of Stasis Thrombosis Following Flow-Diverting Treatment in Cerebral Aneurysms. Med. Biol. Eng. Comput. 2017, 55, 89–99. [Google Scholar] [CrossRef]
- Ngwenya, T.; Grundlingh, D.; Ngoepe, M.N. Influence of Vortical Structures on Fibrin Clot Formation in Cerebral Aneurysms: A Two-Dimensional Computational Study. J. Biomech. 2024, 165, 111994. [Google Scholar] [CrossRef]
- Smith, S.A.; Travers, R.J.; Morrissey, J.H. How It All Starts: Initiation of the Clotting Cascade. Crit. Rev. Biochem. Mol. Biol. 2015, 50, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Mackman, N.; Tilley, R.E.; Key, N.S. Role of the Extrinsic Pathway of Blood Coagulation in Hemostasis and Thrombosis. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 1687–1693. [Google Scholar] [CrossRef]
- Miller, D.C.; Stinson, E.B.; Oyer, P.E.; Rossiter, S.J.; Reitz, B.A.; Griepp, R.B.; Shumway, N.E. Operative Treatment of Aortic Dissections: Experience with 125 Patients over a Sixteen-Year Period. J. Thorac. Cardiovasc. Surg. 1979, 78, 365–382. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liang, Q.; Frost-Pineda, K.; Muhammad-Kah, R.; Rimmer, L.; Roethig, H.; Mendes, P.; Sarkar, M. Relationship between Biomarkers of Cigarette Smoke Exposure and Biomarkers of Inflammation, Oxidative Stress, and Platelet Activation in Adult Cigarette Smokers. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1760–1769. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.J.; Anagnostou, A.; Kiss, T.; Terstyanszky, G.; Kacsuk, P.; Fantini, N.; Lakehal, D.; Costes, J. Enabling Cloud-Based Computational Fluid Dynamics with a Platform-as-a-Service Solution. IEEE Trans. Ind. Inform. 2018, 15, 85–94. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komiya, K.; Imada, S.; Ujihara, Y.; Sugita, S.; Nakamura, M. Predictive Methods for Thrombus Formation in the Treatment of Aortic Dissection and Cerebral Aneurysms: A Comprehensive Review. Bioengineering 2024, 11, 871. https://doi.org/10.3390/bioengineering11090871
Komiya K, Imada S, Ujihara Y, Sugita S, Nakamura M. Predictive Methods for Thrombus Formation in the Treatment of Aortic Dissection and Cerebral Aneurysms: A Comprehensive Review. Bioengineering. 2024; 11(9):871. https://doi.org/10.3390/bioengineering11090871
Chicago/Turabian StyleKomiya, Kenji, Shuta Imada, Yoshihiro Ujihara, Shukei Sugita, and Masanori Nakamura. 2024. "Predictive Methods for Thrombus Formation in the Treatment of Aortic Dissection and Cerebral Aneurysms: A Comprehensive Review" Bioengineering 11, no. 9: 871. https://doi.org/10.3390/bioengineering11090871
APA StyleKomiya, K., Imada, S., Ujihara, Y., Sugita, S., & Nakamura, M. (2024). Predictive Methods for Thrombus Formation in the Treatment of Aortic Dissection and Cerebral Aneurysms: A Comprehensive Review. Bioengineering, 11(9), 871. https://doi.org/10.3390/bioengineering11090871