Feasibility of Stationary Cycling with Pedal Force Visual Feedback Post-Total Knee Arthroplasty: Implications for Inter-Limb Deficits in Knee Joint Biomechanics
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.2.1. Instrumentation
2.2.2. Testing Protocol
2.2.3. Intervention Protocol
2.3. Data Analysis
2.4. Statistical Analysis
2.4.1. Hypotheses 1 and 2
2.4.2. Hypothesis 3
3. Results
3.1. Hypothesis 1: Cycling Asymmetries
3.2. Hypothesis 2: Overground Walking Asymmetries
3.3. Hypothesis 3: Gait Velocities, Functional Tests, and KOOS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andriacchi, T.P.; Stanwyck, T.S.; Galante, J.O. Knee biomechanics and total knee replacement. J. Arthroplast. 1986, 1, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, M.G.; Catani, F.; Bilotta, T.W.; Marcacci, M.; Mariani, E.; Giannini, S. Muscle activation pattern and gait biomechanics after total knee replacement. Clin. Biomech. (Bristol. Avon.) 2003, 18, 871–876. [Google Scholar] [CrossRef]
- Zeni, J.A., Jr.; Flowers, P.; Bade, M.; Cheuy, V.; Stevens-Lapsley, J.; Snyder-Mackler, L. Stiff knee gait may increase risk of second total knee arthroplasty. J. Orthop. Res. 2018, 37, 397–402. [Google Scholar] [CrossRef]
- Meier, W.; Mizner, R.L.; Marcus, R.L.; Dibble, L.E.; Peters, C.; Lastayo, P.C. Total knee arthroplasty: Muscle impairments, functional limitations, and recommended rehabilitation approaches. J. Orthop. Sports Phys. Ther. 2008, 38, 246–256. [Google Scholar] [CrossRef]
- Yoshida, Y.; Mizner, R.L.; Ramsey, D.K.; Snyder-Mackler, L. Examining outcomes from total knee arthroplasty and the relationship between quadriceps strength and knee function over time. Clin. Biomech. (Bristol. Avon.) 2008, 23, 320–328. [Google Scholar] [CrossRef]
- Mizner, R.L.; Petterson, S.C.; Stevens, J.E.; Vandenborne, K.; Snyder-Mackler, L. Early quadriceps strength loss after total knee arthroplasty. The contributions of muscle atrophy and failure of voluntary muscle activation. J. Bone Jt. Surg. Am. 2005, 87, 1047–1053. [Google Scholar] [CrossRef]
- Mizner, R.L.; Petterson, S.C.; Stevens, J.E.; Axe, M.J.; Snyder-Mackler, L. Preoperative quadriceps strength predicts functional ability one year after total knee arthroplasty. J. Rheumatol. 2005, 32, 1533–1539. [Google Scholar]
- Mizner, R.L.; Snyder-Mackler, L. Altered loading during walking and sit-to-stand is affected by quadriceps weakness after total knee arthroplasty. J. Orthop. Res. 2005, 23, 1083–1090. [Google Scholar] [CrossRef]
- Zhang, W.; Moskowitz, R.W.; Nuki, G.; Abramson, S.; Altman, R.D.; Arden, N.; Bierma-Zeinstra, S.; Brandt, K.D.; Croft, P.; Doherty, M.; et al. OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthr. Cartil. 2008, 16, 137–162. [Google Scholar] [CrossRef] [PubMed]
- Bock, P.; Schatz, K.; Wurnig, C. Physical activity after total knee replacement. Z. Orthop. Ihre Grenzgeb. 2003, 141, 272–276. [Google Scholar] [CrossRef]
- D’Lima, D.D.; Steklov, N.; Patil, S.; Colwell, C.W., Jr. The Mark Coventry Award: In vivo knee forces during recreation and exercise after knee arthroplasty. Clin. Orthop. Relat. Res. 2008, 466, 2605–2611. [Google Scholar] [CrossRef] [PubMed]
- Artz, N.; Elvers, K.T.; Lowe, C.M.; Sackley, C.; Jepson, P.; Beswick, A.D. Effectiveness of physiotherapy exercise following total knee replacement: Systematic review and meta-analysis. BMC Musculoskelet. Disord. 2015, 16, 15. [Google Scholar] [CrossRef] [PubMed]
- Hummer, E.; Thorsen, T.; Weinhandl, J.T.; Cates, H.; Zhang, S. Knee joint biomechanics of patients with unilateral total knee arthroplasty during stationary cycling. J. Biomech. 2021, 115, 110111. [Google Scholar] [CrossRef] [PubMed]
- Andriacchi, T.P. Functional analysis of pre and post-knee surgery: Total knee arthroplasty and ACL reconstruction. J. Biomech. Eng. 1993, 115, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Kramers-de Quervain, I.A.; Kampfen, S.; Munzinger, U.; Mannion, A.F. Prospective study of gait function before and 2 years after total knee arthroplasty. Knee 2012, 19, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Kutzner, I.; Trepczynski, A.; Heller, M.O.; Bergmann, G. Knee adduction moment and medial contact force--facts about their correlation during gait. PLoS ONE 2013, 8, e81036. [Google Scholar] [CrossRef] [PubMed]
- Liebs, T.R.; Herzberg, W.; Ruther, W.; Haasters, J.; Russlies, M.; Hassenpflug, J. Ergometer cycling after hip or knee replacement surgery: A randomized controlled trial. J. Bone Jt. Surg. Am. 2010, 92, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Ambrosini, E.; Parati, M.; Peri, E.; De Marchis, C.; Nava, C.; Pedrocchi, A.; Ferriero, G.; Ferrante, S. Changes in leg cycling muscle synergies after training augmented by functional electrical stimulation in subacute stroke survivors: A pilot study. J. Neuroeng. Rehabil. 2020, 17, 35. [Google Scholar] [CrossRef]
- Ambrosini, E.; Peri, E.; Nava, C.; Longoni, L.; Monticone, M.; Pedrocchi, A.; Ferriero, G.; Ferrante, S. A multimodal training with visual biofeedback in subacute stroke survivors: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2020, 56, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, S.; Ambrosini, E.; Ravelli, P.; Guanziroli, E.; Molteni, F.; Ferrigno, G.; Pedrocchi, A. A biofeedback cycling training to improve locomotion: A case series study based on gait pattern classification of 153 chronic stroke patients. J. Neuroeng. Rehabil. 2011, 8, 47. [Google Scholar] [CrossRef] [PubMed]
- Thorsen, T.; Strohacker, K.; Weinhandl, J.T.; Zhang, S. Increased Q-Factor increases frontal-plane knee joint loading in stationary cycling. J. Sport. Health Sci. 2020, 9, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Gardner, J.K.; Klipple, G.; Stewart, C.; Asif, I.; Zhang, S. Acute effects of lateral shoe wedges on joint biomechanics of patients with medial compartment knee osteoarthritis during stationary cycling. J. Biomech. 2016, 49, 2817–2823. [Google Scholar] [CrossRef] [PubMed]
- Gardner, J.K.; Zhang, S.; Liu, H.; Klipple, G.; Stewart, C.; Milner, C.E.; Asif, I.M. Effects of toe-in angles on knee biomechanics in cycling of patients with medial knee osteoarthritis. Clin. Biomech. (Bristol. Avon.) 2015, 30, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W. Reference values for the timed up and go test: A descriptive meta-analysis. J. Geriatr. Phys. Ther. 2006, 29, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Yanagawa, N.; Shimomitsu, T.; Kawanishi, M.; Fukunaga, T.; Kanehisa, H. Relationship between performances of 10-time-repeated sit-to-stand and maximal walking tests in non-disabled older women. J. Physiol. Anthr. 2016, 36, 2. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Fitzhugh, E.C.; Crouter, S.E.; Gardner, J.K.; Zhang, S. Effects of Workloads and Cadences on Frontal Plane Knee Biomechanics in Cycling. Med. Sci. Sports Exerc. 2016, 48, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Buddhadev, H.H.; Crisafulli, D.L.; Suprak, D.N.; San Juan, J.G. Individuals With Knee Osteoarthritis Demonstrate Interlimb Asymmetry in Pedaling Power During Stationary Cycling. J. Appl. Biomech. 2018, 34, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Cates, H.E.; Zhang, S. Is knee biomechanics different in uphill walking on different slopes for older adults with total knee replacement? J. Biomech. 2019, 89, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Grood, E.S.; Suntay, W.J. A joint coordinate system for the clinical description of three-dimensional motions: Application to the knee. J. Biomech. Eng. 1983, 105, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Vincent, W.J. Statistics in Kinesiology, 3rd ed.; Human Kinetics: Champaign, IL, USA, 2005. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavoral Sciences; Academic Press: New York, NY, USA, 2013. [Google Scholar]
- Bini, R.; Hume, P.; Croft, J.; Kilding, A. Pedal force effectiveness in Cycling: A review of constraints and training effects. J. Sci. Cycl. 2013, 2, 11–24. [Google Scholar]
- Bade, M.J.; Stevens-Lapsley, J.E. Early high-intensity rehabilitation following total knee arthroplasty improves outcomes. J. Orthop. Sports Phys. Ther. 2011, 41, 932–941. [Google Scholar] [CrossRef] [PubMed]
- Mangione, K.K.; McCully, K.; Gloviak, A.; Lefebvre, I.; Hofmann, M.; Craik, R. The effects of high-intensity and low-intensity cycle ergometry in older adults with knee osteoarthritis. J. Gerontol. A Biol. Sci. Med. Sci. 1999, 54, M184–M190. [Google Scholar] [CrossRef] [PubMed]
- Fowler, E.G.; Knutson, L.M.; Demuth, S.K.; Siebert, K.L.; Simms, V.D.; Sugi, M.H.; Souza, R.B.; Karim, R.; Azen, S.P.; for the Physical Therapy Clinical Research Network (PTClinResNet). Pediatric endurance and limb strengthening (PEDALS) for children with cerebral palsy using stationary cycling: A randomized controlled trial. Phys. Ther. 2010, 90, 367–381. [Google Scholar] [CrossRef] [PubMed]
- Bini, R.R.; Jacques, T.C.; Carpes, F.P.; Vaz, M.A. Effectiveness of pedalling retraining in reducing bilateral pedal force asymmetries. J. Sports Sci. 2017, 35, 1336–1341. [Google Scholar] [CrossRef] [PubMed]
Characteristics | |
---|---|
Age | 64.8 ± 7.7 |
Mass | 89.2 ± 21.3 |
Height | 1.70 ± 0.1 |
Time post-operation | 8.6 ± 2.4 |
Inclusion | Exclusion |
---|---|
|
|
80 W | 100 W | P (η2p) | |||||
---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Interaction | Time | Work Rate | |
KEM | 36.0 ± 22.7 | −2.0 ± 14.4 | 33.2 ± 17.7 | 10.6 ± 11.4 | 0.109 (0.432) | 0.038 (0.610) | 0.262 (0.242) |
Vertical PRF | 3.6 ± 7.7 | −11.5 ± 21.8 | 1.2 ± 14.5 | −5.3 ± 15.3 | 0.032 (0.634) | 0.362 (0.168) | 0.548 (0.077) |
Posterior PRF | 26.2 ± 15.5 | 6.5 ± 3.6 | 29.0 ± 15.9 | 11.9 ± 8.3 | 0.537 (0.081) | 0.057 (0.549) | 0.050 (0.570) |
Preferred | Fast | P (η2p) | |||||
---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Interaction | Time | Speed | |
LR KEM | 34.4 ± 36.6 | 14.8 ± 12.7 | 40.0 ± 16.9 | 26.9 ± 15.4 | 0.525 (0.108) | 0.382 (0.194) | 0.198 (0.373) |
PO KEM | 4.0 ± 17.4 | −17.6 ± 27.0 | 22.1 ± 10.6 | −2.5 ± 28.4 | 0.854 (0.009) | 0.134 (0.468) | 0.031 (0.726) |
LR vertical GRF | 3.1 ± 2.8 | 3.7 ± 3.4 | 5.2 ± 3.3 | 3.4 ± 4.7 | 0.225 (0.339) | 0.669 (0.050) | 0.182 (0.395) |
PO vertical GRF | 3.4 ± 1.4 | 5.1 ± 1.2 | 7.0 ± 3.6 | 3.4 ± 7.1 | 0.080 (0.575) | 0.351 (0.218) | 0.611 (0.071) |
Pre-Training | Post-Training | p | d | |
---|---|---|---|---|
Gait Speeds | ||||
Preferred Gait Velocity (m/s) | 1.21 ± 0.23 | 1.35 ± 0.25 | 0.001 | 0.583 |
Fast Gait Velocity (m/s) | 1.54 ± 0.18 | 1.67 ± 0.24 | 0.002 | 0.613 |
VNS Pain Score | ||||
Initial | 0.60 ± 1.34 | 0.95 ± 1.45 | 0.343 | 0.251 |
Preferred Speed | 0.60 ± 1.58 | 0.60 ± 1.26 | 1.000 | 0.000 |
Fast Speed | 0.65 ± 1.56 | 0.60 ± 1.26 | 0.758 | 0.035 |
Functional Tests | ||||
Timed-up-and-go (s) | 8.49 ± 1.65 | 7.96 ± 1.71 | 0.232 | 0.315 |
Sit-to-Stand (s) | 24.58 ± 5.72 | 24.19 ± 7.38 | 0.807 | 0.059 |
KOOS | ||||
Total Score | 339.2 ± 50.4 | 361.5 ± 39.9 | 0.009 | 0.492 |
Symptom’s subscale | 79.76 ± 17.00 | 83.93 ± 12.93 | 0.272 | 0.276 |
Pain subscale | 87.96 ± 14.66 | 93.23 ± 9.70 | 0.105 | 0.424 |
ADL subscale | 94.36 ± 5.13 | 95.83 ± 5.76 | 0.041 | 0.270 |
Quality of Life subscale | 77.08 ± 19.63 | 88.54 ± 16.02 | 0.100 | 0.640 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hummer, E.T.; Porter, J.; Cates, H.; Zhang, S. Feasibility of Stationary Cycling with Pedal Force Visual Feedback Post-Total Knee Arthroplasty: Implications for Inter-Limb Deficits in Knee Joint Biomechanics. Bioengineering 2024, 11, 850. https://doi.org/10.3390/bioengineering11080850
Hummer ET, Porter J, Cates H, Zhang S. Feasibility of Stationary Cycling with Pedal Force Visual Feedback Post-Total Knee Arthroplasty: Implications for Inter-Limb Deficits in Knee Joint Biomechanics. Bioengineering. 2024; 11(8):850. https://doi.org/10.3390/bioengineering11080850
Chicago/Turabian StyleHummer, Erik T., Jared Porter, Harold Cates, and Songning Zhang. 2024. "Feasibility of Stationary Cycling with Pedal Force Visual Feedback Post-Total Knee Arthroplasty: Implications for Inter-Limb Deficits in Knee Joint Biomechanics" Bioengineering 11, no. 8: 850. https://doi.org/10.3390/bioengineering11080850
APA StyleHummer, E. T., Porter, J., Cates, H., & Zhang, S. (2024). Feasibility of Stationary Cycling with Pedal Force Visual Feedback Post-Total Knee Arthroplasty: Implications for Inter-Limb Deficits in Knee Joint Biomechanics. Bioengineering, 11(8), 850. https://doi.org/10.3390/bioengineering11080850