Constructing a Clinical Patient Similarity Network of Gastric Cancer
Abstract
:1. Introduction
2. Methods
2.1. Data Collection and Preprocessing
2.2. Encoding
2.3. Subgrouping
2.4. Survival Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Thrift, A.P.; Wenker, T.N.; El-Serag, H.B. Global burden of gastric cancer: Epidemiological trends, risk factors, screening and prevention. Nat. Rev. Clin. Oncol. 2023, 20, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Liu, X. The challenges of explainable AI in biomedical data science. BMC Bioinform. 2022, 22, 443. [Google Scholar] [CrossRef] [PubMed]
- Shickel, B.; Tighe, P.J.; Bihorac, A.; Rashidi, P. Deep EHR: A Survey of Recent Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis. IEEE J. Biomed. Health Inform. 2018, 22, 1589–1604. [Google Scholar] [CrossRef]
- Tange, H.J.; Schouten, H.C.; Kester, A.D.; Hasman, A. The granularity of medical narratives and its effect on the speed and completeness of information retrieval. J. Am. Med. Inform. Assoc. 1998, 5, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Jung, A.W.; Torne, R.V.; Gonzalez, S.; Vohringer, H.; Shmatko, A.; Yates, L.R.; Jimenez-Linan, M.; Moore, L.; Gerstung, M. Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat. Cancer 2020, 1, 800–810. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lichtenberg, T.; Hoadley, K.A.; Poisson, L.M.; Lazar, A.J.; Cherniack, A.D.; Kovatich, A.J.; Benz, C.C.; Levine, D.A.; Lee, A.V.; et al. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell 2018, 173, 400–416.e11. [Google Scholar] [CrossRef] [PubMed]
- Collins, F.S.; Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 2015, 372, 793–795. [Google Scholar] [CrossRef]
- Parimbelli, E.; Marini, S.; Sacchi, L.; Bellazzi, R. Patient similarity for precision medicine: A systematic review. J. Biomed. Inform. 2018, 83, 87–96. [Google Scholar] [CrossRef]
- Brown, S.A. Patient Similarity: Emerging Concepts in Systems and Precision Medicine. Front. Physiol. 2016, 7, 561. [Google Scholar] [CrossRef]
- Dai, L.; Zhu, H.; Liu, D. Patient similarity: Methods and applications. arXiv 2020, arXiv:2012.01976. [Google Scholar]
- Oei, R.W.; Fang, H.S.A.; Tan, W.Y.; Hsu, W.; Lee, M.L.; Tan, N.C. Using Domain Knowledge and Data-Driven Insights for Patient Similarity Analytics. J. Pers. Med. 2021, 11, 699. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.S.A.; Tan, N.C.; Tan, W.Y.; Oei, R.W.; Lee, M.L.; Hsu, W. Patient similarity analytics for explainable clinical risk prediction. BMC Med. Inform. Decis. Mak. 2021, 21, 207. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Maslove, D.M.; Dubin, J.A. Personalized mortality prediction driven by electronic medical data and a patient similarity metric. PLoS ONE 2015, 10, e0127428. [Google Scholar] [CrossRef] [PubMed]
- Pai, S.; Hui, S.; Isserlin, R.; Shah, M.A.; Kaka, H.; Bader, G.D. netDx: Interpretable patient classification using integrated patient similarity networks. Mol. Syst. Biol. 2019, 15, e8497. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Huang, Y.; Liu, H.; Fei, X.; Wei, L.; Zhao, X.; Chen, H. Measurement and application of patient similarity in personalized predictive modeling based on electronic medical records. Biomed. Eng. Online 2019, 18, 98. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Lu, X.; Duan, H.; Li, H. Using the distance between sets of hierarchical taxonomic clinical concepts to measure patient similarity. BMC Med. Inform. Decis. Mak. 2019, 19, 91. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, P.; Yan, J.; Wang, Y.; Li, S.; Jiang, J.; Sun, Z.; Tang, B.; Chang, T.H.; Wang, S.; et al. Real-world data medical knowledge graph: Construction and applications. Artif. Intell. Med. 2020, 103, 101817. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Yang, D.; Yin, X. Patient Similarity via Joint Embeddings of Medical Knowledge Graph and Medical Entity Descriptions. IEEE Access 2020, 8, 156663–156676. [Google Scholar] [CrossRef]
- Jia, Z.; Zeng, X.; Duan, H.; Lu, X.; Li, H. A patient-similarity-based model for diagnostic prediction. Int. J. Med. Inform. 2020, 135, 104073. [Google Scholar] [CrossRef]
- Suo, Q.; Ma, F.; Yuan, Y.; Huai, M.; Zhong, W.; Gao, J.; Zhang, A. Deep Patient Similarity Learning for Personalized Healthcare. IEEE Trans. Nanobiosci. 2018, 17, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.D.; Gitter, A.; Greene, C.S.; Raschka, S.; Maguire, F.; Titus, A.J.; Kessler, M.D.; Lee, A.J.; Chevrette, M.G.; Stewart, P.A.; et al. Ten quick tips for deep learning in biology. PLoS Comput. Biol. 2022, 18, e1009803. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.H.; Back, S.; Park, J. Measuring Patient Similarity on Multiple Diseases by Joint Learning via a Convolutional Neural Network. Sensors 2021, 22, 131. [Google Scholar] [CrossRef] [PubMed]
- Margolis, R.; Derr, L.; Dunn, M.; Huerta, M.; Larkin, J.; Sheehan, J.; Guyer, M.; Green, E.D. The National Institutes of Health’s Big Data to Knowledge (BD2K) initiative: Capitalizing on biomedical big data. J. Am. Med. Inform. Assoc. 2014, 21, 957–958. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Duan, Y.; Zhou, Q.; Wang, Y.; Gao, Y.; Kan, H.; Hu, J. A classification method of gastric cancer subtype based on residual graph convolution network. Front. Genet. 2022, 13, 1090394. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.B.; Bakken, S.; Dine, D.; Hyun, S.; Mendonca, E.; Morrison, F.; Bright, T.; Van Vleck, T.; Wrenn, J.; Stetson, P. An electronic health record based on structured narrative. J. Am. Med. Inform. Assoc. 2008, 15, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, J.J.; Rixe, O. Overall survival: Still the gold standard: Why overall survival remains the definitive end point in cancer clinical trials. Cancer J. 2009, 15, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Zhang, C.; Wang, C.; Miao, W.; Zhou, W.; An, J.; Qiao, W.; Li, M.; Lai, M.; Yu, P. Comparison of clinicopathologic profiles and prognosis of gastric cancer in the upper, middle and lower third of the stomach: A retrospective cohort study. Medicine 2020, 99, e21261. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Yang, H.; Huang, S.; Zhou, T.; Zhang, X.; Zu, G. Comparison of the overall survival of proximal and distal gastric cancer after gastrectomy: A systematic review and meta-analysis. World J. Surg. Oncol. 2021, 19, 17. [Google Scholar] [CrossRef]
- Milano, A.F. 20-Year Comparative Survival and Mortality of Cancer of the Stomach by Age, Sex, Race, Stage, Grade, Cohort Entry Time-Period, Disease Duration & Selected ICD-O-3 Oncologic Phenotypes: A Systematic Review of 157,258 Cases for Diagnosis Years 1973-2014: (SEER*Stat 8.3.4). J. Insur. Med. 2019, 48, 5–23. [Google Scholar] [CrossRef]
- Gligorijevic, V.; Przulj, N. Methods for biological data integration: Perspectives and challenges. J. R. Soc. Interface 2015, 12, 20150571. [Google Scholar] [CrossRef] [PubMed]
- Gliozzo, J.; Mesiti, M.; Notaro, M.; Petrini, A.; Patak, A.; Puertas-Gallardo, A.; Paccanaro, A.; Valentini, G.; Casiraghi, E. Heterogeneous data integration methods for patient similarity networks. Brief. Bioinform. 2022, 23, bbac207. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Almeida, A.J.; Fabelo, H.; Ortega, S.; Deniz, A.; Balea-Fernandez, F.J.; Quevedo, E.; Soguero-Ruiz, C.; Wagner, A.M.; Callico, G.M. Synthetic Patient Data Generation and Evaluation in Disease Prediction Using Small and Imbalanced Datasets. IEEE J. Biomed. Health Inform. 2022, 27, 2670–2680. [Google Scholar] [CrossRef] [PubMed]
Parameter Name | Count | Parameter Type | Parameter Name | Count | Parameter Type |
---|---|---|---|---|---|
Median age (range) | 64 (24–93) | Continuous | Nerve_invasion | Binary | |
Median BMI (range) | 23.1 (14.2–54.1) | Continuous | Yes | 433 | |
Median lymphocyte_count (range) | 1.41 (0.12–3.81) | Continuous | No | 567 | |
Median leukocyte_count (range) | 6.4 (2.66–27.58) | Continuous | Tumor_thrombus | Binary | |
Median AFP (range) | 2.46 (0.74–136.41) | Continuous | Yes | 353 | |
Median CA724 (range) | 2.2 (0.37–300) | Continuous | No | 647 | |
Median CA125 (range) | 10.7 (2.7–391.4) | Continuous | Cancerous_node | Binary | |
Median CA153 (range) | 7 (2.7–20.2) | Continuous | Yes | 138 | |
Median CEA | 2.3 (0.5–1500) | Continuous | No | 862 | |
Median Ki67_expression | 0.6 (0.01–0.9) | Continuous | Positive_margin | Binary | |
Median Topo_expression | 0.4 (0.01–0.9) | Continuous | Yes | 138 | |
Median max_diameter | 3 (0.8–18) | Continuous | No | 862 | |
operater_codeEMR | Categorical | Surgical_complications | Binary | ||
Laparotomy | 585 | Yes | 31 | ||
Laparoscope | 283 | No | 969 | ||
Laparoscopic_exploratory_surgery | 120 | Omental_involvement | Binary | ||
NA | 12 | Yes | 7 | ||
Complications | Binary | No | 295 | ||
Yes | 288 | NA | 698 | ||
No | 712 | TRG | Categorical | ||
Tumor_location | Categorical | 1 grade | 1 | ||
Lower | 408 | 2 grade | 4 | ||
Middle | 222 | 3 grade | 5 | ||
Upper | 360 | NA | 990 | ||
Residual | 10 | MLH1_IHC | Categorical | ||
pT | Categorical | (-) | 20 | ||
Tis/T1 | 309 | (+) | 363 | ||
T2 | 112 | NA | 617 | ||
T3 | 394 | MSH2_IHC | Categorical | ||
T4a | 172 | (-) | 13 | ||
T4b | 13 | (+) | 357 | ||
pN | Categorical | Little (+) | 12 | ||
N0 | 447 | NA | 618 | ||
N1 | 162 | MSH6_IHC | Categorical | ||
N2 | 157 | (-) | 6 | ||
N3a | 149 | (+) | 320 | ||
N3b | 85 | Little (+) | 48 | ||
M | Categorical | NA | 626 | ||
M0 | 299 | PMS2_IHC | Categorical | ||
M1 | 6 | (-) | 19 | ||
Mx | 134 | (+) | 363 | ||
NA | 561 | NA | 618 | ||
AJCC_Stage | Categorical | dMMR | Binary | ||
Stage 0/stage I | 338 | Yes | 38 | ||
Stage II | 278 | No | 332 | ||
Stage III | 378 | NA | 630 | ||
Stage IV | 6 | EGFR-IHC | Categorical | ||
Sample_type | Categorical | (-) | 586 | ||
Proximal | 68 | (+) | 406 | ||
Total | 409 | (±) | 8 | ||
Distal | 508 | ERBB2-IHC | Categorical | ||
Residual | 15 | (-) | 663 | ||
Differentiation | Categorical | (+) | 337 | ||
High | 26 | p53-IHC | Categorical | ||
Middle | 367 | (-) | 183 | ||
Poorly | 365 | (+) | 185 | ||
Middle_poorly | 233 | NA | 632 | ||
High_middle | 9 | ||||
Lauren | Categorical | ||||
Intestinal type | 128 | ||||
Diffuse type | 124 | ||||
Mixed | 76 | ||||
NA | 672 |
Classification | dMMR | EGFR-IHC | ERBB2-IHC | p53-IHC |
---|---|---|---|---|
Clustering | 0.000 * | 0.000 * | 0.001 * | 0.000 * |
Age | 0.193 | 0.723 | 0.010 | 0.575 |
Differentiation | 0.036 | 0.339 | 0.000 * | 0.043 |
Stage | 0.106 | 0.794 | 0.162 | 0.396 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Liu, Z.; Zhu, C.; Cai, H.; Yin, K.; Zhong, F.; Liu, L. Constructing a Clinical Patient Similarity Network of Gastric Cancer. Bioengineering 2024, 11, 808. https://doi.org/10.3390/bioengineering11080808
Zhang R, Liu Z, Zhu C, Cai H, Yin K, Zhong F, Liu L. Constructing a Clinical Patient Similarity Network of Gastric Cancer. Bioengineering. 2024; 11(8):808. https://doi.org/10.3390/bioengineering11080808
Chicago/Turabian StyleZhang, Rukui, Zhaorui Liu, Chaoyu Zhu, Hui Cai, Kai Yin, Fan Zhong, and Lei Liu. 2024. "Constructing a Clinical Patient Similarity Network of Gastric Cancer" Bioengineering 11, no. 8: 808. https://doi.org/10.3390/bioengineering11080808
APA StyleZhang, R., Liu, Z., Zhu, C., Cai, H., Yin, K., Zhong, F., & Liu, L. (2024). Constructing a Clinical Patient Similarity Network of Gastric Cancer. Bioengineering, 11(8), 808. https://doi.org/10.3390/bioengineering11080808