Genetic and Modifiable Risk Factors for Postoperative Complications of Total Joint Arthroplasty: A Genome-Wide Association and Mendelian Randomization Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Cohort and Phenotypes
2.3. Statistical Analysis
2.3.1. Baseline Statistics
2.3.2. GWAS Analysis
2.3.3. Functional Mapping and Annotation
2.3.4. MR
3. Results
3.1. Baseline Characteristics
3.2. GWAS Analysis of Mechanical Complications after TJA
3.3. GWAS Analysis of PJI after TJA
3.4. Causal Relationships of Modifiable Risk Factors with Mechanical Complications after TJA
3.5. Causal Associations of Modifiable Risk Factors with PJI after TJA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Lifestyle Factor | Participants | IVs | Consortium | PMID |
---|---|---|---|---|
Body mass index | 681,275 European | 347 | GIANT | 30124842 |
Waist-to-hip ratio | 212,244 European | 20 | GIANT | 25673412 |
Cigarettes smoked per day | 249,752 European | 16 | GSCAN | 30643251 |
Smoking initiation | 60,7291 European | 57 | GSCAN | 30643251 |
Alcoholic drinks per week | 335,394 European | 23 | GSCAN | 30643251 |
Sleep duration | 127,573 European | 2 | NA | 27494321 |
Sleep disorders | 216,700 European | 2 | FinnGen | NA |
Years of schooling | 766,345 European | 222 | SSGAC | 30038396 |
Type 2 diabetes | 69,033 European | 9 | DIAGRAM | 22885922 |
Hypertension | 218,754 European | 37 | FinnGen | NA |
Major depression | 500,199 European | 33 | PGC | 30718901 |
Characteristic | Control (N = 398,708) | MC-PJ 1 (N = 2964) | p-Value 2 | PJI 1 (N = 957) | p-Value 2 |
---|---|---|---|---|---|
Ever smoked | 239,143 (60%) | 1811 (61%) | 0.2 | 597 (63%) | 0.085 |
Smoking status | <0.001 | <0.001 | |||
Never | 217,386 (55%) | 1467 (49%) | 465 (49%) | ||
Previous | 139,814 (35%) | 1236 (42%) | 395 (41%) | ||
Current | 40,133 (10%) | 248 (8.4%) | 89 (9.3%) | ||
Pack Years of smoking | 19 (10, 32) | 23 (13, 37) | <0.001 | 23 (13, 37) | <0.001 |
Alcohol drinker status | <0.001 | <0.001 | |||
Never | 12,381 (3.1%) | 135 (4.6%) | 41 (4.3%) | ||
Previous | 13,468 (3.4%) | 146 (4.9%) | 57 (6.0%) | ||
Current | 372,525 (93%) | 2678 (90%) | 858 (90%) | ||
Systolic BP | 139 (127, 153) | 143 (132, 158) | 0.003 | 139 (130, 158) | 0.7 |
Diastolic BP | 83 (75, 90) | 84 (76, 90) | 0.5 | 84 (76, 90) | 0.9 |
Diabetes diagnosed by doctor | 19,001 (4.8%) | 191 (6.4%) | <0.001 | 77 (8.0%) | <0.001 |
FN BMD | 0.93 (0.84, 1.03) | 0.96 (0.86, 1.02) | 0.4 | 0.97 (0.89, 1.04) | 0.3 |
Heel BMD | −0.47 (−1.15, 0.30) | −0.55 (−1.26, 0.31) | 0.004 | −0.40 (−1.14, 0.39) | 0.5 |
HOA | 18,568 (4.7%) | 1223 (41%) | <0.001 | 404 (42%) | <0.001 |
KOA | 29,568 (7.4%) | 1298 (44%) | <0.001 | 508 (53%) | <0.001 |
Osteonecrosis | 678 (0.2%) | 75 (2.5%) | <0.001 | 20 (2.1%) | <0.001 |
Infectious arthropathies | 682 (0.2%) | 47 (1.6%) | <0.001 | 76 (7.9%) | <0.001 |
Inflammatory polyarthropathies | 36,416 (9.1%) | 1039 (35%) | <0.001 | 352 (37%) | <0.001 |
Arthrosis | 71,432 (18%) | 2520 (85%) | <0.001 | 844 (88%) | <0.001 |
Systemic connective tissue disorders | 6244 (1.6%) | 131 (4.4%) | <0.001 | 53 (5.5%) | <0.001 |
Disorders of bone density and structure | 19,188 (4.8%) | 511 (17%) | <0.001 | 166 (17%) | <0.001 |
References
- Hawker, G.A.; Badley, E.M.; Borkhoff, C.M.; Croxford, R.; Davis, A.M.; Dunn, S.; Gignac, M.A.; Jaglal, S.B.; Kreder, H.J.; Sale, J.E.M. Which Patients Are Most Likely to Benefit from Total Joint Arthroplasty? Arthritis Rheum. 2013, 65, 1243–1252. [Google Scholar] [CrossRef]
- Ferguson, R.J.; Palmer, A.J.; Taylor, A.; Porter, M.L.; Malchau, H.; Glyn-Jones, S. Hip Replacement. Lancet 2018, 392, 1662–1671. [Google Scholar] [CrossRef]
- Zhang, Y.; Jordan, J.M. Epidemiology of Osteoarthritis. Clin. Geriatr. Med. 2010, 26, 355–369. [Google Scholar] [CrossRef]
- Sloan, M.; Premkumar, A.; Sheth, N.P. Projected Volume of Primary Total Joint Arthroplasty in the U.S., 2014 to 2030. J. Bone Jt. Surg. Am. 2018, 100, 1455–1460. [Google Scholar] [CrossRef]
- Izakovicova, P.; Borens, O.; Trampuz, A. Periprosthetic Joint Infection: Current Concepts and Outlook. EFORT Open Rev. 2019, 4, 482–494. [Google Scholar] [CrossRef]
- Pivec, R.; Issa, K.; Kapadia, B.V.; Cherian, J.J.; Maheshwari, A.V.; Bonutti, P.M.; Mont, M.A. Incidence and Future Projections of Periprosthetic Femoral Fracture Following Primary Total Hip Arthroplasty: An Analysis of International Registry Data. J. Long Term Eff. Med. Implant. 2015, 25, 269–275. [Google Scholar] [CrossRef]
- Ulrich, S.D.; Seyler, T.M.; Bennett, D.; Delanois, R.E.; Saleh, K.J.; Thongtrangan, I.; Kuskowski, M.; Cheng, E.Y.; Sharkey, P.F.; Parvizi, J.; et al. Total Hip Arthroplasties: What Are the Reasons for Revision? Int. Orthop. 2008, 32, 597–604. [Google Scholar] [CrossRef]
- Cherian, J.J.; Jauregui, J.J.; Banerjee, S.; Pierce, T.; Mont, M.A. What Host Factors Affect Aseptic Loosening after THA and TKA? Clin. Orthop. Relat. Res. 2015, 473, 2700–2709. [Google Scholar] [CrossRef]
- Edwards, P.K.; Mears, S.C.; Stambough, J.B.; Foster, S.E.; Barnes, C.L. Choices, Compromises, and Controversies in Total Knee and Total Hip Arthroplasty Modifiable Risk Factors: What You Need to Know. J. Arthroplast. 2018, 33, 3101–3106. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.B.; Curtin, K.; Wong, J.; Pelt, C.E.; Peters, C.L.; Gililland, J.M. Familial Clustering Identified in Periprosthetic Joint Infection Following Primary Total Joint Arthroplasty: A Population-Based Cohort Study. J. Bone Jt. Surg. Am. 2017, 99, 905–913. [Google Scholar] [CrossRef] [PubMed]
- MacInnes, S.J.; Hatzikotoulas, K.; Fenstad, A.M.; Shah, K.; Southam, L.; Tachmazidou, I.; Hallan, G.; Dale, H.; Panoutsopoulou, K.; Furnes, O.; et al. The 2018 Otto Aufranc Award: How Does Genome-Wide Variation Affect Osteolysis Risk after THA? Clin. Orthop. Relat. Res. 2019, 477, 297–309. [Google Scholar] [CrossRef]
- Bourne, R.; Mukhi, S.; Zhu, N.; Keresteci, M.; Marin, M. Role of Obesity on the Risk for Total Hip or Knee Arthroplasty. Clin. Orthop. Relat. Res. 2007, 465, 185–188. [Google Scholar] [CrossRef]
- Zusmanovich, M.; Kester, B.S.; Schwarzkopf, R. Postoperative Complications of Total Joint Arthroplasty in Obese Patients Stratified by BMI. J. Arthroplast. 2018, 33, 856–864. [Google Scholar] [CrossRef]
- Teng, S.; Yi, C.; Krettek, C.; Jagodzinski, M. Smoking and Risk of Prosthesis-Related Complications after Total Hip Arthroplasty: A Meta-Analysis of Cohort Studies. PLoS ONE 2015, 10, e0125294. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Huedo, M.A.; Jiménez-García, R.; Jiménez-Trujillo, I.; Hernández-Barrera, V.; Del Rio Lopez, B.; López-de-Andrés, A. Effect of Type 2 Diabetes on In-Hospital Postoperative Complications and Mortality after Primary Total Hip and Knee Arthroplasty. J. Arthroplast. 2017, 32, 3729–3734.e2. [Google Scholar] [CrossRef]
- Li, X.; Sun, H.; Li, H.; Huang, Z.; Chen, M.; Li, D.; Cai, Z.; Xu, J.; Ma, R. Post-Operative Complications of Total Knee Arthroplasty in Patients with Hypertension. Int. Orthop. 2023, 47, 701–709. [Google Scholar] [CrossRef]
- Lawlor, D.A.; Harbord, R.M.; Sterne, J.A.C.; Timpson, N.; Davey Smith, G. Mendelian Randomization: Using Genes as Instruments for Making Causal Inferences in Epidemiology. Stat. Med. 2008, 27, 1133–1163. [Google Scholar] [CrossRef]
- Davey Smith, G.; Hemani, G. Mendelian Randomization: Genetic Anchors for Causal Inference in Epidemiological Studies. Hum. Mol. Genet. 2014, 23, R89–R98. [Google Scholar] [CrossRef] [PubMed]
- Mbatchou, J.; Barnard, L.; Backman, J.; Marcketta, A.; Kosmicki, J.A.; Ziyatdinov, A.; Benner, C.; O’Dushlaine, C.; Barber, M.; Boutkov, B.; et al. Computationally Efficient Whole-Genome Regression for Quantitative and Binary Traits. Nat. Genet. 2021, 53, 1097–1103. [Google Scholar] [CrossRef] [PubMed]
- Kulm, S.; Kolin, D.A.; Langhans, M.T.; Kaidi, A.C.; Elemento, O.; Bostrom, M.P.; Shen, T.S. Characterization of Genetic Risk of End-Stage Knee Osteoarthritis Treated with Total Knee Arthroplasty: A Genome-Wide Association Study. J. Bone Jt. Surg. Am. 2022, 104, 1814–1820. [Google Scholar] [CrossRef]
- Watanabe, K.; Taskesen, E.; Van Bochoven, A.; Posthuma, D. Functional Mapping and Annotation of Genetic Associations with FUMA. Nat. Commun. 2017, 8, 1826. [Google Scholar] [CrossRef]
- Barsh, G.S.; Copenhaver, G.P.; Gibson, G.; Williams, S.M. Guidelines for Genome-Wide Association Studies. PLoS Genet. 2012, 8, e1002812. [Google Scholar] [CrossRef]
- Koks, S.; Wood, D.J.; Reimann, E.; Awiszus, F.; Lohmann, C.H.; Bertrand, J.; Prans, E.; Maasalu, K.; Märtson, A. The Genetic Variations Associated with Time to Aseptic Loosening after Total Joint Arthroplasty. J. Arthroplast. 2020, 35, 981–988. [Google Scholar] [CrossRef]
- Burgess, S.; Foley, C.N.; Zuber, V. Inferring Causal Relationships between Risk Factors and Outcomes from Genome-Wide Association Study Data. Annu. Rev. Genom. Hum. Genet. 2018, 19, 303–327. [Google Scholar] [CrossRef] [PubMed]
- Yengo, L.; Sidorenko, J.; Kemper, K.E.; Zheng, Z.; Wood, A.R.; Weedon, M.N.; Frayling, T.M.; Hirschhorn, J.; Yang, J.; Visscher, P.M.; et al. Meta-Analysis of Genome-Wide Association Studies for Height and Body Mass Index in ~700000 Individuals of European Ancestry. Hum. Mol. Genet. 2018, 27, 3641–3649. [Google Scholar] [CrossRef]
- 23andMe Research Team; HUNT All-In Psychiatry; Liu, M.; Jiang, Y.; Wedow, R.; Li, Y.; Brazel, D.M.; Chen, F.; Datta, G.; Davila-Velderrain, J.; et al. Association Studies of up to 1.2 Million Individuals Yield New Insights into the Genetic Etiology of Tobacco and Alcohol Use. Nat. Genet. 2019, 51, 237–244. [Google Scholar] [CrossRef]
- Jones, S.E.; Tyrrell, J.; Wood, A.R.; Beaumont, R.N.; Ruth, K.S.; Tuke, M.A.; Yaghootkar, H.; Hu, Y.; Teder-Laving, M.; Hayward, C.; et al. Genome-Wide Association Analyses in 128,266 Individuals Identifies New Morningness and Sleep Duration Loci. PLoS Genet. 2016, 12, e1006125. [Google Scholar] [CrossRef] [PubMed]
- The DIAbetes Genetics Replication and Meta-Analysis (DIAGRAM) Consortium; Morris, A.P.; Voight, B.F.; Teslovich, T.M.; Ferreira, T.; Segrè, A.V.; Steinthorsdottir, V.; Strawbridge, R.J.; Khan, H.; Grallert, H.; et al. Large-Scale Association Analysis Provides Insights into the Genetic Architecture and Pathophysiology of Type 2 Diabetes. Nat. Genet. 2012, 44, 981–990. [Google Scholar] [CrossRef]
- Lee, J.J.; Wedow, R.; Okbay, A.; Kong, E.; Maghzian, O.; Zacher, M.; Nguyen-Viet, T.A.; Bowers, P.; Sidorenko, J.; Karlsson Linnér, R.; et al. Gene Discovery and Polygenic Prediction from a Genome-Wide Association Study of Educational Attainment in 1.1 Million Individuals. Nat. Genet. 2018, 50, 1112–1121. [Google Scholar] [CrossRef]
- Zheng, X.; Zhou, X.; Tong, L.; Gu, W.; Wang, S.; Yuang, W.; Zhang, C.; Zhang, C.; Zhang, C.; Wan, B. Mendelian Randomization Study of Gastroesophageal Reflux Disease and Major Depression. PLoS ONE 2023, 18, e0291086. [Google Scholar] [CrossRef]
- Shungin, D.; Winkler, T.W.; Croteau-Chonka, D.C.; Ferreira, T.; Locke, A.E.; Mägi, R.; Strawbridge, R.J.; Pers, T.H.; Fischer, K.; Justice, A.E.; et al. New Genetic Loci Link Adipose and Insulin Biology to Body Fat Distribution. Nature 2015, 518, 187–196. [Google Scholar] [CrossRef]
- Kurki, M.I.; Karjalainen, J.; Palta, P.; Sipilä, T.P.; Kristiansson, K.; Donner, K.M.; Reeve, M.P.; Laivuori, H.; Aavikko, M.; Kaunisto, M.A.; et al. FinnGen Provides Genetic Insights from a Well-Phenotyped Isolated Population. Nature 2023, 613, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.-G.; Liu, F.; Liang, Y.; Wang, K.; Nie, J.-Q.; Liu, J. Association between Frailty and Depression: A Bidirectional Mendelian Randomization Study. Sci. Adv. 2023, 9, eadi3902. [Google Scholar] [CrossRef] [PubMed]
- Kamat, M.A.; Blackshaw, J.A.; Young, R.; Surendran, P.; Burgess, S.; Danesh, J.; Butterworth, A.S.; Staley, J.R. PhenoScanner V2: An Expanded Tool for Searching Human Genotype–Phenotype Associations. Bioinformatics 2019, 35, 4851–4853. [Google Scholar] [CrossRef] [PubMed]
- Bowden, J.; Davey Smith, G.; Haycock, P.C.; Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 2016, 40, 304–314. [Google Scholar] [CrossRef]
- Verbanck, M.; Chen, C.-Y.; Neale, B.; Do, R. Detection of Widespread Horizontal Pleiotropy in Causal Relationships Inferred from Mendelian Randomization between Complex Traits and Diseases. Nat. Genet. 2018, 50, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.; Ong, K.; Lau, E.; Mowat, F.; Halpern, M. Projections of Primary and Revision Hip and Knee Arthroplasty in the United States from 2005 to 2030. J. Bone Jt. Surg. Am. 2007, 89, 780–785. [Google Scholar] [CrossRef]
- Talmo, C.T.; Aghazadeh, M.; Bono, J.V. Perioperative Complications Following Total Joint Replacement. Clin. Geriatr. Med. 2012, 28, 471–487. [Google Scholar] [CrossRef] [PubMed]
- George, J.; Chughtai, M.; Khlopas, A.; Klika, A.K.; Barsoum, W.K.; Higuera, C.A.; Mont, M.A. Readmission, Reoperation, and Complications: Total Hip vs Total Knee Arthroplasty. J. Arthroplast. 2018, 33, 655–660. [Google Scholar] [CrossRef]
- Santaguida, P.L.; Hawker, G.A.; Hudak, P.L.; Glazier, R.; Mahomed, N.N.; Kreder, H.J.; Coyte, P.C.; Wright, J.G. Patient Characteristics Affecting the Prognosis of Total Hip and Knee Joint Arthroplasty: A Systematic Review. Can. J. Surg. 2008, 51, 428. [Google Scholar]
- Kemp, J.P.; Morris, J.A.; Medina-Gomez, C.; Forgetta, V.; Warrington, N.M.; Youlten, S.E.; Zheng, J.; Gregson, C.L.; Grundberg, E.; Trajanoska, K.; et al. Identification of 153 New Loci Associated with Heel Bone Mineral Density and Functional Involvement of GPC6 in Osteoporosis. Nat. Genet. 2017, 49, 1468–1475. [Google Scholar] [CrossRef]
- Medina-Gomez, C.; Kemp, J.P.; Trajanoska, K.; Luan, J.; Chesi, A.; Ahluwalia, T.S.; Mook-Kanamori, D.O.; Ham, A.; Hartwig, F.P.; Evans, D.S.; et al. Life-Course Genome-Wide Association Study Meta-Analysis of Total Body BMD and Assessment of Age-Specific Effects. Am. J. Hum. Genet. 2018, 102, 88–102. [Google Scholar] [CrossRef]
- 23andMe Research Team; Morris, J.A.; Kemp, J.P.; Youlten, S.E.; Laurent, L.; Logan, J.G.; Chai, R.C.; Vulpescu, N.A.; Forgetta, V.; Kleinman, A.; et al. An Atlas of Genetic Influences on Osteoporosis in Humans and Mice. Nat. Genet. 2019, 51, 258–266. [Google Scholar] [CrossRef]
- Zengini, E.; Hatzikotoulas, K.; Tachmazidou, I.; Steinberg, J.; Hartwig, F.P.; Southam, L.; Hackinger, S.; Boer, C.G.; Styrkarsdottir, U.; Gilly, A.; et al. Genome-Wide Analyses Using UK Biobank Data Provide Insights into the Genetic Architecture of Osteoarthritis. Nat. Genet. 2018, 50, 549–558. [Google Scholar] [CrossRef]
- Zhang, Y.; Gan, W.; Tian, C.; Li, H.; Lin, X.; Chen, Y. Association of PPP1R3B polymorphisms with blood lipid and C-reactive protein levels in a Chinese population (PPP1R3B C). J. Diabetes 2013, 5, 275–281. [Google Scholar] [CrossRef]
- Dehghan, A.; Dupuis, J.; Barbalic, M.; Bis, J.C.; Eiriksdottir, G.; Lu, C.; Pellikka, N.; Wallaschofski, H.; Kettunen, J.; Henneman, P.; et al. Meta-Analysis of Genome-Wide Association Studies in >80,000 Subjects Identifies Multiple Loci for C-Reactive Protein Levels. Circulation 2011, 123, 731–738. [Google Scholar] [CrossRef]
- Migocka-Patrzałek, M.; Elias, M. Muscle Glycogen Phosphorylase and Its Functional Partners in Health and Disease. Cells 2021, 10, 883. [Google Scholar] [CrossRef]
- Stender, S.; Smagris, E.; Lauridsen, B.K.; Kofoed, K.F.; Nordestgaard, B.G.; Tybjærg-Hansen, A.; Pennacchio, L.A.; Dickel, D.E.; Cohen, J.C.; Hobbs, H.H. Relationship between Genetic Variation at PPP1R3B and Levels of Liver Glycogen and Triglyceride. Hepatology 2018, 67, 2182–2195. [Google Scholar] [CrossRef]
- Creasy, K.T.; Mehta, M.B.; Park, J.; Schneider, C.V.; Shewale, S.V.; Millar, J.S.; Hand, N.J.; Baur, J.A.; Rader, D.J. PPP1R3B Is a Metabolic Switch That Shifts Hepatic Energy Storage from Lipid to Glycogen. bioRxiv 2023, 2023-03. [Google Scholar] [CrossRef]
- Safran, M.; Dalah, I.; Alexander, J.; Rosen, N.; Iny Stein, T.; Shmoish, M.; Nativ, N.; Bahir, I.; Doniger, T.; Krug, H.; et al. GeneCards Version 3: The Human Gene Integrator. Database 2010, 2010, baq020. [Google Scholar] [CrossRef]
- Wang, W.-Y.; Quan, W.; Yang, F.; Wei, Y.-X.; Chen, J.-J.; Yu, H.; Xie, J.; Zhang, Y.; Li, Z.-F. RBM4 Modulates the Proliferation and Expression of Inflammatory Factors via the Alternative Splicing of Regulatory Factors in HeLa Cells. Mol. Genet. Genom. 2020, 295, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Haynes, J.; Nam, D.; Barrack, R.L. Obesity in Total Hip Arthroplasty: Does It Make a Difference? Bone Jt. J. 2017, 99-B, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Kerkhoffs, G.M.M.J.; Servien, E.; Dunn, W.; Dahm, D.; Bramer, J.A.M.; Haverkamp, D. The Influence of Obesity on the Complication Rate and Outcome of Total Knee Arthroplasty: A Meta-Analysis and Systematic Literature Review. J. Bone Jt. Surg. Am. 2012, 94, 1839–1844. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.A. Smoking and Outcomes after Knee and Hip Arthroplasty: A Systematic Review. J. Rheumatol. 2011, 38, 1824–1834. [Google Scholar] [CrossRef] [PubMed]
- Duchman, K.R.; Gao, Y.; Pugely, A.J.; Martin, C.T.; Noiseux, N.O.; Callaghan, J.J. The Effect of Smoking on Short-Term Complications Following Total Hip and Knee Arthroplasty. J. Bone Jt. Surg. Am. 2015, 97, 1049–1058. [Google Scholar] [CrossRef] [PubMed]
- Rotevatn, T.A.; Bøggild, H.; Olesen, C.R.; Torp-Pedersen, C.; Mortensen, R.N.; Jensen, P.F.; Overgaard, C. Alcohol Consumption and the Risk of Postoperative Mortality and Morbidity after Primary Hip or Knee Arthroplasty—A Register-Based Cohort Study. PLoS ONE 2017, 12, e0173083. [Google Scholar] [CrossRef] [PubMed]
- Horn, A.R.; Diamond, K.B.; Ng, M.K.; Vakharia, R.M.; Mont, M.A.; Erez, O. The Association of Alcohol Use Disorder with Perioperative Complications Following Primary Total Hip Arthroplasty. Hip Pelvis. 2021, 33, 231. [Google Scholar] [CrossRef] [PubMed]
- Han, H.-S.; Kang, S.-B. Relations between Long-Term Glycemic Control and Postoperative Wound and Infectious Complications after Total Knee Arthroplasty in Type 2 Diabetics. Clin. Orthop. Surg. 2013, 5, 118. [Google Scholar] [CrossRef] [PubMed]
- Baker, P.; Petheram, T.; Jameson, S.; Reed, M.; Gregg, P.; Deehan, D. The Association Between Body Mass Index and the Outcomes of Total Knee Arthroplasty. J. Bone Jt. Surg. Am. 2012, 94, 1501–1508. [Google Scholar] [CrossRef]
- Burn, E.; Edwards, C.J.; Murray, D.W.; Silman, A.; Cooper, C.; Arden, N.K.; Prieto-Alhambra, D.; Pinedo-Villanueva, R. The Impact of BMI and Smoking on Risk of Revision Following Knee and Hip Replacement Surgery: Evidence from Routinely Collected Data. Osteoarthr. Cartil. 2019, 27, 1294–1300. [Google Scholar] [CrossRef]
- Wan, Q.; Zhang, A.; Liu, Y.; Chen, H.; Zhang, J.; Xue, H.; Han, Q.; Wang, J. The Influence of Body Weight Index on Initial Stability of Uncemented Femoral Knee Protheses: A Finite Element Study. Heliyon 2023, 9, e13819. [Google Scholar] [CrossRef] [PubMed]
- Puka, K.; Buckley, C.; Mulia, N.; Lasserre, A.M.; Rehm, J.; Probst, C. Educational Attainment and Lifestyle Risk Factors Associated With All-Cause Mortality in the US. JAMA Health Forum 2022, 3, e220401. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.K.; Han, C.D.; Yang, I.H.; Cha, B.S. Factors Affecting Outcome after Total Knee Arthroplasty in Patients with Diabetes Mellitus. Yonsei Med. J. 2008, 49, 129. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllopoulos, G.K.; Soranoglou, V.G.; Memtsoudis, S.G.; Sculco, T.P.; Poultsides, L.A. Rate and Risk Factors for Periprosthetic Joint Infection among 36,494 Primary Total Hip Arthroplasties. J. Arthroplast. 2018, 33, 1166–1170. [Google Scholar] [CrossRef] [PubMed]
- Muffly, B.T.; Ayeni, A.M.; Bonsu, J.M.; Heo, K.; Premkumar, A.; Guild, G.N. Early versus Late Periprosthetic Joint Infection after Total Knee Arthroplasty: Do Patient Differences Exist? J. Arthroplast. 2024. [Google Scholar] [CrossRef]
- Lucenti, L.; Testa, G.; Caldaci, A.; Sammartino, F.; Cicio, C.; Ilardo, M.; Sapienza, M.; Pavone, V. Preoperative Risk Factors for Periprosthetic Joint Infection: A Narrative Review of the Literature. Healthcare 2024, 12, 666. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Smith, P.N.; Li, R.W. Diabetes Mellitus Is a Potential Risk Factor for Aseptic Loosening around Hip and Knee Arthroplasty. BMC Musculoskelet. Disord. 2023, 24, 266. [Google Scholar] [CrossRef] [PubMed]
- Napoli, N.; Chandran, M.; Pierroz, D.D.; Abrahamsen, B.; Schwartz, A.V.; Ferrari, S.L.; IOF Bone and Diabetes Working Group. Mechanisms of Diabetes Mellitus-Induced Bone Fragility. Nat. Rev. Endocrinol. 2017, 13, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, P. Discrepancies in Bone Mineral Density and Fracture Risk in Patients with Type 1 and Type 2 Diabetes—A Meta-Analysis. Osteoporos. Int. 2007, 18, 427–444. [Google Scholar] [CrossRef]
- Retzepi, M.; Donos, N. The Effect of Diabetes Mellitus on Osseous Healing. Clin. Oral. Implant. Res. 2010, 21, 673–681. [Google Scholar] [CrossRef]
- Franke, S.; Rüster, C.; Pester, J.; Hofmann, G.; Oelzner, P.; Wolf, G. Advanced Glycation End Products Affect Growth and Function of Osteoblasts. Clin. Exp. Rheumatol. 2011, 29, 650. [Google Scholar] [PubMed]
- Santana, R.B.; Xu, L.; Chase, H.B.; Amar, S.; Graves, D.T.; Trackman, P.C. A Role for Advanced Glycation End Products in Diminished Bone Healing in Type 1 Diabetes. Diabetes 2003, 52, 1502–1510. [Google Scholar] [CrossRef] [PubMed]
- Schmieder, R.E. Endothelial Dysfunction: How Can One Intervene at the Beginning of the Cardiovascular Continuum? J. Hypertens. Suppl. 2006, 24, S31–S35. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Ridker, P.M.; Maseri, A. Inflammation and Atherosclerosis. Circulation 2002, 105, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Griendling, K.K.; Camargo, L.L.; Rios, F.J.; Alves-Lopes, R.; Montezano, A.C.; Touyz, R.M. Oxidative Stress and Hypertension. Circ. Res. 2021, 128, 993–1020. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Brewer, H.B.; Cleeman, J.I.; Smith, S.C.; Lenfant, C. Definition of Metabolic Syndrome. Circulation 2004, 109, 433–438. [Google Scholar] [CrossRef]
- Trajanoska, K.; Morris, J.A.; Oei, L.; Zheng, H.-F.; Evans, D.M.; Kiel, D.P.; Ohlsson, C.; Richards, J.B.; Rivadeneira, F. Assessment of the Genetic and Clinical Determinants of Fracture Risk: Genome Wide Association and Mendelian Randomisation Study. BMJ 2018, 362, k3225. [Google Scholar] [CrossRef]
Characteristic | Control (N = 398,708) | MC-PJ 1 (N = 2964) | p-Value 2 | PJI 1 (N = 957) | p-Value 2 |
---|---|---|---|---|---|
Sex (Male: female) | 183,333:215,375 | 1294:1670 | 0.011 | 444:513 | <0.001 |
Age (y) | 58 (51, 63) | 63 (59, 66) | <0.001 | 63 (58, 66) | <0.001 |
BMI (kg/m2) | 26.7 (24.1, 29.8) | 28.9 (26.0, 32.4) | <0.001 | 29.8 (26.8, 33.9) | <0.001 |
Chromosome | Position | Nearest Gene | SNP | Major/Minor Allele | p Value | OR |
---|---|---|---|---|---|---|
8 | 9062656 | PPP1R3B | rs2929469 | T/G | 1.56 × 10−8 | 0.86 |
8 | 9078016 | PPP1R3B | 8:9078016_TC_T | TC/T | 1.53 × 10−8 | 1.19 |
8 | 9085217 | PPP1R3B | rs2929305 | G/A | 1.25 × 10−7 | 1.15 |
8 | 9884999 | MSRA | rs534523 | C/G | 3.80 × 10−7 | 1.14 |
12 | 27976657 | MANSC4 | rs61916472 | G/A | 4.81 × 10−7 | 0.84 |
12 | 27986940 | MANSC4 | rs10843003 | T/G | 5.12 × 10−7 | 0.85 |
12 | 101231042 | ANO4 | rs772483280 | CAACAACCATA/C | 8.05 × 10−7 | 0.74 |
Chromosome | Position | Nearest Gene | SNP | Major/Minor Allele | p Value | OR |
---|---|---|---|---|---|---|
2 | 153869991 | PRPF40A | rs187929349 | C/T | 1.57 × 10−7 | 1.30 |
4 | 57912498 | IGFBP7 | rs761716701 | TTC/T | 2.78 × 10−7 | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, S.; Zhang, J.; Li, H.; Cheng, C.-K.; Zhang, J. Genetic and Modifiable Risk Factors for Postoperative Complications of Total Joint Arthroplasty: A Genome-Wide Association and Mendelian Randomization Study. Bioengineering 2024, 11, 797. https://doi.org/10.3390/bioengineering11080797
Guo S, Zhang J, Li H, Cheng C-K, Zhang J. Genetic and Modifiable Risk Factors for Postoperative Complications of Total Joint Arthroplasty: A Genome-Wide Association and Mendelian Randomization Study. Bioengineering. 2024; 11(8):797. https://doi.org/10.3390/bioengineering11080797
Chicago/Turabian StyleGuo, Sijia, Jiping Zhang, Huiwu Li, Cheng-Kung Cheng, and Jingwei Zhang. 2024. "Genetic and Modifiable Risk Factors for Postoperative Complications of Total Joint Arthroplasty: A Genome-Wide Association and Mendelian Randomization Study" Bioengineering 11, no. 8: 797. https://doi.org/10.3390/bioengineering11080797
APA StyleGuo, S., Zhang, J., Li, H., Cheng, C. -K., & Zhang, J. (2024). Genetic and Modifiable Risk Factors for Postoperative Complications of Total Joint Arthroplasty: A Genome-Wide Association and Mendelian Randomization Study. Bioengineering, 11(8), 797. https://doi.org/10.3390/bioengineering11080797