A Bioreactor for Celullarised Membrane Culture and Delivery under Sterile Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Design
2.2.1. Design Requirements
2.2.2. Design of the Bioreactor
2.3. Device Fabrication
2.4. Device Functionality Validation
3. Results
3.1. Bioreactor Design
3.2. Bioreactor Validation
3.2.1. Watertightness
3.2.2. Gas Exchange and Device Sterility
3.2.3. Cell Culture Validation
4. Discussion
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geeslin, M.G.; Caron, G.J.; Kren, S.M.; Sparrow, E.M.; Hultman, D.A.; Taylor, D.A. Bioreactor for the Reconstitution of a Decellularized Vascular Matrix of Biological Origin. J. Biomed. Sci. Eng. 2011, 4, 435–442. [Google Scholar] [CrossRef]
- Bilodeau, K.; Mantovani, D. Bioreactors for Tissue Engineering: Focus on Mechanical Constraints. A Comparative Review. Tissue Eng. 2006, 12, 2367–2383. [Google Scholar] [CrossRef] [PubMed]
- Farnezi Bassi, A.P.; Bizelli, V.F.; Brasil, L.F.D.M.; Pereira, J.C.; Al-Sharani, H.M.; Momesso, G.A.C.; Faverani, L.P.; Lucas, F.D.A. Is the Bacterial Cellulose Membrane Feasible for Osteopromotive Property? Membranes 2020, 10, 230. [Google Scholar] [CrossRef] [PubMed]
- Farnezi Bassi, A.P.; Ferreira Bizelli, V.; Mello Francatti, T.; Rezende de Moares Ferreira, A.C.; Carvalho Pereira, J.; Al-Sharani, H.M.; de Almeida Lucas, F.; Perez Faverani, L. Bone Regeneration Assessment of Polycaprolactone Membrane on Critical-Size Defects in Rat Calvaria. Membranes 2021, 11, 124. [Google Scholar] [CrossRef] [PubMed]
- Pasman, T.; Baptista, D.; van Riet, S.; Truckenmüller, R.K.; Hiemstra, P.S.; Rottier, R.J.; Stamatialis, D.; Poot, A.A. Development of Porous and Flexible PTMC Membranes for In Vitro Organ Models Fabricated by Evaporation-Induced Phase Separation. Membranes 2020, 10, 330. [Google Scholar] [CrossRef] [PubMed]
- Allijn, I.; Ribeiro, M.; Poot, A.; Passier, R.; Stamatialis, D. Membranes for Modelling Cardiac Tissue Stiffness In Vitro Based on Poly(Trimethylene Carbonate) and Poly(Ethylene Glycol) Polymers. Membranes 2020, 10, 274. [Google Scholar] [CrossRef] [PubMed]
- Piscioneri, A.; Morelli, S.; Drioli, E.; De Bartolo, L. PLGA Multiplex Membrane Platform for Disease Modelling and Testing of Therapeutic Compounds. Membranes 2021, 11, 112. [Google Scholar] [CrossRef] [PubMed]
- Arrizabalaga, J.H.; Nollert, M.U. Human Amniotic Membrane: A Versatile Scaffold for Tissue Engineering. ACS Biomater. Sci. Eng. 2018, 4, 2226–2236. [Google Scholar] [CrossRef] [PubMed]
- Panadero, J.A.; Vikingsson, L.; Gomez Ribelles, J.L.; Sencadas, V.; Lanceros-Mendez, S. Fatigue Prediction in Fibrin Poly-ε-Caprolactone Macroporous Scaffolds. J. Mech. Behav. Biomed. Mater. 2013, 28, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Gindraux, F.; Laurent, R.; Nicod, L.; de Billy, B.; Meyer, C.; Zwetyenga, N.; Wajszczak, L.; Garbuio, P.; Obert, L. Human Amniotic Membrane: Clinical Uses, Patents and Marketed Products. Recent Pat. Regen. Med. 2013, 3, 193–214. [Google Scholar] [CrossRef]
- Ratcliffe, A.; Niklason, L.E. Bioreactors and Bioprocessing for Tissue Engineering. Ann. N. Y. Acad. Sci. 2002, 961, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Martin, I.; Wendt, D.; Heberer, M. The Role of Bioreactors in Tissue Engineering. Trends Biotechnol. 2004, 22, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Naughton, G.K. From Lab Bench to Market. Ann. N. Y. Acad. Sci. 2002, 961, 372–385. [Google Scholar] [CrossRef] [PubMed]
- Maxson, S.; Orr, D.; Burg, K.J.L. Bioreactors for tissue engineering. In Tissue Engineering: From Lab to Clinic; Pallua, N., Suscheck, C.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 179–197. ISBN 978-3-642-02824-3. [Google Scholar]
- Nokhbatolfoghahaei, H.; Rad, M.R.; Khani, M.-M.; Shahriari, S.; Nadjmi, N.; Khojasteh, A. Application of Bioreactors to Improve Functionality of Bone Tissue Engineering Constructs: A Systematic Review. Curr. Stem Cell Res. Ther. 2017, 12, 564–599. [Google Scholar] [CrossRef] [PubMed]
- Araña, M.; Gavira, J.J.; Peña, E.; González, A.; Abizanda, G.; Cilla, M.; Pérez, M.M.; Albiasu, E.; Aguado, N.; Casado, M.; et al. Epicardial Delivery of Collagen Patches with Adipose-Derived Stem Cells in Rat and Minipig Models of Chronic Myocardial Infarction. Biomaterials 2014, 35, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Shama, G. Chapter four—Uninvited guests: A chronology of petri dish contaminations. In Advances in Applied Microbiology; Gadd, G.M., Sariaslani, S., Eds.; Academic Press: Cambridge, MA, USA, 2021; Volume 116, pp. 169–200. [Google Scholar]
- ISO 48-4:2018; Rubber, Vulcanized or Thermoplastic—Determination of Hardness—Part 4: Indentation Hardness by Durometer Method (Shore Hardness). International Organization for Standardization: Geneva, Switzerland, 2018. Available online: https://www.iso.org/obp/ui/#iso:std:iso:48:-4:ed-1:v1:en (accessed on 23 July 2024).
- ASTM D624-00:2020; Standard Test Method for Tear Strength of Conventional Vulcanized Rubber and Thermoplastic Elastomers. International Organization for Standardization: Geneva, Switzerland, 2020. Available online: https://www.astm.org/standards/d624 (accessed on 23 July 2024).
- ISO 37:2024; Rubber, Vulcanized or Thermoplastic—Determination of Tensile Stress-Strain Properties. International Organization for Standardization: Geneva, Switzerland, 2024. Available online: https://www.iso.org/standard/86892.html (accessed on 23 July 2024).
- Viens, M.; Chauvette, G.; Langelier, È. A Roadmap for the Design of Bioreactors in Mechanobiological Research and Engineering of Load-Bearing Tissues. J. Med. Devices 2011, 5, 041006. [Google Scholar] [CrossRef]
- ISO 14644-18:2023; Cleanrooms and Associated Controlled Environments. Part 18: Assessment of Suitability of Consumables. International Organization for Standardization: Geneva, Switzerland, 2023. Available online: https://www.iso.org/es/contents/data/standard/08/14/81440.html?browse=ics (accessed on 25 June 2024).
- Jang, J.; Moon, S.-J.; Hong, S.-H.; Kim, I.-H. Colorimetric pH Measurement of Animal Cell Culture Media. Biotechnol. Lett. 2010, 32, 1599–1607. [Google Scholar] [CrossRef] [PubMed]
- European Pharmacopoeia—Chapter 2.6.27 Microbiological Examination of Cell-Based Preparations Revised—ECA Academy. Available online: https://www.gmp-compliance.org/gmp-news/european-pharmacopoeia-chapter-2-6-27-microbiological-examination-of-cell-based-preparations-revised (accessed on 22 May 2024).
- Andreú, E.J.; Larreategi, P.; Prósper, F.; Zaldua, A.M. Devices for Cellularized Membrane Cultivation and Kits. 2020. EP3719111A1. Available online: https://worldwide.espacenet.com/patent/search/family/066334334/publication/EP3719111A1?q=pn%3DEP3719111A1 (accessed on 25 June 2024).
Property | Value | Method |
---|---|---|
Hardness Shore A | 60 | DIN ISO 48-4 [18] |
Tear strength | 15 N/mm | ASTM D 624 B [19] |
Tensile strength | 7.3 N/mm2 | ISO 37 type 1 [20] |
Elongation at break | 290% | ISO 37 type 1 [20] |
A Series | B Series | |
---|---|---|
48 h | 7.54 ± 0.04 | 8.76 ± 0.01 |
96 h | 8.73 ± 0.08 | 7.46 ± 0.01 |
Property | Device A | Device B |
---|---|---|
48 h | Correct | Correct |
96 h | Correct | Correct |
Total n° Cells | Performance of Cell Culture (n° Cells/cm2) | % Viability | |
---|---|---|---|
Bioreactor under development (100 cm2) | 7.3 × 106 | 73,000 cells/cm2 | >95 |
Standard culture flask (175 cm3) | 9 × 106 | 51,500 cells/cm2 | >95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gereka, A.; Urtaza, U.; Larreategi, P.; Prosper, F.; Andreu, E.J.; Zaldua, A.M. A Bioreactor for Celullarised Membrane Culture and Delivery under Sterile Conditions. Bioengineering 2024, 11, 785. https://doi.org/10.3390/bioengineering11080785
Gereka A, Urtaza U, Larreategi P, Prosper F, Andreu EJ, Zaldua AM. A Bioreactor for Celullarised Membrane Culture and Delivery under Sterile Conditions. Bioengineering. 2024; 11(8):785. https://doi.org/10.3390/bioengineering11080785
Chicago/Turabian StyleGereka, Ainitze, Uzuri Urtaza, Pablo Larreategi, Felipe Prosper, Enrique José Andreu, and Ane Miren Zaldua. 2024. "A Bioreactor for Celullarised Membrane Culture and Delivery under Sterile Conditions" Bioengineering 11, no. 8: 785. https://doi.org/10.3390/bioengineering11080785
APA StyleGereka, A., Urtaza, U., Larreategi, P., Prosper, F., Andreu, E. J., & Zaldua, A. M. (2024). A Bioreactor for Celullarised Membrane Culture and Delivery under Sterile Conditions. Bioengineering, 11(8), 785. https://doi.org/10.3390/bioengineering11080785