Auxiliary Diagnosis of Dental Calculus Based on Deep Learning and Image Enhancement by Bitewing Radiographs
Abstract
:1. Introduction
- Using the YOLOv8 model as a method for BW image detection achieves an accuracy of 97%, representing a 2–14% improvement compared to the latest segmentation algorithms in current research.
- Integrating a median filter and bilateral filter to reduce image noise effectively enhances the RoI while improving training accuracy. The accuracy can be enhanced to a 13–20% accuracy.
- This study uses transfer learning and image enhancement to detect dental calculus symptoms and achieve 96.11% in GoogLeNet, which is 13.9% higher than the latest research.
2. Materials and Methods
2.1. Detection of Single-Tooth Location in BW Images
2.2. Single-Tooth Segmentation from BW Images
- A.
- Image Preprocessing
- B.
- BW Image Pixel-Projection Algorithm
2.3. Single-Tooth Image Enhancement
2.3.1. Median Filter
Algorithm 1. Median Filter. |
Input : filtering input image. K: neighborhood kernel. : kernel’s width and height. Output filtering output image. Hint: m |
2.3.2. Bilateral Filter
Algorithm 2. Bilateral Filter. |
Input : filtering input image. X: the coordinates of the current pixel. Ω: the window center centered in X. : the range kernel for smoothing differences in intensities. : the spatial kernel for smoothing differences in coordinates. W: normalization term between spatial closeness () and intensity difference (). Output filtering output image. Hint: |
2.3.3. Binarization
2.3.4. Mathematical Morphology
2.3.5. Canny Edge Detection
2.4. CNN Training and Validation
2.4.1. Dataset Augmentation
2.4.2. Hyperparameter Tuning
- Learning rate: This controls the updated speed during training. A higher learning rate can accelerate convergence but may lead to oscillations, while a lower learning rate may result in slow convergence.
- Batch size: This represents the number of samples used to update the model parameters during each training iteration. A larger batch size can improve the training speed but increases memory requirements, whereas a smaller batch size may lead to unstable training.
- Epoch: This represents the number of times the entire training dataset is traversed during training. Increasing the number of epochs allows the model to better learn from the data but may also lead to overfitting.
2.4.3. CNN Model Training
3. Results
- A.
- YOLO Detects Single Teeth
- Precision: the proportion of all items detected as targets that are correctly classified as targets.
- Recall: the proportion of all targets in the data that are correctly classified as targets, also called sensitivity.
- mAP (mean average precision): the average of these average precision values across all classes, which is computed by plotting a precision–recall curve for each class and calculating the area under the curve (AUC).
- Specificity: the proportion of targets that are actually not diseases that are tested as correct.
- B.
- Dental Calculus Classification Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization, WHO. Global Oral Health Status Report: Towards Universal Health Coverage for Oral Health by 2030; Management-Screening, Diagnosis and Treatment (MND); Noncommunicable Diseases, Rehabilitation and Disability (NCD): Geneva, Switzerland, 2022; ISBN 978-92-4-006148-4. [Google Scholar]
- Chan, A.K.Y.; Chu, C.H.; Ogawa, H.; Lai, E.H.-H. Improving oral health of older adults for healthy ageing. J. Dent. Sci. 2024, 19, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Spagnuolo, G.; Sorrentino, R. The Role of Digital Devices in Dentistry: Clinical Trends and Scientific Evidences. J. Clin. Med. 2020, 9, 1692. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Shen, Y.; Wan, S.; Shang, W.-L.; Yu, K. Hybrid Intelligence-Driven Medical Image Recognition for Remote Patient Diagnosis in Internet of Medical Things. IEEE J. Biomed. Health Inform. 2022, 26, 5817–5828. [Google Scholar] [CrossRef] [PubMed]
- Akcalı, A.; Lang, N.P. Dental calculus: The calcified biofilm and its role in disease development. Periodontol. 2000 2018, 76, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Schätzle, M.; Löe, H.; Lang, N.P.; Bürgin, W.; Anerud, A.; Boysen, H. The clinical course of chronic periodontitis. J. Clin. Periodontol. 2004, 31, 1122–1127. [Google Scholar] [CrossRef] [PubMed]
- Effect of Rough Surfaces Upon Gingival Tissue—Jens Waerhaug. 1956. Available online: https://journals.sagepub.com/doi/10.1177/00220345560350022601 (accessed on 26 February 2024).
- Schroeder, H.E.; Shanley, D. Formation and Inhibition of Dental Calculus. J. Periodontol. 1969, 40, 643–646. Available online: https://aap.onlinelibrary.wiley.com/doi/10.1902/jop.1969.40.11.643 (accessed on 26 February 2024). [CrossRef] [PubMed]
- Hinrichs, J. The Role of Dental Calculus and Other Local Predisposing Factors. Carranza’s Clin. Periodontal. 2012, 1, 217–231. [Google Scholar] [CrossRef]
- Suvan, J.; Leira, Y.; Sancho, F.M.M.; Graziani, F.; Derks, J.; Tomasi, C. Subgingival instrumentation for treatment of periodontitis. A systematic review. J. Clin. Periodontol. 2020, 47 (Suppl. S22), 155–175. [Google Scholar] [CrossRef] [PubMed]
- Ridao-Sacie, C.; Segura-Egea, J.J.; Fernández-Palacín, A.; Bullón-Fernández, P.; Ríos-Santos, J.V. Radiological assessment of periapical status using the periapical index: Comparison of periapical radiography and digital panoramic radiography. Int. Endod. J. 2007, 40, 433–440. [Google Scholar] [CrossRef]
- Corbet, E.F.; Ho, D.K.; Lai, S.M. Radiographs in periodontal disease diagnosis and management. Aust. Dent. J. 2009, 54 (Suppl. S1), S27–S43. [Google Scholar] [CrossRef]
- Tugnait, A.; Clerehugh, V.; Hirschmann, P.N. The usefulness of radiographs in diagnosis and management of periodontal diseases: A review. J. Dent. 2000, 28, 219–226. [Google Scholar] [CrossRef]
- Buchanan, S.A.; Jenderseck, R.S.; Granet, M.A.; Kircos, L.T.; Chambers, D.W.; Robertson, P.B. Radiographic detection of dental calculus. J. Periodontol. 1987, 58, 747–751. [Google Scholar] [CrossRef]
- Hyer, J.C.; Deas, D.E.; Palaiologou, A.A.; Noujeim, M.E.; Mader, M.J.; Mealey, B.L. Accuracy of dental calculus detection using digital radiography and image manipulation. J. Periodontol. 2021, 92, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Galal, A.; Manson-Hing, L.; Jamison, H. A comparison of combinations of clinical and radiographic examinations in evaluation of a dental clinic population. Oral Surg. Oral Med. Oral Pathol. 1985, 60, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.-C.; Chen, T.-Y.; Chou, H.-S.; Lin, S.-Y.; Liu, S.-Y.; Chen, Y.-A.; Liu, Y.-L.; Chen, C.-A.; Huang, Y.-C.; Chen, S.-L.; et al. Caries and Restoration Detection Using Bitewing Film Based on Transfer Learning with CNNs. Sensors 2021, 21, 4613. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.-C.; Huang, Y.-C.; Chen, T.-Y.; Li, K.-C.; Lin, Y.-J.; Liu, Y.-L.; Yan, H.-R.; Yang, Y.-J.; Chen, C.-A.; Chen, S.-L.; et al. Deep Learning for Dental Diagnosis: A Novel Approach to Furcation Involvement Detection on Periapical Radiographs. Bioengineering 2023, 10, 802. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Chen, M.-Y.; Chen, T.-Y.; Chan, M.-L.; Huang, Y.-Y.; Liu, Y.-L.; Lee, P.-T.; Lin, G.-J.; Li, T.-F.; Chen, C.-A.; et al. Improving Dental Implant Outcomes: CNN-Based System Accurately Measures Degree of Peri-Implantitis Damage on Periapical Film. Bioengineering 2023, 10, 640. [Google Scholar] [CrossRef] [PubMed]
- Chuo, Y.; Lin, W.-M.; Chen, T.-Y.; Chan, M.-L.; Chang, Y.-S.; Lin, Y.-R.; Lin, Y.-J.; Shao, Y.-H.; Chen, C.-A.; Chen, S.-L.; et al. A High-Accuracy Detection System: Based on Transfer Learning for Apical Lesions on Periapical Radiograph. Bioengineering 2022, 9, 777. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-L.; Chen, T.-Y.; Mao, Y.-C.; Lin, S.-Y.; Huang, Y.-Y.; Chen, C.-A.; Lin, Y.-J.; Hsu, Y.-M.; Li, C.-A.; Chiang, W.-Y.; et al. Automated Detection System Based on Convolution Neural Networks for Retained Root, Endodontic Treated Teeth, and Implant Recognition on Dental Panoramic Images. IEEE Sens. J. 2022, 22, 23293–23306. [Google Scholar] [CrossRef]
- Chen, S.-L.; Chen, T.-Y.; Huang, Y.-C.; Chen, C.-A.; Chou, H.-S.; Huang, Y.-Y.; Lin, W.-C.; Li, T.-C.; Yuan, J.-J.; Abu, P.A.R.; et al. Missing Teeth and Restoration Detection Using Dental Panoramic Radiography Based on Transfer Learning with CNNs. IEEE Access 2022, 10, 118654–118664. [Google Scholar] [CrossRef]
- Bouchahma, M.; Ben Hammouda, S.; Kouki, S.; Alshemaili, M.; Samara, K. An Automatic Dental Decay Treatment Prediction using a Deep Convolutional Neural Network on X-Ray Images. In Proceedings of the 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA), Abu Dhabi, United Arab Emirates, 3–7 November 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Chen, S.-L.; Chen, T.-Y.; Mao, Y.-C.; Lin, S.-Y.; Huang, Y.-Y.; Chen, C.-A.; Lin, Y.-J.; Chuang, M.-H.; Abu, P.A.R. Detection of Various Dental Conditions on Dental Panoramic Radiography Using Faster R-CNN. IEEE Access 2023, 11, 127388–127401. [Google Scholar] [CrossRef]
- Gurses, A.; Oktay, A.B. Tooth Restoration and Dental Work Detection on Panoramic Dental Images via CNN. In Proceedings of the 2020 Medical Technologies Congress (TIPTEKNO), Antalya, Turkey, 19–20 November 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Reis, D.; Kupec, J.; Hong, J.; Daoudi, A. Real-Time Flying Object Detection with YOLOv8. arXiv 2023, arXiv:2305.09972. [Google Scholar]
- Min, L.; Fan, Z.; Lv, Q.; Reda, M.; Shen, L.; Wang, B. YOLO-DCTI: Small Object Detection in Remote Sensing Base on Contextual Transformer Enhancement. Remote Sens. 2023, 15, 3970. [Google Scholar] [CrossRef]
- Ahmed, T.; Maaz, A.; Mahmood, D.; Abideen, Z.U.; Arshad, U.; Ali, R.H. The YOLOv8 Edge: Harnessing Custom Datasets for Superior Real-Time Detection. In Proceedings of the 2023 18th International Conference on Emerging Technologies (ICET), Peshawar, Pakistan, 6–7 November 2023; pp. 38–43. [Google Scholar] [CrossRef]
- Erdelyi, R.-A.; Duma, V.-F.; Sinescu, C.; Dobre, G.M.; Bradu, A.; Podoleanu, A. Dental Diagnosis and Treatment Assessments: Between X-rays Radiography and Optical Coherence Tomography. Materials 2020, 13, 4825. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-L.; Chou, H.-S.; Chuo, Y.; Lin, Y.-J.; Tsai, T.-H.; Peng, C.-H.; Tseng, A.-Y.; Li, K.-C.; Chen, C.-A.; Chen, T.-Y. Classification of the Relative Position between the Third Molar and the Inferior Alveolar Nerve Using a Convolutional Neural Network Based on Transfer Learning. Electronics 2024, 13, 702. [Google Scholar] [CrossRef]
- Orhan, K.; Belgin, C.A.; Manulis, D.; Golitsyna, M.; Bayrak, S.; Aksoy, S.; Sanders, A.; Önder, M.; Ezhov, M.; Shamshiev, M.; et al. Determining the reliability of diagnosis and treatment using artificial intelligence software with panoramic radiographs. Imaging Sci. Dent. 2023, 53, 199. [Google Scholar] [CrossRef] [PubMed]
- Mayerhoefer, M.E.; Materka, A.; Langs, G.; Häggström, I.; Szczypiński, P.; Gibbs, P.; Cook, G. Introduction to Radiomics. J. Nucl. Med. 2020, 61, 488–495. [Google Scholar] [CrossRef]
- George, J.; Hemanth, T.S.; Raju, J.; Mattapallil, J.G.; Naveen, N. Dental Radiography Analysis and Diagnosis using YOLOv8. In Proceedings of the 2023 9th International Conference on Smart Computing and Communications (ICSCC), Kochi, India, 17–19 August 2023; pp. 102–107. [Google Scholar] [CrossRef]
- Büttner, M.; Schneider, L.; Krasowski, A.; Krois, J.; Feldberg, B.; Schwendicke, F. Impact of Noisy Labels on Dental Deep Learning—Calculus Detection on Bitewing Radiographs. J. Clin. Med. 2023, 12, 3058. [Google Scholar] [CrossRef]
Category | Image Number |
---|---|
Training dataset | 130 |
Testing dataset | 70 |
Validation dataset | 235 |
Model | Backbone | Neck | Head |
---|---|---|---|
YOLOv4 | CSPDarknet53 | PANet | YOLO head |
YOLOv5 | Custom CSPNet | PANet | YOLO head |
YOLOv7 | Extended CSPNet | E-ELAN | YOLO head with decoupled head |
YOLOv8 | Mixture of experts | Advanced PANet | YOLO head with decoupled head |
Epochs | Batch Size | Learning Rate | |
---|---|---|---|
YOLOv4 | 30 | 1 | 0.001 |
YOLOv5 | 100 | 8 | 0.01 |
YOLOv7 | 228 | 4 | 0.01 |
YOLOv8 | 50 | 8 | 0.01 |
The number of datasets before and after dataset augmentation | |||||||||||
Before | After | ||||||||||
Dental calculus | 428 | 670 | |||||||||
Without dental calculus | 912 | 670 | |||||||||
The number of datasets in the CNN model | |||||||||||
Training | Testing | Validation | |||||||||
Image number | 750 | 322 | 268 |
Hyperparameter | Value |
---|---|
Learning Rate | 0.0001 |
Batch Size | 4 |
Epochs | 30 |
Validation Frequency | 50 |
Exposure Time | Incrementally adjustable from ≤ 0.03 to 3.2 s |
X-Ray generator | High-frequency generator for a constant high |
X-Ray tube focal spot | ≤ 0.5 mm |
Image developing speed | ≤ 5 s |
Sensor size | 31.3 mm × 44.5 mm |
Image format | DCI |
Hardware | Specifications | Manufacturer | Software | Version |
---|---|---|---|---|
CPU | Intel(R) core i7-8700 | Intel, California, United States | MATLAB | R2023b |
GPU | NVIDIA GeForce GTX 2070 | NVIDIA, California, United States | Deep Network designer | 14.5 |
DRAM | 32 GB | ADATA, New Taipei City, Taiwan | PyTorch | 1.8 |
Ground Truth Value | |||
---|---|---|---|
True | False | ||
Predicted Value | True | Tp (True positive) | Fp (False positive) |
False | Fn (False negative) | Tn (True negative) |
Method | Algorithm | YOLOv4 | YOLOv5 | YOLOv7 | YOLOv8 |
---|---|---|---|---|---|
Accuracy | 82.4% | 91.8% | 94.72% | 95.66% | 96.99% |
Precision | Recall (Sensitivity) | Specificity | mAP | ||
---|---|---|---|---|---|
This Study | YOLOv4 | 92.4% | 92.4% | 91.77% | 92.00% |
YOLOv5 | 95.86% | 97.82% | 96.85% | 98.96% | |
YOLOv7 | 97.2% | 97.65% | 98.10% | 99.24% | |
YOLOv8 | 97.48% | 96.81% | 98.25% | 99.27% | |
Compared with [19] | 96.91% | 82.32% | X | 82.77% | |
Compared with [31] | 82.36% | 78.38% | X | 80.37% |
This Study | Method in [31] | |||
---|---|---|---|---|
Model | YOLOv8 | YOLOv8S | YOLOv8M | YOLOv8L |
Function | Tooth Detction | |||
Precision | 0.975 | 0.956 | 0.914 | 0.924 |
Recall | 0.968 | 0.945 | 0.942 | 0.977 |
mAP50 | 0.993 | 0.921 | 0.909 | 0.935 |
Epoch | Iteration | Time Elapsed | Mini Batch | Testing |
---|---|---|---|---|
1 | 100 | 00:00:32 | 62.50% | 86.23% |
5 | 600 | 00:02:48 | 100.00% | 92.81% |
10 | 1250 | 00:05:49 | 100.00% | 94.01% |
15 | 1850 | 00:08:37 | 100.00% | 94.91% |
20 | 2500 | 00:11:48 | 100.00% | 94.61% |
25 | 3100 | 00:14:53 | 100.00% | 94.91% |
30 | 3750 | 00:18:36 | 100.00% | 96.11% |
Original | Image Enhancement | |
---|---|---|
GoogLeNet | 75.00% | 96.11% |
ShuffleNet | 72.12% | 91.58% |
Xception | 68.33% | 92.38% |
Inception-v3 | 62.92% | 91.62% |
Ground truth: Dental calculus | ||||
Accuracy | 97.13% | 99.99% | 93.92% | 92.73% |
Ground truth: others | ||||
Accuracy | 96.17% | 99.83% | 97.25% | 91.60% |
Model | Epochs | Batch Size | Learning Rate | Precision | Recall | mAP50 |
---|---|---|---|---|---|---|
YOLOv8 | 50 | 8 | 0.01 | 0.977 | 0.965 | 0.992 |
GoogLeNet | This Study | Method in [15] | |
Original | Image Enhancement | ||
75.00% | 96.11% | 82.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, T.-J.; Lin, Y.-T.; Lin, Y.-J.; Tseng, A.-Y.; Lin, C.-Y.; Lo, L.-T.; Chen, T.-Y.; Chen, S.-L.; Chen, C.-A.; Li, K.-C.; et al. Auxiliary Diagnosis of Dental Calculus Based on Deep Learning and Image Enhancement by Bitewing Radiographs. Bioengineering 2024, 11, 675. https://doi.org/10.3390/bioengineering11070675
Lin T-J, Lin Y-T, Lin Y-J, Tseng A-Y, Lin C-Y, Lo L-T, Chen T-Y, Chen S-L, Chen C-A, Li K-C, et al. Auxiliary Diagnosis of Dental Calculus Based on Deep Learning and Image Enhancement by Bitewing Radiographs. Bioengineering. 2024; 11(7):675. https://doi.org/10.3390/bioengineering11070675
Chicago/Turabian StyleLin, Tai-Jung, Yen-Ting Lin, Yuan-Jin Lin, Ai-Yun Tseng, Chien-Yu Lin, Li-Ting Lo, Tsung-Yi Chen, Shih-Lun Chen, Chiung-An Chen, Kuo-Chen Li, and et al. 2024. "Auxiliary Diagnosis of Dental Calculus Based on Deep Learning and Image Enhancement by Bitewing Radiographs" Bioengineering 11, no. 7: 675. https://doi.org/10.3390/bioengineering11070675
APA StyleLin, T. -J., Lin, Y. -T., Lin, Y. -J., Tseng, A. -Y., Lin, C. -Y., Lo, L. -T., Chen, T. -Y., Chen, S. -L., Chen, C. -A., Li, K. -C., & Abu, P. A. R. (2024). Auxiliary Diagnosis of Dental Calculus Based on Deep Learning and Image Enhancement by Bitewing Radiographs. Bioengineering, 11(7), 675. https://doi.org/10.3390/bioengineering11070675