Impact of Polyethylene-Glycol-Induced Water Potential on Methane Yield and Microbial Consortium Dynamics in the Anaerobic Degradation of Glucose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Methane Potential (Bth)
2.2. Methane Production Potential Assay
2.2.1. Anaerobic Decomposition Characteristics of PEG
2.2.2. Water Potential (Ψ) Inhibition Assay
2.2.3. Ultimate Methane Potential (Bu)
2.3. Microbial Community Analysis
2.3.1. DNA Extraction and Quantification
2.3.2. Library Construction and Sequencing
2.4. Analysis
2.4.1. Water Potential (Ψ) Analysis
2.4.2. Chemical Analysis
2.4.3. Statistical Analysis
3. Results and Discussion
3.1. Anaerobic Degradation Assay
3.2. Water Potential (Ψ) Inhibition Assay
3.3. Microbial Community
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mengel, K.; Kirkby, E.A. Principles of Plant Nutrition, 2nd ed.; International Potash Institute: Zug, Switzerland, 1979. [Google Scholar]
- Morgan, J.M. Osmoregulation and water stress in higher plants. Annu. Rev. Plant Physiol. 1984, 35, 299–319. [Google Scholar] [CrossRef]
- Liu, X.; Liu, H.; Peng, L.; Su, H. Influence of ammonium acetate and betaine supplements on the anaerobic digestion under high salinity conditions. Energy Sci. Eng. 2020, 8, 2621–2627. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, Y.; Liu, S.; Pan, M.; Yang, J.; Chen, S. Denitrification activities and N2O production under salt stress with varying COD/N ratios and terminal electron acceptors. Chem. Eng. J. 2013, 215, 252–260. [Google Scholar] [CrossRef]
- Wang, R.; Zheng, P.; Ding, A.; Zhang, M.; Ghulam, A.; Yang, C.; Zhao, H.-P. Effects of inorganic salts on denitrifying granular sludge: The acute toxicity and working mechanisms. Bioresour. Technol. 2016, 204, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Bremer, E.; Krämer, R. Responses of microorganisms to osmotic stress. Annu. Rev. Microbiol. 2019, 73, 313–334. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.M. Perspectives on: The response to osmotic challenges: Bacterial responses to osmotic challenges. J. Gen. Physiol. 2015, 145, 381. [Google Scholar] [CrossRef] [PubMed]
- Phae, C.-G.; Chu, Y.-S.; Park, J.-S. Investigation of affect on composting process and plant growth of salt concetration in food waste. J. Korea Org. Resour. Recycl. Assoc. 2002, 10, 103–111. [Google Scholar]
- Demirel, B.; Scherer, P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: A review. Rev. Environ. Sci. Bio/Technol. 2008, 7, 173–190. [Google Scholar] [CrossRef]
- Ali Shah, F.; Mahmood, Q.; Maroof Shah, M.; Pervez, A.; Ahmad Asad, S. Microbial ecology of anaerobic digesters: The key players of anaerobiosis. Sci. World J. 2014, 2014, 183752. [Google Scholar] [CrossRef] [PubMed]
- Ziemiński, K.; Frąc, M. Methane fermentation process as anaerobic digestion of biomass: Transformations, stages and microorganisms. Afr. J. Biotechnol. 2012, 11, 4127–4139. [Google Scholar]
- Xu, M.; Abrar, M.M.; Sohail, M.; Saqib, M.; Akhtar, J.; Abbas, G.; Wahab, H.A.; Mumtaz, M.Z.; Mehmood, K.; Memon, M.S. Interactive Higher Salinity and Water Stress Levels Severely Reduced the Growth, Stress Tolerance, and Physiological Responses of Guava (Psidium guajava L.). 2022. Available online: https://doi.org/10.21203/rs.3.rs-1569115/v1 (accessed on 22 April 2022).
- Wagner, D. Effect of varying soil water potentials on methanogenesis in aerated marshland soils. Sci. Rep. 2017, 7, 14706. [Google Scholar] [CrossRef] [PubMed]
- Conrad, R. Methane production in soil environments—Anaerobic biogeochemistry and microbial life between flooding and desiccation. Microorganisms 2020, 8, 881. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-K.; Kim, S.-M.; Kim, M.-K.; Choi, J.-T.; Nam, S.-Y. Characteristics of the food waste and wastewater discharged from food waste treatment process. J. Environ. Health Sci. 2009, 35, 526–531. [Google Scholar] [CrossRef]
- McCarty, P.L.; McKinney, R.E. Salt toxicity in anaerobic digestion. J. (Water Pollut. Control Fed.) 1961, 33, 399–415. [Google Scholar]
- Kugelman, I.J.; McCarty, P.L. Cation toxicity and stimulation in anaerobic waste treatment. J. (Water Pollut. Control Fed.) 1965, 37, 97–116. [Google Scholar]
- Yeo, J.; Kim, C.-G.; Lee, J.-H.; Song, E.; Yoon, Y.-M. Effects of water potential on anaerobic methane production and a microbial consortium. Fermentation 2023, 9, 244. [Google Scholar] [CrossRef]
- Srisuwanno, W.; Pornmai, K.; Seneesrisakul, K.; Jiraprasertwong, A.; Leethochawalit, M.; Rangsunvijit, P.; Chavadej, S. High biogas evolution of distillery wastewater under potassium toxicity in a three-stage upflow anaerobic sludge blanket. J. Environ. Chem. Eng. 2023, 11, 110205. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, J.J. Effect of potassium inhibition on the thermophilic anaerobic digestion of swine waste. Water Environ. Res. 2007, 79, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Boe, K.; Angelidaki, I. Anaerobic co-digestion of desugared molasses with cow manure; focusing on sodium and potassium inhibition. Bioresour. Technol. 2011, 102, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Jard, G.; Jackowiak, D.; Carrère, H.; Delgenès, J.-P.; Torrijos, M.; Steyer, J.-P.; Dumas, C. Batch and semi-continuous anaerobic digestion of Palmaria palmata: Comparison with Saccharina latissima and inhibition studies. Chem. Eng. J. 2012, 209, 513–519. [Google Scholar] [CrossRef]
- Zha, X.; Tsapekos, P.; Alvarado-Morales, M.; Lu, X.; Angelidaki, I. Potassium inhibition during sludge and biopulp co-digestion; experimental and model-based approaches. Waste Manag. 2020, 113, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Epstein, W. The roles and regulation of potassium in bacteria. Prog. Nucleic Acid Res. Mol. Biol. 2003, 75, 293–320. [Google Scholar] [PubMed]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef] [PubMed]
- Kuo, W.-C.; Cheng, K.-Y. Use of respirometer in evaluation of process and toxicity of thermophilic anaerobic digestion for treating kitchen waste. Bioresour. Technol. 2007, 98, 1805–1811. [Google Scholar] [CrossRef] [PubMed]
- Onodera, T.; Sase, S.; Choeisai, P.; Yoochatchaval, W.; Sumino, H.; Yamaguchi, T.; Ebie, Y.; Xu, K.; Tomioka, N.; Mizuochi, M. Development of a treatment system for molasses wastewater: The effects of cation inhibition on the anaerobic degradation process. Bioresour. Technol. 2013, 131, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Sartori, M.; Nesci, A.; Etcheverry, M. Impact of osmotic/matric stress and heat shock on environmental tolerance induction of bacterial biocontrol agents against Fusarium verticillioides. Res. Microbiol. 2010, 161, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Boyle, W. Energy recovery from sanitary landfills-a review. Microb. Energy Convers. 1977, 119–138. [Google Scholar]
- Angelidaki, I.; Alves, M.; Bolzonella, D.; Borzacconi, L.; Campos, J.; Guwy, A.; Kalyuzhnyi, S.; Jenicek, P.; Van Lier, J. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Sci. Technol. 2009, 59, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Lay, J.-J.; Li, Y.-Y.; Noike, T. Mathematical model for methane production from landfill bioreactor. J. Environ. Eng. 1998, 124, 730–736. [Google Scholar] [CrossRef]
- Rawlins, S.L.; Campbell, G.S. Water potential: Thermocouple psychrometry. Methods Soil Anal. Part 1 Phys. Mineral. Methods 1986, 5, 597–618. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater; APHA: Washington, DC, USA, 1998; p. 324. [Google Scholar]
- Sørensen, A.H.; Winther-Nielsen, M.; Ahring, B.K. Kinetics of lactate, acetate and propionate in unadapted and lactate-adapted thermophilic, anaerobic sewage sludge: The influence of sludge adaptation for start-up of thermophilic UASB-reactors. Appl. Microbiol. Biotechnol. 1991, 34, 823–827. [Google Scholar] [CrossRef]
- Huang, Y.-L.; Li, Q.-B.; Deng, X.; Lu, Y.-H.; Liao, X.-K.; Hong, M.-Y.; Wang, Y. Aerobic and anaerobic biodegradation of polyethylene glycols using sludge microbes. Process Biochem. 2005, 40, 207–211. [Google Scholar] [CrossRef]
- Dwyer, D.F.; Tiedje, J.M. Degradation of ethylene glycol and polyethylene glycols by methanogenic consortia. Appl. Environ. Microbiol. 1983, 46, 185–190. [Google Scholar] [CrossRef]
- Inácio, C.R.; Nascimento, G.S.; Barboza, A.P.M.; Neves, B.R.; Andrade, Â.L.; Teixeira, G.M.; Sousa, L.R.; de A. Vieira, P.M.; Novack, K.M.; Dos Santos, V.M. Controlled release and cell viability of ketoconazole incorporated in PEG 4000 derivatives. Polymers 2023, 15, 2513. [Google Scholar] [CrossRef]
- Bueno de Mesquita, C.P.; Zhou, J.; Theroux, S.M.; Tringe, S.G. Methanogenesis and salt tolerance genes of a novel halophilic methanosarcinaceae metagenome-assembled genome from a former solar saltern. Genes 2021, 12, 1609. [Google Scholar] [CrossRef] [PubMed]
- Sudmalis, D.; Millah, S.; Gagliano, M.; Butré, C.; Plugge, C.; Rijnaarts, H.; Zeeman, G.; Temmink, H. The potential of osmolytes and their precursors to alleviate osmotic stress of anaerobic granular sludge. Water Res. 2018, 147, 142–151. [Google Scholar] [CrossRef]
- Sorokin, D.Y.; McGenety, T. Methanogens and methanogenesis in hypersaline environments. In Biogenesis of Hydrocarbons; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–24. [Google Scholar]
- Oren, A. Bioenergetic aspects of halophilism. Microbiol. Mol. Biol. Rev. 1999, 63, 334–348. [Google Scholar] [CrossRef] [PubMed]
- Gunde-Cimerman, N.; Plemenitaš, A.; Oren, A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol. Rev. 2018, 42, 353–375. [Google Scholar] [CrossRef]
- Korber, D.; Greer, G.; Wolfaardt, G.; Kohlman, S. Efficacy enhancement of trisodium phosphate against spoilage and pathogenic bacteria in model biofilms and on adipose tissue. J. Food Prot. 2002, 65, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.-W.; Shin, H.-H.; Kim, J.-G. A study of dewatering phenomena of potato slice cytorrhysed by high molecules. Korean J. Food Nutr. 2006, 19, 358–365. [Google Scholar]
- Thompson, D.S.; Islam, A. Plant cell wall hydration and plant physiology: An exploration of the consequences of direct effects of water deficit on the plant cell wall. Plants 2021, 10, 1263. [Google Scholar] [CrossRef]
- Harris, R. Effect of water potential on microbial growth and activity. Water Potential Relat. Soil Microbiol. 1981, 9, 23–95. [Google Scholar]
- Evans, P.N.; Boyd, J.A.; Leu, A.O.; Woodcroft, B.J.; Parks, D.H.; Hugenholtz, P.; Tyson, G.W. An evolving view of methane metabolism in the archaea. Nat. Rev. Microbiol. 2019, 17, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Mand, T.D.; Metcalf, W.W. Energy conservation and hydrogenase function in methanogenic archaea, in particular the genus Methanosarcina. Microbiol. Mol. Biol. Rev. 2019, 83, e00020-00019. [Google Scholar] [CrossRef] [PubMed]
- Guss, A.M.; Mukhopadhyay, B.; Zhang, J.K.; Metcalf, W.W. Genetic analysis of mch mutants in two Methanosarcina species demonstrates multiple roles for the methanopterin-dependent C-1 oxidation/reduction pathway and differences in H2 metabolism between closely related species. Mol. Microbiol. 2005, 55, 1671–1680. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Whitman, W.B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. N. Y. Acad. Sci. 2008, 1125, 171–189. [Google Scholar] [CrossRef] [PubMed]
- Kurade, M.B.; Saha, S.; Salama, E.-S.; Patil, S.M.; Govindwar, S.P.; Jeon, B.-H. Acetoclastic methanogenesis led by Methanosarcina in anaerobic co-digestion of fats, oil and grease for enhanced production of methane. Bioresour. Technol. 2019, 272, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, C.; Liu, Y.; Zhang, R.; Li, M. Non-negligible roles of archaea in coastal carbon biogeochemical cycling. Trends Microbiol. 2023, 31, 586–600. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.-C.; Zhou, L.; Mbadinga, S.M.; Liu, J.-F.; Yang, S.-Z.; Gu, J.-D.; Mu, B.-Z. Formate-dependent microbial conversion of CO2 and the dominant pathways of methanogenesis in production water of high-temperature oil reservoirs amended with bicarbonate. Front. Microbiol. 2016, 7, 365. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.-z.; Fang, S.; Zhang, L.; Huang, W.; Shao, Q.; Fang, F.; Feng, Q.; Cao, J.; Luo, J. Distribution patterns of functional microbial community in anaerobic digesters under different operational circumstances: A review. Bioresour. Technol. 2021, 341, 125823. [Google Scholar] [CrossRef] [PubMed]
- Feldewert, C.; Lang, K.; Brune, A. The hydrogen threshold of obligately methyl-reducing methanogens. FEMS Microbiol. Lett. 2020, 367, fnaa137. [Google Scholar] [CrossRef] [PubMed]
- Dmitrieva, N.I.; Burg, M.B. Analysis of DNA breaks, DNA damage response, and apoptosis produced by high NaCl. Am. J. Physiol.-Ren. Physiol. 2008, 295, F1678–F1688. [Google Scholar] [CrossRef] [PubMed]
- Evilevitch, A.; Lavelle, L.; Knobler, C.M.; Raspaud, E.; Gelbart, W.M. Osmotic pressure inhibition of DNA ejection from phage. Proc. Natl. Acad. Sci. USA 2003, 100, 9292–9295. [Google Scholar] [CrossRef] [PubMed]
Parameters | Blank | Treatments | |||||
---|---|---|---|---|---|---|---|
W1 | W2 | W3 | W4 | W5 | |||
Inoculum (mL) | 70 | 70 | 70 | 70 | 70 | 70 | |
Substrate 1 solution | PEG conc. 2 (%) | - | 16.25 | 22.75 | 31.85 | 35.75 | 39.00 |
Volume (mL) | - | 130 | 130 | 130 | 130 | 130 | |
D.W. 3 volume (mL) | 130 | - | - | - | - | - | |
Operation volume (mL) | 200 | 200 | 200 | 200 | 200 | 200 | |
Ψ 4 (MPa) | −0.36 (0.03) 5 | −0.88 (0.00) | −1.47 (0.02) | −3.00 (0.06) | −4.00 (0.11) | −5.11 (0.05) |
Parameters | Blank | Control | Treatments | ||||
---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | ||||
Inoculum (mL) | 70 | 70 | 70 | 70 | 70 | 70 | |
Substrate 1 (g) | - | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | |
S/I ratio 2 (-) | - | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | |
W.P. 3 adjusting solution | PEG 4 conc. (%) | - | - | 22.75 | 31.85 | 35.75 | 39.00 |
Volume (mL) | - | - | 130 | 130 | 130 | 130 | |
D.W. 5 volume (mL) | 130 | 130 | - | - | - | - | |
Operation volume (mL) | 200 | 200 | 200 | 200 | 200 | 200 | |
Ψ 6 (MPa) | −0.94 (0.05) 7 | −0.92 (0.05) | −1.48 (0.06) | −2.97 (0.07) | −4.01 (0.08) | −5.10 (0.08) |
Parameters | pH | TS 1 | vs. 2 | TCOD 3 | SCOD 4 | TKN 5 | NH4+-N 6 | Alkalinity | TVFAs 7 |
---|---|---|---|---|---|---|---|---|---|
(-) | (mg L−1) | (mg L−1) | (mg L−1) | (mg L−1) | (mg L−1) | (mg L−1) | (mg L−1 as CaCO3) | (mg L−1 as Acetate) | |
Inoculum | 7.96 | 30,044 | 14,767 | 21,050 | 6012 | 2201 | 1314 | 6389 | 113 |
Parameters | Ψ Treatments 1 | |||||
---|---|---|---|---|---|---|
W1 | W2 | W3 | W4 | W5 | ||
Ψ 2 (MPa) | −0.88 | −1.47 | −3.00 | −4.00 | −5.11 | |
VSr 3 (%) | 0.08 | 0.01 | 0.00 | 0.00 | 0.00 | |
Model parameters | Bu 4 (Nm3 kg−1-VSadded) | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 |
P 5 (mL) | 16.0 | 3.0 | 0.4 | 0.3 | 0.2 | |
Rm 6 (mL day−1) | 0.43 | 0.11 | 0.04 | 0.13 | 0.08 | |
λ 7 (days) | 7.34 | i.v. 8 | i.v. | i.v. | i.v. | |
R2 | 0.973 | 0.855 | 0.875 | 0.939 | 0.733 |
Parameters | Control | Treatments 1 | ||||
---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | |||
Ψ 2 (MPa) | −0.92 | −1.48 | −2.97 | −4.01 | −5.10 | |
VSr 3 (%) | 78.64 a 8 | 47.31 b | 8.98 c | 3.65 d | 0.62 e | |
Model parameters | Bu 4 (Nm3 kg−1-VSadded) | 0.293 a | 0.176 b | 0.034 c | 0.014 d | 0.002 e |
P 5 (mL) | 141 a | 85 b | 16 c | 7 d | 1 e | |
Rm 6 (mL day−1) | 4.34 a | 1.28 b | 0.19 c | 0.06 d | 0.03 e | |
λ 7 (days) | 4.95 c | 15.96 a | i.v. 9 | i.v. | i.v. | |
R2 | 0.981 | 0.980 | 0.903 | 0.875 | 0.915 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeo, J.; Jeon, Y.-W. Impact of Polyethylene-Glycol-Induced Water Potential on Methane Yield and Microbial Consortium Dynamics in the Anaerobic Degradation of Glucose. Bioengineering 2024, 11, 433. https://doi.org/10.3390/bioengineering11050433
Yeo J, Jeon Y-W. Impact of Polyethylene-Glycol-Induced Water Potential on Methane Yield and Microbial Consortium Dynamics in the Anaerobic Degradation of Glucose. Bioengineering. 2024; 11(5):433. https://doi.org/10.3390/bioengineering11050433
Chicago/Turabian StyleYeo, Jin, and Yong-Woo Jeon. 2024. "Impact of Polyethylene-Glycol-Induced Water Potential on Methane Yield and Microbial Consortium Dynamics in the Anaerobic Degradation of Glucose" Bioengineering 11, no. 5: 433. https://doi.org/10.3390/bioengineering11050433
APA StyleYeo, J., & Jeon, Y. -W. (2024). Impact of Polyethylene-Glycol-Induced Water Potential on Methane Yield and Microbial Consortium Dynamics in the Anaerobic Degradation of Glucose. Bioengineering, 11(5), 433. https://doi.org/10.3390/bioengineering11050433