Artificial Intelligence in Adult and Pediatric Dentistry: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
3. Review
3.1. Applications of AI in the Field of Periodontics
3.2. Applications of AI in the Field of Endodontics
3.3. Applications of AI in the Field of Oral and Maxillofacial Surgery
3.4. Applications of AI in the Field of Prosthodontics
3.5. Applications of AI in the Field of Dental Implantology
3.6. Applications of AI in the Field of Orthodontics
3.7. Applications of AI in the Field of Forensic Dentistry
3.8. Applications of AI in the Field of Cariology
3.9. Applications of AI in the Field of Pediatric Dentistry
3.10. Others
4. Discussion
5. Conclusions
- With the help of modern computational processing power, more sympathetic AI models should be devised that can imitate human understanding and emotions to a higher degree for the purpose of building trust with the patients and reassuring them in stressful situations
- Data management should move towards decentralized methods with the help of cloud services in order to enable individual users, who have limited processing power and information, to utilize vast amounts of polished data for training their models locally
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kishimoto, T.; Goto, T.; Matsuda, T.; Iwawaki, Y.; Ichikawa, T. Application of artificial intelligence in the dental field: A literature review. J. Prosthodont. Res. 2022, 66, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Lifschitz, V. John McCarthy (1927–2011). Nature 2011, 480, 40. [Google Scholar] [CrossRef]
- Schwendicke, F.a.; Samek, W.; Krois, J. Artificial intelligence in dentistry: Chances and challenges. J. Dent. Res. 2020, 99, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Reyes, L.T.; Knorst, J.K.; Ortiz, F.R.; Ardenghi, T.M. Scope and challenges of machine learning-based diagnosis and prognosis in clinical dentistry: A literature review. J. Clin. Transl. Res. 2021, 7, 523. [Google Scholar] [PubMed]
- Park, W.J.; Park, J.-B. History and application of artificial neural networks in dentistry. Eur. J. Dent. 2018, 12, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Shortliffe, E.H.; Buchanan, B.G. A model of inexact reasoning in medicine. Math. Biosci. 1975, 23, 351–379. [Google Scholar] [CrossRef]
- Nagi, R.; Aravinda, K.; Rakesh, N.; Gupta, R.; Pal, A.; Mann, A.K. Clinical applications and performance of intelligent systems in dental and maxillofacial radiology: A review. Imaging Sci. Dent. 2020, 50, 81. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT press: Cambridge, MA, USA, 2016. [Google Scholar]
- Bouletreau, P.; Makaremi, M.; Ibrahim, B.; Louvrier, A.; Sigaux, N. Artificial intelligence: Applications in orthognathic surgery. J. Stomatol. Oral Maxillofac. Surg. 2019, 120, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Shan, T.; Tay, F.; Gu, L. Application of artificial intelligence in dentistry. J. Dent. Res. 2021, 100, 232–244. [Google Scholar] [CrossRef]
- Schwendicke, F.; Golla, T.; Dreher, M.; Krois, J. Convolutional neural networks for dental image diagnostics: A scoping review. J. Dent. 2019, 91, 103226. [Google Scholar] [CrossRef]
- Maruyama, T.; Hayashi, N.; Sato, Y.; Hyuga, S.; Wakayama, Y.; Watanabe, H.; Ogura, A.; Ogura, T. Comparison of medical image classification accuracy among three machine learning methods. J. Xray Sci. Technol. 2018, 26, 885–893. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, F.; Pranno, N.; Franchina, A.; Di Carlo, S.; Brauner, E.; Ferri, A.; Pellegrino, G.; Grecchi, E.; Goker, F.; Stefanelli, L.V. Artificial Intelligence: A New Diagnostic Software in Dentistry: A Preliminary Performance Diagnostic Study. Int. J. Environ. Res. Public Health 2022, 19, 1728. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Xin, X.; Li, Z.; Zhang, W. Predicting postoperative pain following root canal treatment by using artificial neural network evaluation. Sci. Rep. 2021, 11, 17243. [Google Scholar] [CrossRef] [PubMed]
- Danks, R.P.; Bano, S.; Orishko, A.; Tan, H.J.; Moreno Sancho, F.; D’Aiuto, F.; Stoyanov, D. Automating Periodontal bone loss measurement via dental landmark localisation. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 1189–1199. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Kong, D.; Tang, T.; Su, D.; Yang, P.; Wang, H.; Zhao, Z.; Liu, Y. Orthodontic treatment planning based on artificial neural networks. Sci. Rep. 2019, 9, 2037. [Google Scholar] [CrossRef] [PubMed]
- Vinayahalingam, S.; Kempers, S.; Limon, L.; Deibel, D.; Maal, T.; Hanisch, M.; Bergé, S.; Xi, T. Classification of caries in third molars on panoramic radiographs using deep learning. Sci. Rep. 2021, 11, 12609. [Google Scholar] [CrossRef] [PubMed]
- Monill-González, A.; Rovira-Calatayud, L.; d’Oliveira, N.G.; Ustrell-Torrent, J.M. Artificial intelligence in orthodontics: Where are we now? A scoping review. Orthod. Craniofacial Res. 2021, 24, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Aminoshariae, A.; Kulild, J.; Nagendrababu, V. Artificial intelligence in endodontics: Current applications and future directions. J. Endod. 2021, 47, 1352–1357. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S. Management of child patient behavior: Quality of care, fear and anxiety, and the child patient. J. Endod. 2013, 39, S73–S77. [Google Scholar] [CrossRef]
- Force, U.P.S.T. Screening and Preventive Interventions for Oral Health in Children and Adolescents Aged 5 to 17 Years: US Preventive Services Task Force Recommendation Statement. JAMA 2023, 330, 1666–1673. [Google Scholar] [CrossRef]
- Kim, E.-H.; Kim, S.; Kim, H.-J.; Jeong, H.-o.; Lee, J.; Jang, J.; Joo, J.-Y.; Shin, Y.; Kang, J.; Park, A.K. Prediction of chronic periodontitis severity using machine learning models based on salivary bacterial copy number. Front. Cell. Infect. Microbiol. 2020, 10, 571515. [Google Scholar] [CrossRef] [PubMed]
- Shimpi, N.; McRoy, S.; Zhao, H.; Wu, M.; Acharya, A. Development of a periodontitis risk assessment model for primary care providers in an interdisciplinary setting. Technol. Health Care 2020, 28, 143–154. [Google Scholar] [CrossRef]
- Saghiri, M.A.; Garcia-Godoy, F.; Gutmann, J.L.; Lotfi, M.; Asgar, K. The reliability of artificial neural network in locating minor apical foramen: A cadaver study. J. Endod. 2012, 38, 1130–1134. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, M.; Inamoto, K.; Shibata, N.; Ariji, Y.; Yanashita, Y.; Kutsuna, S.; Nakata, K.; Katsumata, A.; Fujita, H.; Ariji, E. Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral Radiol. 2020, 36, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Benyo, B.; Szilagyi, L.; Haidegger, T.; Kovacs, L.; Nagy-Dobo, C. Detection of the root canal’s centerline from dental micro-CT records. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2009, 2009, 3517–3520. [Google Scholar] [CrossRef] [PubMed]
- Sukegawa, S.; Matsuyama, T.; Tanaka, F.; Hara, T.; Yoshii, K.; Yamashita, K.; Nakano, K.; Takabatake, K.; Kawai, H.; Nagatsuka, H. Evaluation of multi-task learning in deep learning-based positioning classification of mandibular third molars. Sci. Rep. 2022, 12, 684. [Google Scholar] [CrossRef]
- Vranckx, M.; Van Gerven, A.; Willems, H.; Vandemeulebroucke, A.; Ferreira Leite, A.; Politis, C.; Jacobs, R. Artificial intelligence (AI)-driven molar angulation measurements to predict third molar eruption on panoramic radiographs. Int. J. Environ. Res. Public Health 2020, 17, 3716. [Google Scholar] [CrossRef] [PubMed]
- Hiraiwa, T.; Ariji, Y.; Fukuda, M.; Kise, Y.; Nakata, K.; Katsumata, A.; Fujita, H.; Ariji, E. A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography. Dentomaxillofacial Radiol. 2019, 48, 20180218. [Google Scholar] [CrossRef] [PubMed]
- Patcas, R.; Bernini, D.A.; Volokitin, A.; Agustsson, E.; Rothe, R.; Timofte, R. Applying artificial intelligence to assess the impact of orthognathic treatment on facial attractiveness and estimated age. Int. J. Oral Maxillofac. Surg. 2019, 48, 77–83. [Google Scholar] [CrossRef]
- Kuwada, C.; Ariji, Y.; Kise, Y.; Funakoshi, T.; Fukuda, M.; Kuwada, T.; Gotoh, K.; Ariji, E. Detection and classification of unilateral cleft alveolus with and without cleft palate on panoramic radiographs using a deep learning system. Sci. Rep. 2021, 11, 16044. [Google Scholar] [CrossRef]
- Alzubaidi, M.A.; Otoom, M. A comprehensive study on feature types for osteoporosis classification in dental panoramic radiographs. Comput. Methods Programs Biomed. 2020, 188, 105301. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O.; Yong, T.-H.; Kang, S.-R.; Kim, J.-E.; Huh, K.-H.; Heo, M.-S.; Lee, S.-S.; Choi, S.-C.; Yi, W.-J. Automatic diagnosis for cysts and tumors of both jaws on panoramic radiographs using a deep convolution neural network. Dentomaxillofacial Radiol. 2020, 49, 20200185. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Nozaki, K.; Gonda, T.; Ikebe, K. A system for designing removable partial dentures using artificial intelligence. Part 1. Classification of partially edentulous arches using a convolutional neural network. J. Prosthodont. Res. 2021, 65, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Nozaki, K.; Gonda, T.; Mameno, T.; Ikebe, K. Deep learning-based detection of dental prostheses and restorations. Sci. Rep. 2021, 11, 1960. [Google Scholar] [CrossRef] [PubMed]
- Sukegawa, S.; Yoshii, K.; Hara, T.; Matsuyama, T.; Yamashita, K.; Nakano, K.; Takabatake, K.; Kawai, H.; Nagatsuka, H.; Furuki, Y. Multi-task deep learning model for classification of dental implant brand and treatment stage using dental panoramic radiograph images. Biomolecules 2021, 11, 815. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Shan, J.; Zhang, P.; Chen, X.; Jiang, H. Trabeculae microstructure parameters serve as effective predictors for marginal bone loss of dental implant in the mandible. Sci. Rep. 2020, 10, 18437. [Google Scholar] [CrossRef]
- Mameno, T.; Wada, M.; Nozaki, K.; Takahashi, T.; Tsujioka, Y.; Akema, S.; Hasegawa, D.; Ikebe, K. Predictive modeling for peri-implantitis by using machine learning techniques. Sci. Rep. 2021, 11, 11090. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.-K.; Kim, T.-W. New approach for the diagnosis of extractions with neural network machine learning. Am. J. Orthod. Dentofac. Orthop. 2016, 149, 127–133. [Google Scholar] [CrossRef]
- Kök, H.; Acilar, A.M.; İzgi, M.S. Usage and comparison of artificial intelligence algorithms for determination of growth and development by cervical vertebrae stages in orthodontics. Prog. Orthod. 2019, 20, 41. [Google Scholar] [CrossRef]
- Kunz, F.; Stellzig-Eisenhauer, A.; Zeman, F.; Boldt, J. Evaluation of a fully automated cephalometric analysis using a customized convolutional neural network. J. Orofac. Orthop. 2020, 81, 52–68. [Google Scholar] [CrossRef]
- Leite, A.F.; Gerven, A.V.; Willems, H.; Beznik, T.; Lahoud, P.; Gaêta-Araujo, H.; Vranckx, M.; Jacobs, R. Artificial intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs. Clin. Oral Investig. 2021, 25, 2257–2267. [Google Scholar] [CrossRef] [PubMed]
- Sathya, B.; Neelaveni, R. Transfer learning based automatic human identification using dental traits-an aid to forensic odontology. J. Forensic Leg. Med. 2020, 76, 102066. [Google Scholar]
- Farhadian, M.; Salemi, F.; Saati, S.; Nafisi, N. Dental age estimation using the pulp-to-tooth ratio in canines by neural networks. Imaging Sci. Dent. 2019, 49, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, Y.; Nomura, Y.; Katsumura, S.; Okada, A.; Yamada, H.; Tsuge, S.; Kadoma, Y.; Hanada, N. Construction of a dental caries prediction model by data mining. J. Oral Sci. 2009, 51, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wu, W.; Zhang, S.-y.; Zhang, K.-q.; Li, J.; Liu, Y.; Yin, Z.-h. Dental caries prediction based on a survey of the oral health epidemiology among the geriatric residents of Liaoning, China. BioMed Res. Int. 2020, 2020, 5348730. [Google Scholar] [CrossRef]
- Moutselos, K.; Berdouses, E.; Oulis, C.; Maglogiannis, I. Recognizing occlusal caries in dental intraoral images using deep learning. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 1617–1620. [Google Scholar]
- You, W.; Hao, A.; Li, S.; Wang, Y.; Xia, B. Deep learning-based dental plaque detection on primary teeth: A comparison with clinical assessments. BMC Oral Health 2020, 20, 141. [Google Scholar] [CrossRef]
- Wang, Y.; Hays, R.D.; Marcus, M.; Maida, C.A.; Shen, J.; Xiong, D.; Coulter, I.D.; Lee, S.Y.; Spolsky, V.W.; Crall, J.J.; et al. Developing Children’s Oral Health Assessment Toolkits Using Machine Learning Algorithm. JDR Clin. Trans. Res. 2020, 5, 233–243. [Google Scholar] [CrossRef]
- Ahn, Y.; Hwang, J.J.; Jung, Y.-H.; Jeong, T.; Shin, J. Automated mesiodens classification system using deep learning on panoramic radiographs of children. Diagnostics 2021, 11, 1477. [Google Scholar] [CrossRef] [PubMed]
- Abdalla-Aslan, R.; Yeshua, T.; Kabla, D.; Leichter, I.; Nadler, C. An artificial intelligence system using machine-learning for automatic detection and classification of dental restorations in panoramic radiography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 130, 593–602. [Google Scholar] [CrossRef]
- Choi, E.; Kim, D.; Lee, J.-Y.; Park, H.-K. Artificial intelligence in detecting temporomandibular joint osteoarthritis on orthopantomogram. Sci. Rep. 2021, 11, 10246. [Google Scholar] [CrossRef]
- Kim, J.; Lee, H.-S.; Song, I.-S.; Jung, K.-H. DeNTNet: Deep Neural Transfer Network for the detection of periodontal bone loss using panoramic dental radiographs. Sci. Rep. 2019, 9, 17615. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Jeong, S.N.; Choi, S.H. Predictive data mining for diagnosing periodontal disease: The Korea National Health and Nutrition Examination Surveys (KNHANES V and VI) from 2010 to 2015. J. Public Health Dent. 2019, 79, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Saghiri, M.A.; Asgar, K.; Boukani, K.; Lotfi, M.; Aghili, H.; Delvarani, A.; Karamifar, K.; Saghiri, A.; Mehrvarzfar, P.; Garcia-Godoy, F. A new approach for locating the minor apical foramen using an artificial neural network. Int. Endod. J. 2012, 45, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Kavitha, M.S.; Ganesh Kumar, P.; Park, S.-Y.; Huh, K.-H.; Heo, M.-S.; Kurita, T.; Asano, A.; An, S.-Y.; Chien, S.-I. Automatic detection of osteoporosis based on hybrid genetic swarm fuzzy classifier approaches. Dentomaxillofacial Radiol. 2016, 45, 20160076. [Google Scholar] [CrossRef] [PubMed]
- Bernauer, S.A.; Zitzmann, N.U.; Joda, T. The use and performance of artificial intelligence in prosthodontics: A systematic review. Sensors 2021, 21, 6628. [Google Scholar] [CrossRef] [PubMed]
- Benakatti, V.B.; Nayakar, R.P.; Anandhalli, M. Machine learning for identification of dental implant systems based on shape–A descriptive study. J. Indian Prosthodont. Soc. 2021, 21, 405. [Google Scholar] [CrossRef]
- Lee, J.-H.; Jeong, S.-N. Efficacy of deep convolutional neural network algorithm for the identification and classification of dental implant systems, using panoramic and periapical radiographs: A pilot study. Medicine 2020, 99, e20787. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, Y.; Li, S.; Zhao, Z.; Wu, Z. Machine learning in orthodontics: Challenges and perspectives. Adv. Clin. Exp. Med. 2021, 30, 1065–1074. [Google Scholar] [CrossRef] [PubMed]
- Flieger, R.; Matys, J.; Dominiak, M. The best time for orthodontic treatment for Polish children based on skeletal age analysis in accordance to refund policy of the Polish National Health Fund (NFZ). Adv. Clin. Exp. Med. 2018, 27, 1377–1382. [Google Scholar] [CrossRef]
- Mohammad-Rahimi, H.; Nadimi, M.; Rohban, M.H.; Shamsoddin, E.; Lee, V.Y.; Motamedian, S.R. Machine learning and orthodontics, current trends and the future opportunities: A scoping review. Am. J. Orthod. Dentofac. Orthop. 2021, 160, 170–192.e4. [Google Scholar] [CrossRef]
- Siino, V.; Sears, C. Artificially intelligent scoring and classification engine for forensic identification. Forensic Sci. Int. Genet. 2020, 44, 102162. [Google Scholar] [CrossRef]
- Heinrich, A.; Güttler, F.; Wendt, S.; Schenkl, S.; Hubig, M.; Wagner, R.; Mall, G.; Teichgräber, U. Forensic odontology: Automatic identification of persons comparing antemortem and postmortem panoramic radiographs using computer vision. RöFo-Fortschritte Auf Dem Geb. Röntgenstrahlen Bildgeb. Verfahr. 2018, 190, 1152–1158. [Google Scholar] [CrossRef] [PubMed]
- Chomdej, T.; Pankaow, W.; Choychumroon, S. Intelligent dental identification system (IDIS) in forensic medicine. Forensic Sci. Int. 2006, 158, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Selwitz, R.H.; Ismail, A.I.; Pitts, N.B. Dental caries. Lancet 2007, 369, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Strużycka, I. The oral microbiome in dental caries. Pol. J. Microbiol. 2014, 63, 127. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, Y.; Li, W.; Liu, C.; Gu, D.; Sun, W.; Miao, L. Development and evaluation of deep learning for screening dental caries from oral photographs. Oral Dis. 2022, 28, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Kim, D.-H.; Jeong, S.-N.; Choi, S.-H. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J. Dent. 2018, 77, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Jia, P.; Cuenco, K.T.; Zeng, Z.; Feingold, E.; Marazita, M.L.; Wang, L.; Zhao, Z. Association signals unveiled by a comprehensive gene set enrichment analysis of dental caries genome-wide association studies. PLoS ONE 2013, 8, e72653. [Google Scholar] [CrossRef] [PubMed]
- Devito, K.L.; de Souza Barbosa, F.; Felippe Filho, W.N. An artificial multilayer perceptron neural network for diagnosis of proximal dental caries. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2008, 106, 879–884. [Google Scholar] [CrossRef]
- Moran, M.; Faria, M.; Giraldi, G.; Bastos, L.; Oliveira, L.; Conci, A. Classification of approximal caries in bitewing radiographs using convolutional neural networks. Sensors 2021, 21, 5192. [Google Scholar] [CrossRef]
- Bolette, A.; Truong, T.T.-T.; Gueders, A.; Geerts, S. Importance des traitements pulpaires en denture de lait. Rev. Médicale Liège 2016, 71, 567–572. [Google Scholar]
- Shibly, O.; Rifai, S.; Zambon, J.J. Supragingival dental plaque in the etiology of oral diseases. Periodontol 2000 1995, 8, 42–59. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.-H.; Kim, S.-H.; Choi, Y.-Y. Prediction Models of Early Childhood Caries Based on Machine Learning Algorithms. Int. J. Environ. Res. Public Health 2021, 18, 8613. [Google Scholar] [CrossRef] [PubMed]
- Russell, K.A.; Folwarczna, M.A. Mesiodens-diagnosis and management of a common supernumerary tooth. J.-Can. Dent. Assoc. 2003, 69, 362–367. [Google Scholar]
- Nazemisalman, B.; Farsadeghi, M.; Sokhansanj, M. Types of lasers and their applications in pediatric dentistry. J. Lasers Med. Sci. 2015, 6, 96. [Google Scholar] [CrossRef]
- Engelhardt, A.; Kanawade, R.; Knipfer, C.; Schmid, M.; Stelzle, F.; Adler, W. Comparing classification methods for diffuse reflectance spectra to improve tissue specific laser surgery. BMC Med. Res. Methodol. 2014, 14, 91. [Google Scholar] [CrossRef] [PubMed]
- Artuzi, F.E.; Puricelli, E.; Baraldi, C.E.; Quevedo, A.S.; Ponzoni, D. Reduction of osteoarthritis severity in the temporomandibular joint of rabbits treated with chondroitin sulfate and glucosamine. PLoS ONE 2020, 15, e0231734. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Gan, Y.; Zhou, Y. Current understanding of pathogenesis and treatment of TMJ osteoarthritis. J. Dent. Res. 2015, 94, 666–673. [Google Scholar] [CrossRef]
- Anil, S.; Porwal, P.; Porwal, A. Transforming Dental Caries Diagnosis Through Artificial Intelligence-Based Techniques. Cureus 2023, 15, e41694. [Google Scholar] [CrossRef]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef]
- Sunny, S.; Baby, A.; James, B.L.; Balaji, D.; Aparna, N.V.; Rana, M.H.; Gurpur, P.; Skandarajah, A.; D’Ambrosio, M.; Ramanjinappa, R.D.; et al. A smart tele-cytology point-of-care platform for oral cancer screening. PLoS ONE 2019, 14, e0224885. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, N.K.; Galvão, C.; Santos, J.W.; Del Pino, C.; Pinto, E.P.; Barbosa, C.; Massmann, D.; Mambrini, R.; Galvão, L.; Terem, E.; et al. Worldwide AI ethics: A review of 200 guidelines and recommendations for AI governance. Patterns 2023, 4, 100857. [Google Scholar] [CrossRef] [PubMed]
Author | Application | Data Set | AI Architecture | Performance |
---|---|---|---|---|
Danks et al. [15] | PBL measurement | 340 images | CNN | Percent of correct key points (PCK): 0.83 |
Kim et al. [22] | Prediction of chronic periodontitis severity | 692 mouthwash samples | NN RF SVM RLR | Accuracy: 0.93 AUC: 0.96 Sensitivity: 0.96 Specificity: 0.81 |
Lee et al. [11] | Diagnosis for periodontal disease | 45,553 participants | DT | Accuracy: 0.85 |
Shimpi et al. [23] | Estimation of periodontitis | 11,048 patients | DT | Specificity: 0.90 |
Gao et al. [14] | Estimation of pain after RCT | 300 patients | ANN | Accuracy: 0.95 |
Saghiri et al. [24] | Locating minor apical foramen | 50 images | ANN | Accuracy: 0.96 |
Fukuda et al. [25] | Vertical root fracture detection | 300 images | CNN | Precision: 0.93 F measure: 0.83 Recall: 0.75 |
Benyo et al. [26] | Detecting medial axis of the root | Micro CT cross-section images | ANN | Accuracy: 0.95 |
Sukegawa et al. [27] | Classification of third molar | 1330 images | CNN | Accuracy: 0.84 |
Vranckx et al. [28] | Molar angulation measurement | 838 images | CNN | Accuracy: 0.80–0.98 |
Hiraiwa et al. [29] | Root morphology measurement | 760 image sets | CNN | Sensitivity: 0.85–0.87 |
Patcas et al. [30] | Facial attractiveness measurement | 146 patients | CNN | Mean difference: 1.22 |
Kuwada et al. [31] | Cleft detection | 383 images | CNN | Accuracy: 0.82 |
Alzubaidi et al. [32] | Osteoporosis classification | 575 images | SVM | Accuracy: 0.92 |
Kwon et al. [33] | Diagnosis for cysts and tumors of both jaws | 1282 images | CNN | Accuracy: 0.956 AUC: 0.94 Sensitivity: 0.889 Specificity: 0.956 |
Takahashi et al. [34] | Classification of partially edentulous arches | 1184 images | CNN | Accuracy: 0.995 Maxilla 0.997 Mandible |
Takahashi et al. [35] | Identification of prostheses | 1904 images | CNN | Precision: 0.59–0.93 |
Sukegawa et al. [36] | Classification of dental implant brand | 9767 images | CNN | Accuracy: 0.9908 |
Zhang et al. [37] | Detect marginal bone loss | 81 patients | SVM | AUC: 0.967 |
Mameno et al. [38] | Predicting peri-implantitis | 489 patients | SVM | AUC: 0.64 |
Jung et al. [39] | Diagnosis of tooth extractions for orthodontic treatment | Lateral Cephalograms, 156 subjects | Neural network | Accuracy: 0.93 |
Kök et al. [40] | Growth determination | 300 images | ANN | Accuracy: 0.78–0.93 |
Kunz et al. [41] | Cephalometric analysis | 1792 images | CNN | Absolute mean difference: 0.42–2.18 |
Leite et al. [42] | Tooth segmentation | 153 images | CNN | Precision: 0.96 |
Sathya et al. [43] | Human identification | 3159 images | CNN | Accuracy: 0.95 |
Farhadian et al. [44] | Age estimation | CBCT scans, 300 subjects | Neural network | MAF: 4.12 Years |
Tamaki et al. [45] | Dental caries prediction | Saliva samples, 500 subjects | CNN | Sensitivity: 0.73 Specificity: 0.77 |
Liu et al. [46] | Dental caries prediction | 1144 subjects | GRNN | AUC: 0.626 |
Moutselos et al. [47] | Caries classification | 88 images | CNN | Accuracy: 0.67–0.89 |
You et al. [48] | Plaque detection | 984 images | CNN | MIoU: 0.726 ± 0.165 |
Wang et al. [49] | Evaluating children’s oral condition | 545 subjects | XGboost | Sensitivity: 0.93 |
Ahn et al. [50] | Mesiodens classification | 1100 images | CNN | Accuracy: 0.927 |
Abdalla-Aslan et al. [51] | Classification of dental restorations | 83 images | SVM | Accuracy: 0.93 |
Choi et al. [52] | Detection of TMJOA | 1189 images | CNN | Accuracy: 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naeimi, S.M.; Darvish, S.; Salman, B.N.; Luchian, I. Artificial Intelligence in Adult and Pediatric Dentistry: A Narrative Review. Bioengineering 2024, 11, 431. https://doi.org/10.3390/bioengineering11050431
Naeimi SM, Darvish S, Salman BN, Luchian I. Artificial Intelligence in Adult and Pediatric Dentistry: A Narrative Review. Bioengineering. 2024; 11(5):431. https://doi.org/10.3390/bioengineering11050431
Chicago/Turabian StyleNaeimi, Seyed Mohammadrasoul, Shayan Darvish, Bahareh Nazemi Salman, and Ionut Luchian. 2024. "Artificial Intelligence in Adult and Pediatric Dentistry: A Narrative Review" Bioengineering 11, no. 5: 431. https://doi.org/10.3390/bioengineering11050431
APA StyleNaeimi, S. M., Darvish, S., Salman, B. N., & Luchian, I. (2024). Artificial Intelligence in Adult and Pediatric Dentistry: A Narrative Review. Bioengineering, 11(5), 431. https://doi.org/10.3390/bioengineering11050431