Age-Related Characteristics of Resting-State Electroencephalographic Signals and the Corresponding Analytic Approaches: A Review
Abstract
:1. Introduction
2. Large-Scale EEG Database Related to Aging
2.1. Temple University Hospital Abnormal EEG Corpus
2.2. Leipzig Study for Mind–Body–Emotion Interactions Database
2.3. Cuban Human Brain Mapping Project Database
2.4. Tulsa 1000 Database
2.5. ISB-NormDB (QEEG Normative Database)
2.6. Other Databases
3. Age-Related Spectral Measures
3.1. Power Slope (1/f Noise)
3.2. Alpha Rhythm
3.2.1. Alpha Peak Frequency
3.2.2. Alpha Reactivity
Measures | Study | Main Results | Subjects (Age Range (yr), Numbers (N)) | Eyes Condition |
---|---|---|---|---|
Alpha frequency | Cellier et al. [78] | peak frequency: young < old | adolescence (3–24 yr, N = 96) | REO |
Hill et al. [83] | center frequency: young < old | early–to–middle childhood (4–12 yr, N = 139) | REO REC | |
Tröndle et al. [57] | peak frequency: young < old | adolescence (HBN project) (5–22 yr, N = 2529) | REO REC | |
Stacey et al. [23] | peak frequency: young > old | young (18–30 yr, N = 31) old (61–90 yr, N = 44) | REO REC | |
Scally et al. [99] | IAPF: young > old | young (20.3 ± 2.1 yr, N = 37) old (69.8 ± 4.9 yr, N = 32) | REC | |
Donoghue et al. [72] | center frequency: young > old | young (20–30 yr, N = 17) old (60–70 yr, N = 14) | REO | |
Aurlien et al. [103] | peak frequency: increase until 20 yr | 0–100 yr (N = 4651) | REC | |
Chiang et al. [96] | peak frequency: younger > older | 6–86 yr (N = 1498) | REC | |
Cesnaite et al. [59] | IAPF: decrease | LIFE–Adult DB (40–79 yr, N = 1703) | REC | |
Alpha reactivity | Duffy et al. [35] | decrease | 30–80 yr (N = 63) | REO REC |
Könönen et al. [105] | decrease | 53 ± 19 yr (N = 54) | REO REC | |
Marciani et al. [106] | decrease | young (29.9 ± 10.4 yr, N = 21) old (60.6 ± 5.4 yr, N = 20) older (78.7 ± 7.3 yr, N = 19) | REC | |
Gaal [36] | decrease | young (21.5 ± 22 yr, N = 23) old (66.9 ± 3.6 yr, N = 25) | REO REC | |
Alpha power | Tröndle et al. [57] | absolute power: decrease relative, adjusted power: increase | adolescence (HBN project) (5–22 yr, N = 2529) | REO REC |
Babiloni et al. [108] | power: young > old | young (18–50 yr, N = 108) old (51–85 yr, N = 107) | REC | |
Scally et al. [99] | absolute power: young > old | young (20.30 ± 2.06 yr, N = 37) old (69.75 ± 4.91 yr, N = 32) | REC | |
Knyazeva et al. [102] | higher alpha rhythm (more distributed) | 45–81 yr (N = 32) | REO REC | |
Donoghue et al. [72] | aperiodic adjusted-power: young > old | young (20–30 yr, N = 17) old (60–70 yr, N = 14) | REO |
3.2.3. Alpha Power
3.3. Beta Power
3.4. Other Spectral Powers—Delta, Theta, and Gamma Rhythms
4. Nonlinear Neural Dynamics
4.1. Fractal Dimension
Measures | Study | Main Results | Subjects (Age Range (yr), Numbers (N)) | Recording Condition |
---|---|---|---|---|
Fractal dimension | Zappasodi et al. [119] | fractal dimension: increase (<20 yr) decrease (>50 yr) | young (16–25 yr, N = 10) old (25–66 yr, N = 14) older (66–86 yr, N = 16) | REO |
Smits et al. [122] | fractal dimension: inverse U-shape with aging | healthy control (20–89 yr, N = 41) | REC | |
Entropy | Hogan et al. [124] | sample entropy: young > old | young (21.7 ± 3.1 yr, N = 20) old (73.6 ± 4.1 yr, N = 17) old declined (73.3 ± 4.7 yr, N = 18) | REO REC |
Alu et al. [123] | approximate entropy: young < old | young (24.7 ± 0.5 yr, N = 36) old (70.1 ± 0.9 yr, N = 32) | – | |
Multiscale entropy | Takahashi et al. [125] | multiscale entropy: young > old | young (29.2 ± 3.8 yr, N = 13) old (64.5 ± 4.2 yr, N = 15) | REC |
McIntosh et al. [131] | sample entropy: young > old | young (22 ± 3 yr, N = 16) middle-age (45 ± 6 yr, N = 16) old (66 ± 6 yr, N = 16) | auditory, visual stimulus | |
Waschke et al. [75] | weighted-permutation entropy neural irregularity: increase neural variability: decrease | 19–74 yr (N = 19) | auditory stimulus |
4.2. Entropy-Based Complexity
4.3. Multiscale Entropy
5. Spatial Topography
5.1. Brain Connectivity
Measures | Study | Main Results | Subjects (Age Range (yr), Numbers (N)) | Eyes Condition |
---|---|---|---|---|
Brain connectivity | Michels et al. [34] | RPDC (adults): parieto-occipital → fronto-central | children (10.1 ± 1.3 yr, N = 17) adults (25.1 ± 3.8 yr, N = 17) | REO REC |
Knyazev et al. [31] | Lagged-phase synchronization number of hubs: young > old (more random and less connected) | young (18–35 yr, N = 76) old (51–80 yr, N = 70) | REO REC | |
Petti et al. [146] | Partial directed coherence efficiencies, path length, clustering, & global strength: decrease | 20–63 yr (N = 71) | REC | |
Scally et al. [99] | PLI, WPLI (upper alpha): young > old | young (20.30 ± 2.06 yr, N = 37) old (69.75 ± 4.91 yr, N = 32) | REC | |
Moezzi et al. [145] | imaginary coherence alpha: young > old beta: young < old | young (19–37 yr. N = 22) old (63–85 yr, N = 22) | REO | |
Javaid et al. [147] | global and local efficiency: decrease clustering coefficient: decrease node strength: decrease | middle-age (41–60 yr, N = 20) elderly (61–84 yr, N = 20) | REO REC | |
Perinelli et al. [142] | intra-area connectivity: parietal, temporal: young < old frontal: young > old | young (25–35 yr, N = 30) old (60–80 yr, N = 30) from LEMONDB | REO REC | |
EEG microstates | Koenig et al. [148] | asymmetric: decrease symmetric: increase | 6–80 yr (N = 496) | REC |
Tomescu et al. [149] | gender effect (only in old): microstate C and D | 6–87 yr (N = 179) | REC | |
Zanesco et al. [45] | microstate A,B (GEV): young < old microstate C,E (GEV): young > old mean duration (all): young < old | young (25–35 yr, N = 153) old (59–77 yr, N = 74) from LEMONDB | REC |
5.2. EEG Microstates
6. State-of-the-Art Signal Processing and AI Models
6.1. Riemannian Manifold
6.2. CNN/RNN Models
6.3. Self-Supervised Learning Model
Study | Subjects (Age Range (yr), Numbers (N)) | Key Methods | Best Results (Classification, Regression) |
---|---|---|---|
Sabbagh et al. [9] | TUAB DB (10–95 yr, N = 1385) | Covariance matrix Riemmannain | MAE: 8.21 yr (see the Figure 5 in [9]) |
Li et al. [50] | 1564 EEGs from 9 countries (including CHBMP DB) | HarMNqEEG Riemmannain | - |
Van Leeuwen et al. [158] | 18–85 yr (N = 8522) | CNN | AUC: 0.924 (classification across 3 age groups) |
Al Zoubi et al. [53] | T–1000 DB (mean age: 34.8 yr, N = 468) | 5 ML models | MAE: 6.87 ± 0.69 yr RMSE: 8.46 ± 0.59 yr |
Engemann et al. [6] | LEMON DB (20–77 yr, N = 227) CHBMP DB (18–68 yr, N = 282) TUAB DB (10–95 yr, N = 1385) | 5 approaches | LEMON DB (MAE: 7.75 ± 1.78 yr) CHBMP DB (MAE: 6.48 ± 0.60 yr) TUAB DB (MAE: 7.75 ± 0.56 yr) |
Khayretdinova et al. [159] | TD-Brain DB (5–88 yr; N = 1274) | CNN | MAE: 5.96 ± 0.33 yr |
Kaur et al. [161] | 6–55 yr (N = 60) | Random Forest | Accuracy: 0.883 (classification across 6 age groups) |
Kaushik et al. [160] | 6–55 yr (N = 60) | Deep BLSTM-LSTM | Accuracy: 0.937 (classification across 6 age groups) |
Jusseaume et al. [7] | TUAB DB (2–88 yr, N = 388) | BLSTM | Accuracy: 0.90; MAE: 6.5 yr; RMSE: 9.1 yr (classification across 6 age groups) |
Banville et al. [43] | TUAB DB (10–95 yr, N = 1385) | SSL | Not aging prediction classification accuracy: 0.794 (between normal and abnormal EEG) |
Wagh et al. [8] | TUAB DB (10–95 yr, N = 2328) LEMON DB (20–77 yr, N = 216) | SSL | AUC: 0.872 (TUAB), 0.987 (LEMON) (classification across young and old) |
7. Conclusions
Age-Related Characteristics | Study | Main Relevant Evidence |
---|---|---|
Slow rhythm | Stacey et al. [23] | peak frequency: young > old |
Scally et al. [99] | IAPF: young > old | |
Donoghue et al. [72] | center frequency: young > old | |
Chiang et al. [96] | peak frequency: younger > older | |
Cesnaite et al. [59] | IAPF: decrease | |
Randomness or Regularity | Voytek et al. [68] | 1/f slope at visual, parietal, frontal: young > old (flatten) |
Donoghue et al. [72] | exponent, offset at Cz: young > old (flatten) | |
Pathania et al. [82] | exponent at frontal, central, parietal: young > old (flatten) | |
Cesnaite et al. [59] | 1/f slope at fronto-central: decrease (flatten) | |
Alu et al. [123] | approximate entropy at central, parietal, occipital: young < old | |
Nobukawa et al. [171] | complexity of DPS at frontal alpha: young < old | |
Knyazev et al. [31] | number of hubs at posterior: young > old (more random) | |
Waschke et al. [75] | neural irregularity: increase; neural variability: decrease | |
Hogan et al. [124] | sample entropy: young > old | |
Takahashi et al. [125] | multiscale entropy: young > old | |
McIntosh et al. [131] | sample entropy: young > old | |
Neural inefficiency | Petti et al. [146] | efficiencies, path length, clustering, global strength: decrease |
Javaid et al. [147] | global, local efficiency, clustering coefficient, node strength: young > old | |
Knyazev et al. [31] | number of hubs at posterior: young > old (less connected) | |
Perinelli et al. [142] | modularity: young > old | |
Nobukawa et al. [171] | interhemispheric connectivity at frontal alpha: young > old | |
Scally et al. [99] | PLI, WPLI (upper alpha): young > old | |
Spatial alternation | Michels et al. [34] | RPDC: from parieto-occipital to fronto-central |
Moezzi et al. [145] | imaginary coherence: alpha: young > old; beta: young < old | |
Perinelli et al. [142] | intra connectivity: frontal: young > old; parietal, temporal: young < old | |
Koenig et al. [148] | asymmetric microstates: decrease; symmetric microstates: increase | |
Zanesco et al. [45] | mean duration, microstate A,B: young < old; C,E (GEV): young > old |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Blinkouskaya, Y.; Caçoilo, A.; Gollamudi, T.; Jalalian, S.; Weickenmeier, J. Brain aging mechanisms with mechanical manifestations. Mech. Ageing Dev. 2021, 200, 111575. [Google Scholar] [CrossRef]
- Burke, S.N.; Barnes, C.A. Neural plasticity in the ageing brain. Nat. Rev. Neurosci. 2006, 7, 30–40. [Google Scholar] [CrossRef]
- Peters, R. Ageing and the brain: This article is part of a series on ageing edited by Professor Chris Bulpitt. Postgrad. Med. J. 2006, 82, 84–88. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.-J. Normal Aging Induces Changes in the Brain and Neurodegeneration Progress: Review of the Structural, Biochemical, Metabolic, Cellular, and Molecular Changes. Front. Aging Neurosci. 2022, 14, 931536. [Google Scholar] [CrossRef]
- Hedden, T.; Gabrieli, J.D.E. Insights into the ageing mind: A view from cognitive neuroscience. Nat. Rev. Neurosci. 2004, 5, 87–96. [Google Scholar] [CrossRef]
- Engemann, D.A.; Mellot, A.; Höchenberger, R.; Banville, H.; Sabbagh, D.; Gemein, L.; Ball, T.; Gramfort, A. A reusable benchmark of brain-age prediction from M/EEG resting-state signals. NeuroImage 2022, 262, 119521. [Google Scholar] [CrossRef]
- Jusseaume, K.; Valova, I. Brain Age Prediction/Classification through Recurrent Deep Learning with Electroencephalogram Recordings of Seizure Subjects. Sensors 2022, 22, 8112. [Google Scholar] [CrossRef]
- Wagh, N.; Wei, J.; Rawal, S.; Berry, B.; Barnard, L.; Brinkmann, B.; Worrell, G.; Jones, D.; Varatharajah, Y. Domain-guided Self-supervision of EEG Data Improves Downstream Classification Performance and Generalizability. In Proceedings of the Machine Learning for Health, Boulder, CO, USA, 15–19 August 2021; pp. 130–142. [Google Scholar]
- Sabbagh, D.; Ablin, P.; Varoquaux, G.; Gramfort, A.; Engemann, D.A. Predictive regression modeling with MEG/EEG: From source power to signals and cognitive states. NeuroImage 2020, 222, 116893. [Google Scholar] [CrossRef]
- Raz, N.; Rodrigue, K.M. Differential aging of the brain: Patterns, cognitive correlates and modifiers. Neurosci. Biobehav. Rev. 2006, 30, 730–748. [Google Scholar] [CrossRef]
- Sowell, E.R.; Peterson, B.S.; Thompson, P.M.; Welcome, S.E.; Henkenius, A.L.; Toga, A.W. Mapping cortical change across the human life span. Nat. Neurosci. 2003, 6, 309–315. [Google Scholar] [CrossRef]
- Small, S.A.; Schobel, S.A.; Buxton, R.B.; Witter, M.P.; Barnes, C.A. A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat. Rev. Neurosci. 2011, 12, 585–601. [Google Scholar] [CrossRef]
- Hof, P.R.; Morrison, J.H. The aging brain: Morphomolecular senescence of cortical circuits. Trends Neurosci. 2004, 27, 607–613. [Google Scholar] [CrossRef]
- Oschwald, J.; Guye, S.; Liem, F.; Rast, P.; Willis, S.; Röcke, C.; Jäncke, L.; Martin, M.; Mérillat, S. Brain structure and cognitive ability in healthy aging: A review on longitudinal correlated change. Rev. Neurosci. 2020, 31, 1–57. [Google Scholar] [CrossRef]
- Band, G.P.H.; Ridderinkhof, K.R.; Segalowitz, S. Explaining Neurocognitive Aging: Is One Factor Enough? Brain Cogn. 2002, 49, 259–267. [Google Scholar] [CrossRef]
- Dimitriadis, S.I.; Salis, C.I. Mining Time-Resolved Functional Brain Graphs to an EEG-Based Chronnectomic Brain Aged Index (CBAI). Front. Hum. Neurosci. 2017, 11, 423. [Google Scholar] [CrossRef]
- Wang, H.; McIntosh, A.R.; Kovacevic, N.; Karachalios, M.; Protzner, A.B. Age-related Multiscale Changes in Brain Signal Variability in Pre-task versus Post-task Resting-state EEG. J. Cogn. Neurosci. 2016, 28, 971–984. [Google Scholar] [CrossRef]
- Ishii, R.; Canuet, L.; Aoki, Y.; Hata, M.; Iwase, M.; Ikeda, S.; Nishida, K.; Ikeda, M. Healthy and Pathological Brain Aging: From the Perspective of Oscillations, Functional Connectivity, and Signal Complexity. Neuropsychobiology 2017, 75, 151–161. [Google Scholar] [CrossRef]
- Khanna, A.; Pascual-Leone, A.; Michel, C.M.; Farzan, F. Microstates in resting-state EEG: Current status and future directions. Neurosci. Biobehav. Rev. 2015, 49, 105–113. [Google Scholar] [CrossRef]
- Sakkalis, V. Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput. Biol. Med. 2011, 41, 1110–1117. [Google Scholar] [CrossRef]
- Stam, C.J. Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field. Clin. Neurophysiol. 2005, 116, 2266–2301. [Google Scholar] [CrossRef]
- Olejarczyk, E.; Marzetti, L.; Pizzella, V.; Zappasodi, F. Comparison of connectivity analyses for resting state EEG data. J. Neural Eng. 2017, 14, 036017. [Google Scholar] [CrossRef]
- Stacey, J.E.; Crook-Rumsey, M.; Sumich, A.; Howard, C.J.; Crawford, T.; Livne, K.; Lenzoni, S.; Badham, S. Age differences in resting state EEG and their relation to eye movements and cognitive performance. Neuropsychologia 2021, 157, 107887. [Google Scholar] [CrossRef]
- Subha, D.P.; Joseph, P.K.; Acharya, U.R.; Lim, C.M. EEG Signal Analysis: A Survey. J. Med. Syst. 2010, 34, 195–212. [Google Scholar] [CrossRef]
- Lau, Z.J.; Pham, T.; Chen, S.H.A.; Makowski, D. Brain entropy, fractal dimensions and predictability: A review of complexity measures for EEG in healthy and neuropsychiatric populations. Eur. J. Neurosci. 2022, 56, 5047–5069. [Google Scholar] [CrossRef]
- Bastos, A.M.; Schoffelen, J.-M. A Tutorial Review of Functional Connectivity Analysis Methods and Their Interpretational Pitfalls. Front. Syst. Neurosci. 2016, 9, 175. [Google Scholar] [CrossRef]
- Ferreira, L.K.; Busatto, G.F. Resting-state functional connectivity in normal brain aging. Neurosci. Biobehav. Rev. 2013, 37, 384–400. [Google Scholar] [CrossRef]
- Buzsáki, G.; Anastassiou, C.A.; Koch, C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 2012, 13, 407–420. [Google Scholar] [CrossRef]
- Michel, C.M.; Murray, M.M. Towards the utilization of EEG as a brain imaging tool. NeuroImage 2012, 61, 371–385. [Google Scholar] [CrossRef]
- Anderson, A.J.; Perone, S. Developmental change in the resting state electroencephalogram: Insights into cognition and the brain. Brain Cogn. 2018, 126, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Knyazev, G.G.; Volf, N.V.; Belousova, L.V. Age-related differences in electroencephalogram connectivity and network topology. Neurobiol. Aging 2015, 36, 1849–1859. [Google Scholar] [CrossRef] [PubMed]
- Whitford, T.J.; Rennie, C.J.; Grieve, S.M.; Clark, C.R.; Gordon, E.; Williams, L.M. Brain maturation in adolescence: Concurrent changes in neuroanatomy and neurophysiology. Hum. Brain Mapp. 2007, 28, 228–237. [Google Scholar] [CrossRef]
- Jockwitz, C.; Caspers, S. Resting-state networks in the course of aging—Differential insights from studies across the lifespan vs. amongst the old. Pflug. Arch. Eur. J. Physiol. 2021, 473, 793–803. [Google Scholar] [CrossRef]
- Michels, L.; Muthuraman, M.; Lüchinger, R.; Martin, E.; Anwar, A.R.; Raethjen, J.; Brandeis, D.; Siniatchkin, M. Developmental changes of functional and directed resting-state connectivities associated with neuronal oscillations in EEG. NeuroImage 2013, 81, 231–242. [Google Scholar] [CrossRef]
- Duffy, F.H.; Albert, M.S.; McAnulty, G.; Garvey, A.J. Age-related differences in brain electrical activity of healthy subjects. Ann. Neurol. 1984, 16, 430–438. [Google Scholar] [CrossRef]
- Gaál, Z.A.; Boha, R.; Stam, C.J.; Molnár, M. Age-dependent features of EEG-reactivity—Spectral, complexity, and network characteristics. Neurosci. Lett. 2010, 479, 79–84. [Google Scholar] [CrossRef]
- Barry, R.J.; De Blasio, F.M. EEG differences between eyes-closed and eyes-open resting remain in healthy ageing. Biol. Psychol. 2017, 129, 293–304. [Google Scholar] [CrossRef]
- Mantini, D.; Perrucci, M.G.; Del Gratta, C.; Romani, G.L.; Corbetta, M. Electrophysiological signatures of resting state networks in the human brain. Proc. Natl. Acad. Sci. USA 2007, 104, 13170–13175. [Google Scholar] [CrossRef]
- Babayan, A.; Erbey, M.; Kumral, D.; Reinelt, J.D.; Reiter, A.M.F.; Röbbig, J.; Schaare, H.L.; Uhlig, M.; Anwander, A.; Bazin, P.L.; et al. A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults. Sci. Data 2019, 6, 180308. [Google Scholar] [CrossRef]
- Victor, T.A.; Khalsa, S.S.; Simmons, W.K.; Feinstein, J.S.; Savitz, J.; Aupperle, R.L.; Yeh, H.W.; Bodurka, J.; Paulus, M.P. Tulsa 1000: A naturalistic study protocol for multilevel assessment and outcome prediction in a large psychiatric sample. BMJ Open 2018, 8, e016620. [Google Scholar] [CrossRef] [PubMed]
- Harati, A.; López, S.; Obeid, I.; Picone, J.; Jacobson, M.P.; Tobochnik, S. The TUH EEG CORPUS: A big data resource for automated EEG interpretation. In Proceedings of the 2014 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), Philadelphia, PA, USA, 13 December 2014; pp. 1–5. [Google Scholar]
- Obeid, I.; Picone, J. The Temple University Hospital EEG Data Corpus. Front. Neurosci. 2016, 10, 196. [Google Scholar] [CrossRef] [PubMed]
- Banville, H.; Chehab, O.; Hyvarinen, A.; Engemann, D.A.; Gramfort, A. Uncovering the structure of clinical EEG signals with self-supervised learning. J. Neural Eng. 2021, 18, 046020. [Google Scholar] [CrossRef] [PubMed]
- López, S.; Suarez, G.; Jungreis, D.; Obeid, I.; Picone, J. Automated Identification of Abnormal Adult EEGs. In Proceedings of the 2015 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), Philadelphia, PA, USA, 12 December 2015. [Google Scholar] [CrossRef]
- Zanesco, A.P.; King, B.G.; Skwara, A.C.; Saron, C.D. Within and between-person correlates of the temporal dynamics of resting EEG microstates. NeuroImage 2020, 211, 116631. [Google Scholar] [CrossRef] [PubMed]
- Kumral, D.; Şansal, F.; Cesnaite, E.; Mahjoory, K.; Al, E.; Gaebler, M.; Nikulin, V.V.; Villringer, A. BOLD and EEG signal variability at rest differently relate to aging in the human brain. NeuroImage 2020, 207, 116373. [Google Scholar] [CrossRef] [PubMed]
- Mahjoory, K.; Cesnaite, E.; Hohlefeld, F.U.; Villringer, A.; Nikulin, V.V. Power and temporal dynamics of alpha oscillations at rest differentiate cognitive performance involving sustained and phasic cognitive control. NeuroImage 2019, 188, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Bosch-Bayard, J.; Aubert-Vazquez, E.; Brown, S.T.; Rogers, C.; Kiar, G.; Glatard, T.; Scaria, L.; Galan-Garcia, L.; Bringas-Vega, M.L.; Virues-Alba, T.; et al. A Quantitative EEG Toolbox for the MNI Neuroinformatics Ecosystem: Normative SPM of EEG Source Spectra. Front. Neuroinformatics 2020, 14, 33. [Google Scholar] [CrossRef] [PubMed]
- Valdes-Sosa, P.A.; Galan-Garcia, L.; Bosch-Bayard, J.; Bringas-Vega, M.L.; Aubert-Vazquez, E.; Rodriguez-Gil, I.; Das, S.; Madjar, C.; Virues-Alba, T.; Mohades, Z.; et al. The Cuban Human Brain Mapping Project, a young and middle age population-based EEG, MRI, and cognition dataset. Sci. Data 2021, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, Y.; Lopez-Naranjo, C.; Hu, S.; Reyes, R.C.G.; Paz-Linares, D.; Areces-Gonzalez, A.; Hamid, A.I.A.; Evans, A.C.; Savostyanov, A.N.; et al. Harmonized-Multinational qEEG norms (HarMNqEEG). NeuroImage 2022, 256, 119190. [Google Scholar] [CrossRef] [PubMed]
- Mayeli, A.; Al Zoubi, O.; Henry, K.; Wong, C.K.; White, E.J.; Luo, Q.; Zotev, V.; Refai, H.; Bodurka, J. Automated pipeline for EEG artifact reduction (APPEAR) recorded during fMRI. J. Neural Eng. 2021, 18, 0460b4. [Google Scholar] [CrossRef] [PubMed]
- Al Zoubi, O.; Mayeli, A.; Tsuchiyagaito, A.; Misaki, M.; Zotev, V.; Refai, H.; Paulus, M.; Bodurka, J. EEG Microstates Temporal Dynamics Differentiate Individuals with Mood and Anxiety Disorders from Healthy Subjects. Front. Hum. Neurosci. 2019, 13, 56. [Google Scholar] [CrossRef]
- Al Zoubi, O.; Ki Wong, C.; Kuplicki, R.T.; Yeh, H.W.; Mayeli, A.; Refai, H.; Paulus, M.; Bodurka, J. Predicting Age from Brain EEG Signals—A Machine Learning Approach. Front. Aging Neurosci. 2018, 10, 184. [Google Scholar] [CrossRef]
- Ko, J.; Park, U.; Kim, D.; Kang, S.W. Quantitative Electroencephalogram Standardization: A Sex- and Age-Differentiated Normative Database. Front. Neurosci. 2021, 15, 766781. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Park, U.; Kang, S.W. Prediction model for potential depression using sex and age-reflected quantitative EEG biomarkers. Front. Psychiatry 2022, 13, 913890. [Google Scholar] [CrossRef] [PubMed]
- Alexander, L.M.; Escalera, J.; Ai, L.; Andreotti, C.; Febre, K.; Mangone, A.; Vega-Potler, N.; Langer, N.; Alexander, A.; Kovacs, M.; et al. An open resource for transdiagnostic research in pediatric mental health and learning disorders. Sci. Data 2017, 4, 170181. [Google Scholar] [CrossRef] [PubMed]
- Tröndle, M.; Popov, T.; Dziemian, S.; Langer, N. Decomposing the role of alpha oscillations during brain maturation. eLife 2022, 11, e77571. [Google Scholar] [CrossRef] [PubMed]
- Loeffler, M.; Engel, C.; Ahnert, P.; Alfermann, D.; Arelin, K.; Baber, R.; Beutner, F.; Binder, H.; Brähler, E.; Burkhardt, R.; et al. The LIFE-Adult-Study: Objectives and design of a population-based cohort study with 10,000 deeply phenotyped adults in Germany. BMC Public Health 2015, 15, 691. [Google Scholar] [CrossRef] [PubMed]
- Cesnaite, E.; Steinfath, P.; Jamshidi Idaji, M.; Stephani, T.; Kumral, D.; Haufe, S.; Sander, C.; Hensch, T.; Hegerl, U.; Riedel-Heller, S.; et al. Alterations in rhythmic and non-rhythmic resting-state EEG activity and their link to cognition in older age. NeuroImage 2023, 268, 119810. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, H.; van Wingen, G.; Denys, D.; Olbrich, S.; van Ruth, R.; Arns, M. The two decades brainclinics research archive for insights in neurophysiology (TDBRAIN) database. Sci. Data 2022, 9, 333. [Google Scholar] [CrossRef] [PubMed]
- Matoušek, M.; Petersén, I. Automatic evaluation of EEG background activity by means of age-dependent EEG quotients. Electroencephalogr. Clin. Neurophysiol. 1973, 35, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Breslau, J.; Starr, A.; Sicotte, N.; Higa, J.; Buchsbaum, M.S. Topographic EEG changes with normal aging and SDAT. Electroencephalogr. Clin. Neurophysiol. 1989, 72, 281–289. [Google Scholar] [CrossRef]
- Dustman, R.E.; Shearer, D.E.; Emmerson, R.Y. EEG and event-related potentials in normal aging. Prog. Neurobiol. 1993, 41, 369–401. [Google Scholar] [CrossRef]
- Klass, D.W.; Brenner, R.P. Electroencephalography of the Elderly. J. Clin. Neurophysiol. 1995, 12, 116–131. [Google Scholar] [CrossRef]
- van der Hiele, K.; Bollen, E.L.E.M.; Vein, A.A.; Reijntjes, R.H.A.M.; Westendorp, R.G.J.; van Buchem, M.A.; Middelkoop, H.A.M.; van Dijk, J.G. EEG Markers of Future Cognitive Performance in the Elderly. J. Clin. Neurophysiol. 2008, 25, 83–89. [Google Scholar] [CrossRef]
- Herrmann, C.S.; Rach, S.; Vosskuhl, J.; Strüber, D. Time–Frequency Analysis of Event-Related Potentials: A Brief Tutorial. Brain Topogr. 2014, 27, 438–450. [Google Scholar] [CrossRef]
- He, B.J. Scale-free brain activity: Past, present, and future. Trends Cogn. Sci. 2014, 18, 480–487. [Google Scholar] [CrossRef]
- Voytek, B.; Kramer, M.A.; Case, J.; Lepage, K.Q.; Tempesta, Z.R.; Knight, R.T.; Gazzaley, A. Age-Related Changes in 1/f Neural Electrophysiological Noise. J. Neurosci. 2015, 35, 13257–13265. [Google Scholar] [CrossRef]
- Hong, S.; Rebec, G. A new perspective on behavioral inconsistency and neural noise in aging: Compensatory speeding of neural communication. Front. Aging Neurosci. 2012, 4, 27. [Google Scholar] [CrossRef]
- Gao, R.; Peterson, E.J.; Voytek, B. Inferring synaptic excitation/inhibition balance from field potentials. NeuroImage 2017, 158, 70–78. [Google Scholar] [CrossRef]
- Pani, S.M.; Saba, L.; Fraschini, M. Clinical applications of EEG power spectra aperiodic component analysis: A mini-review. Clin. Neurophysiol. 2022, 143, 1–13. [Google Scholar] [CrossRef]
- Donoghue, T.; Haller, M.; Peterson, E.J.; Varma, P.; Priyadarshini, S.; Gao, R.; Noto, T.; Lara, A.H.; Wallis, J.D.; Knight, R.T.; et al. Parameterizing neural power spectra into periodic and aperiodic components. Nat. Neurosci. 2020, 23, 1655–1665. [Google Scholar] [CrossRef]
- Whitten, T.A.; Hughes, A.M.; Dickson, C.T.; Caplan, J.B. A better oscillation detection method robustly extracts EEG rhythms across brain state changes: The human alpha rhythm as a test case. NeuroImage 2011, 54, 860–874. [Google Scholar] [CrossRef]
- Wen, H.; Liu, Z. Separating Fractal and Oscillatory Components in the Power Spectrum of Neurophysiological Signal. Brain Topogr. 2016, 29, 13–26. [Google Scholar] [CrossRef]
- Waschke, L.; Wöstmann, M.; Obleser, J. States and traits of neural irregularity in the age-varying human brain. Sci. Rep. 2017, 7, 17381. [Google Scholar] [CrossRef]
- Gerster, M.; Waterstraat, G.; Litvak, V.; Lehnertz, K.; Schnitzler, A.; Florin, E.; Curio, G.; Nikulin, V. Separating Neural Oscillations from Aperiodic 1/f Activity: Challenges and Recommendations. Neuroinformatics 2022, 20, 991–1012. [Google Scholar] [CrossRef]
- Dave, S.; Brothers, T.A.; Swaab, T.Y. 1/f neural noise and electrophysiological indices of contextual prediction in aging. Brain Res. 2018, 1691, 34–43. [Google Scholar] [CrossRef]
- Cellier, D.; Riddle, J.; Petersen, I.; Hwang, K. The development of theta and alpha neural oscillations from ages 3 to 24 years. Dev. Cogn. Neurosci. 2021, 50, 100969. [Google Scholar] [CrossRef]
- Segalowitz, S.J.; Santesso, D.L.; Jetha, M.K. Electrophysiological changes during adolescence: A review. Brain Cogn. 2010, 72, 86–100. [Google Scholar] [CrossRef]
- Alvarez, F.P.; Destexhe, A. Simulating cortical network activity states constrained by intracellular recordings. Neurocomputing 2004, 58–60, 285–290. [Google Scholar] [CrossRef]
- Xue, M.; Atallah, B.V.; Scanziani, M. Equalizing excitation–inhibition ratios across visual cortical neurons. Nature 2014, 511, 596–600. [Google Scholar] [CrossRef]
- Pathania, A.; Euler, M.J.; Clark, M.; Cowan, R.L.; Duff, K.; Lohse, K.R. Resting EEG spectral slopes are associated with age-related differences in information processing speed. Biol. Psychol. 2022, 168, 108261. [Google Scholar] [CrossRef]
- Hill, A.T.; Clark, G.M.; Bigelow, F.J.; Lum, J.A.G.; Enticott, P.G. Periodic and aperiodic neural activity displays age-dependent changes across early-to-middle childhood. Dev. Cogn. Neurosci. 2022, 54, 101076. [Google Scholar] [CrossRef]
- Berger, H. Über das Elektrenkephalogramm des Menschen. Arch. Psychiatr. Nervenkrankh. 1929, 87, 527–570. [Google Scholar] [CrossRef]
- Bazanova, O.M.; Vernon, D. Interpreting EEG alpha activity. Neurosci. Biobehav. Rev. 2014, 44, 94–110. [Google Scholar] [CrossRef]
- Başar, E.; Güntekin, B. A short review of alpha activity in cognitive processes and in cognitive impairment. Int. J. Psychophysiol. 2012, 86, 25–38. [Google Scholar] [CrossRef]
- Klimesch, W. EEG-alpha rhythms and memory processes. Int. J. Psychophysiol. 1997, 26, 319–340. [Google Scholar] [CrossRef]
- Hanslmayr, S.; Gross, J.; Klimesch, W.; Shapiro, K.L. The role of α oscillations in temporal attention. Brain Res. Rev. 2011, 67, 331–343. [Google Scholar] [CrossRef]
- Kang, J.-H.; Kim, S.J.; Cho, Y.S.; Kim, S.-P. Modulation of Alpha Oscillations in the Human EEG with Facial Preference. PLoS ONE 2015, 10, e0138153. [Google Scholar] [CrossRef]
- Sigala, R.; Haufe, S.; Roy, D.; Dinse, H.; Ritter, P. The role of alpha-rhythm states in perceptual learning: Insights from experiments and computational models. Front. Comput. Neurosci. 2014, 8, 36. [Google Scholar] [CrossRef]
- Klimesch, W.; Sauseng, P.; Hanslmayr, S. EEG alpha oscillations: The inhibition–timing hypothesis. Brain Res. Rev. 2007, 53, 63–88. [Google Scholar] [CrossRef]
- Pfurtscheller, G. Event-related synchronization (ERS): An electrophysiological correlate of cortical areas at rest. Electroencephalogr. Clin. Neurophysiol. 1992, 83, 62–69. [Google Scholar] [CrossRef]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef]
- Halgren, M.; Ulbert, I.; Bastuji, H.; Fabó, D.; Erőss, L.; Rey, M.; Devinsky, O.; Doyle, W.K.; Mak-McCully, R.; Halgren, E.; et al. The generation and propagation of the human alpha rhythm. Proc. Natl. Acad. Sci. USA 2019, 116, 23772–23782. [Google Scholar] [CrossRef] [PubMed]
- Zumer, J.M.; Scheeringa, R.; Schoffelen, J.-M.; Norris, D.G.; Jensen, O. Occipital Alpha Activity during Stimulus Processing Gates the Information Flow to Object-Selective Cortex. PLoS Biol. 2014, 12, e1001965. [Google Scholar] [CrossRef] [PubMed]
- Chiang, A.K.I.; Rennie, C.J.; Robinson, P.A.; van Albada, S.J.; Kerr, C.C. Age trends and sex differences of alpha rhythms including split alpha peaks. Clin. Neurophysiol. 2011, 122, 1505–1517. [Google Scholar] [CrossRef] [PubMed]
- Markand, O.N. Alpha Rhythms. J. Clin. Neurophysiol. 1990, 7, 163–190. [Google Scholar] [CrossRef] [PubMed]
- Thatcher, R.W.; Biver, C.; McAlaster, R.; Camacho, M.; Salazar, A. Biophysical Linkage between MRI and EEG Amplitude in Closed Head Injury. NeuroImage 1998, 7, 352–367. [Google Scholar] [CrossRef] [PubMed]
- Scally, B.; Burke, M.R.; Bunce, D.; Delvenne, J.F. Resting-state EEG power and connectivity are associated with alpha peak frequency slowing in healthy aging. Neurobiol. Aging 2018, 71, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Caplan, J.B.; Bottomley, M.; Kang, P.; Dixon, R.A. Distinguishing rhythmic from non-rhythmic brain activity during rest in healthy neurocognitive aging. NeuroImage 2015, 112, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Barzegaran, E.; Vildavski, V.Y.; Knyazeva, M.G. Fine Structure of Posterior Alpha Rhythm in Human EEG: Frequency Components, Their Cortical Sources, and Temporal Behavior. Sci. Rep. 2017, 7, 8249. [Google Scholar] [CrossRef]
- Knyazeva, M.G.; Barzegaran, E.; Vildavski, V.Y.; Demonet, J.F. Aging of human alpha rhythm. Neurobiol. Aging 2018, 69, 261–273. [Google Scholar] [CrossRef]
- Aurlien, H.; Gjerde, I.O.; Aarseth, J.H.; Eldøen, G.; Karlsen, B.; Skeidsvoll, H.; Gilhus, N.E. EEG background activity described by a large computerized database. Clin. Neurophysiol. 2004, 115, 665–673. [Google Scholar] [CrossRef]
- Davis, S.W.; Dennis, N.A.; Daselaar, S.M.; Fleck, M.S.; Cabeza, R. Qué PASA? The Posterior–Anterior Shift in Aging. Cereb. Cortex 2007, 18, 1201–1209. [Google Scholar] [CrossRef]
- Könönen, M.; Partanen, J.V. Blocking of EEG alpha activity during visual performance in healthy adults. A quantitative study. Electroencephalogr. Clin. Neurophysiol. 1993, 87, 164–166. [Google Scholar] [CrossRef]
- Marciani, M.G.; Maschio, M.; Spanedda, F.; Caltagirone, C.; Gigli, G.L.; Bernardi, G. Quantitative EEG evaluation in normal elderly subjects during mental processes: Age-related changes. Int. J. Neurosci. 1994, 76, 131–140. [Google Scholar] [CrossRef]
- Volf, N.V.; Gluhih, A.A. Background cerebral electrical activity in healthy mental aging. Hum. Physiol. 2011, 37, 559–567. [Google Scholar] [CrossRef]
- Babiloni, C.; Binetti, G.; Cassarino, A.; Dal Forno, G.; Del Percio, C.; Ferreri, F.; Ferri, R.; Frisoni, G.; Galderisi, S.; Hirata, K.; et al. Sources of cortical rhythms in adults during physiological aging: A multicentric EEG study. Hum. Brain Mapp. 2006, 27, 162–172. [Google Scholar] [CrossRef]
- Clarke, A.R.; Barry, R.J.; McCarthy, R.; Selikowitz, M. Age and sex effects in the EEG: Development of the normal child. Clin. Neurophysiol. 2001, 112, 806–814. [Google Scholar] [CrossRef]
- Cragg, L.; Kovacevic, N.; McIntosh, A.R.; Poulsen, C.; Martinu, K.; Leonard, G.; Paus, T. Maturation of EEG power spectra in early adolescence: A longitudinal study. Dev. Sci. 2011, 14, 935–943. [Google Scholar] [CrossRef]
- Somsen, R.J.M.; van’t Klooster, B.J.; van der Molen, M.W.; van Leeuwen, H.M.P.; Licht, R. Growth spurts in brain maturation during middle childhood as indexed by EEG power spectra. Biol. Psychol. 1997, 44, 187–209. [Google Scholar] [CrossRef]
- Yuan, H.; He, B. Brain-computer interfaces using sensorimotor rhythms: Current state and future perspectives. IEEE Trans. Biomed. Eng. 2014, 61, 1425–1435. [Google Scholar] [CrossRef]
- Schmidt, R.; Herrojo Ruiz, M.; Kilavik, B.E.; Lundqvist, M.; Starr, P.A.; Aron, A.R. Beta Oscillations in Working Memory, Executive Control of Movement and Thought, and Sensorimotor Function. J. Neurosci. 2019, 39, 8231–8238. [Google Scholar] [CrossRef]
- Swann, N.; Poizner, H.; Houser, M.; Gould, S.; Greenhouse, I.; Cai, W.; Strunk, J.; George, J.; Aron, A.R. Deep Brain Stimulation of the Subthalamic Nucleus Alters the Cortical Profile of Response Inhibition in the Beta Frequency Band: A Scalp EEG Study in Parkinson’s Disease. J. Neurosci. 2011, 31, 5721–5729. [Google Scholar] [CrossRef] [PubMed]
- Little, S.; Brown, P. The functional role of beta oscillations in Parkinson’s disease. Park. Relat. Disord. 2014, 20, S44–S48. [Google Scholar] [CrossRef] [PubMed]
- Barry, R.J.; Clarke, A.R.; Johnstone, S.J.; McCarthy, R.; Selikowitz, M. Electroencephalogram theta/beta ratio and arousal in attention-deficit/hyperactivity disorder: Evidence of independent processes. Biol. Psychiatry 2009, 66, 398–401. [Google Scholar] [CrossRef] [PubMed]
- Clarke, A.R.; Barry, R.J.; Karamacoska, D.; Johnstone, S.J. The EEG Theta/Beta Ratio: A marker of Arousal or Cognitive Processing Capacity? Appl. Psychophysiol. Biofeedback 2019, 44, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Laufs, H.; Krakow, K.; Sterzer, P.; Eger, E.; Beyerle, A.; Salek-Haddadi, A.; Kleinschmidt, A. Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc. Natl. Acad. Sci. USA 2003, 100, 11053–11058. [Google Scholar] [CrossRef] [PubMed]
- Zappasodi, F.; Marzetti, L.; Olejarczyk, E.; Tecchio, F.; Pizzella, V. Age-Related Changes in Electroencephalographic Signal Complexity. PLoS ONE 2015, 10, e0141995. [Google Scholar] [CrossRef] [PubMed]
- Murty, D.; Manikandan, K.; Kumar, W.S.; Ramesh, R.G.; Purokayastha, S.; Javali, M.; Rao, N.P.; Ray, S. Gamma oscillations weaken with age in healthy elderly in human EEG. NeuroImage 2020, 215, 116826. [Google Scholar] [CrossRef] [PubMed]
- Kantz, H.; Schreiber, T. Nonlinear Time Series Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar] [CrossRef]
- Smits, F.M.; Porcaro, C.; Cottone, C.; Cancelli, A.; Rossini, P.M.; Tecchio, F. Electroencephalographic Fractal Dimension in Healthy Ageing and Alzheimer’s Disease. PLoS ONE 2016, 11, e0149587. [Google Scholar] [CrossRef]
- Alù, F.; Orticoni, A.; Judica, E.; Cotelli, M.; Rossini, P.M.; Miraglia, F.; Vecchio, F. Entropy modulation of electroencephalographic signals in physiological aging. Mech. Ageing Dev. 2021, 196, 111472. [Google Scholar] [CrossRef]
- Hogan, M.J.; Kilmartin, L.; Keane, M.; Collins, P.; Staff, R.T.; Kaiser, J.; Lai, R.; Upton, N. Electrophysiological entropy in younger adults, older controls and older cognitively declined adults. Brain Res. 2012, 1445, 1–10. [Google Scholar] [CrossRef]
- Takahashi, T.; Cho, R.Y.; Murata, T.; Mizuno, T.; Kikuchi, M.; Mizukami, K.; Kosaka, H.; Takahashi, K.; Wada, Y. Age-related variation in EEG complexity to photic stimulation: A multiscale entropy analysis. Clin. Neurophysiol. 2009, 120, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Vaillancourt, D.E.; Newell, K.M. Changing complexity in human behavior and physiology through aging and disease. Neurobiol. Aging 2002, 23, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lipsitz, L.A.; Goldberger, A.L. Loss of ‘Complexity’ and Aging: Potential Applications of Fractals and Chaos Theory to Senescence. JAMA J. Am. Med. Assoc. 1992, 267, 1806–1809. [Google Scholar] [CrossRef]
- Accardo, A.; Affinito, M.; Carrozzi, M.; Bouquet, F. Use of the fractal dimension for the analysis of electroencephalographic time series. Biol. Cybern. 1997, 77, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Katz, M.J. Fractals and the analysis of waveforms. Comput. Biol. Med. 1988, 18, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, T. Approach to an irregular time series on the basis of the fractal theory. Phys. D Nonlinear Phenom. 1988, 31, 277–283. [Google Scholar] [CrossRef]
- McIntosh, A.R.; Vakorin, V.; Kovacevic, N.; Wang, H.; Diaconescu, A.; Protzner, A.B. Spatiotemporal Dependency of Age-Related Changes in Brain Signal Variability. Cereb. Cortex 2013, 24, 1806–1817. [Google Scholar] [CrossRef] [PubMed]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [PubMed]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of biological signals. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2005, 71, 021906. [Google Scholar] [CrossRef]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale Entropy Analysis of Complex Physiologic Time Series. Phys. Rev. Lett. 2002, 89, 068102. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J. Functional and effective connectivity: A review. Brain Connect. 2011, 1, 13–36. [Google Scholar] [CrossRef] [PubMed]
- Bullmore, E.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Uhlhaas, P.J.; Roux, F.; Rodriguez, E.; Rotarska-Jagiela, A.; Singer, W. Neural synchrony and the development of cortical networks. Trends Cogn. Sci. 2010, 14, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Lachaux, J.P.; Rodriguez, E.; Martinerie, J.; Varela, F.J. Measuring phase synchrony in brain signals. Hum. Brain Mapp. 1999, 8, 194–208. [Google Scholar] [CrossRef]
- Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 2010, 52, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Cabeza, R. Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychol. Aging 2002, 17, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Perinelli, A.; Assecondi, S.; Tagliabue, C.F.; Mazza, V. Power shift and connectivity changes in healthy aging during resting-state EEG. NeuroImage 2022, 256, 119247. [Google Scholar] [CrossRef] [PubMed]
- Andrews-Hanna, J.R.; Snyder, A.Z.; Vincent, J.L.; Lustig, C.; Head, D.; Raichle, M.E.; Buckner, R.L. Disruption of large-scale brain systems in advanced aging. Neuron 2007, 56, 924–935. [Google Scholar] [CrossRef]
- Chan, M.Y.; Park, D.C.; Savalia, N.K.; Petersen, S.E.; Wig, G.S. Decreased segregation of brain systems across the healthy adult lifespan. Proc. Natl. Acad. Sci. USA 2014, 111, E4997–E5006. [Google Scholar] [CrossRef]
- Moezzi, B.; Pratti, L.M.; Hordacre, B.; Graetz, L.; Berryman, C.; Lavrencic, L.M.; Ridding, M.C.; Keage, H.A.D.; McDonnell, M.D.; Goldsworthy, M.R. Characterization of Young and Old Adult Brains: An EEG Functional Connectivity Analysis. Neuroscience 2019, 422, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Petti, M.; Toppi, J.; Babiloni, F.; Cincotti, F.; Mattia, D.; Astolfi, L. EEG Resting-State Brain Topological Reorganization as a Function of Age. Comput. Intell. Neurosci. 2016, 2016, 6243694. [Google Scholar] [CrossRef] [PubMed]
- Javaid, H.; Kumarnsit, E.; Chatpun, S. Age-Related Alterations in EEG Network Connectivity in Healthy Aging. Brain Sci. 2022, 12, 218. [Google Scholar] [CrossRef] [PubMed]
- Koenig, T.; Prichep, L.; Lehmann, D.; Sosa, P.V.; Braeker, E.; Kleinlogel, H.; Isenhart, R.; John, E.R. Millisecond by millisecond, year by year: Normative EEG microstates and developmental stages. NeuroImage 2002, 16, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Tomescu, M.I.; Rihs, T.A.; Rochas, V.; Hardmeier, M.; Britz, J.; Allali, G.; Fuhr, P.; Eliez, S.; Michel, C.M. From swing to cane: Sex differences of EEG resting-state temporal patterns during maturation and aging. Dev. Cogn. Neurosci. 2018, 31, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Marqui, R.D.; Michel, C.M.; Lehmann, D. Segmentation of brain electrical activity into microstates: Model estimation and validation. IEEE Trans. Bio-Med. Eng. 1995, 42, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, D.; Skrandies, W. Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr. Clin. Neurophysiol. 1980, 48, 609–621. [Google Scholar] [CrossRef] [PubMed]
- Michel, C.M.; Koenig, T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. NeuroImage 2018, 180, 577–593. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, J. A linear feature space for simultaneous learning of spatio-spectral filters in BCI. Neural Netw. 2009, 22, 1278–1285. [Google Scholar] [CrossRef]
- Barachant, A.; Bonnet, S.; Congedo, M.; Jutten, C. Multiclass brain-computer interface classification by Riemannian geometry. IEEE Trans. Biomed. Eng. 2012, 59, 920–928. [Google Scholar] [CrossRef]
- Congedo, M.; Barachant, A.; Bhatia, R. Riemannian geometry for EEG-based brain-computer interfaces: A primer and a review. Brain-Comput. Interfaces 2017, 4, 155–174. [Google Scholar] [CrossRef]
- Barachant, A.; Bonnet, S.; Congedo, M.; Jutten, C. Classification of covariance matrices using a Riemannian-based kernel for BCI applications. Neurocomputing 2013, 112, 172–178. [Google Scholar] [CrossRef]
- Schirrmeister, R.T.; Springenberg, J.T.; Fiederer, L.D.J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard, W.; Ball, T. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 2017, 38, 5391–5420. [Google Scholar] [CrossRef]
- van Leeuwen, K.G.; Sun, H.; Tabaeizadeh, M.; Struck, A.F.; van Putten, M.J.A.M.; Westover, M.B. Detecting abnormal electroencephalograms using deep convolutional networks. Clin. Neurophysiol. 2019, 130, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Khayretdinova, M.; Shovkun, A.; Degtyarev, V.; Kiryasov, A.; Pshonkovskaya, P.; Zakharov, I. Predicting age from resting-state scalp EEG signals with deep convolutional neural networks on TD-brain dataset. Front. Aging Neurosci. 2022, 14, 1019869. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, P.; Gupta, A.; Roy, P.P.; Dogra, D.P. EEG-Based Age and Gender Prediction Using Deep BLSTM-LSTM Network Model. IEEE Sens. J. 2019, 19, 2634–2641. [Google Scholar] [CrossRef]
- Kaur, B.; Singh, D.; Roy, P.P. Age and gender classification using brain–computer interface. Neural Comput. Appl. 2019, 31, 5887–5900. [Google Scholar] [CrossRef]
- Rafiei, M.H.; Gauthier, L.V.; Adeli, H.; Takabi, D. Self-Supervised Learning for Electroencephalography. IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 1457–1471. [Google Scholar] [CrossRef]
- Kostas, D.; Aroca-Ouellette, S.; Rudzicz, F. BENDR: Using Transformers and a Contrastive Self-Supervised Learning Task to Learn from Massive Amounts of EEG Data. Front. Hum. Neurosci. 2021, 15, 653659. [Google Scholar] [CrossRef]
- Gramfort, A.; Banville, H.; Chehab, O.; Hyvärinen, A.; Engemann, D. Learning with self-supervision on EEG data. In Proceedings of the 2021 9th International Winter Conference on Brain-Computer Interface (BCI), Gangwon, Republic of Korea, 22–24 February 2021; pp. 1–2. [Google Scholar]
- Ouyang, G.; Hildebrandt, A.; Schmitz, F.; Herrmann, C.S. Decomposing alpha and 1/f brain activities reveals their differential associations with cognitive processing speed. NeuroImage 2020, 205, 116304. [Google Scholar] [CrossRef]
- Pertermann, M.; Mückschel, M.; Adelhöfer, N.; Ziemssen, T.; Beste, C. On the interrelation of 1/f neural noise and norepinephrine system activity during motor response inhibition. J. Neurophysiol. 2019, 121, 1633–1643. [Google Scholar] [CrossRef]
- Uddin, L.Q. Bring the Noise: Reconceptualizing Spontaneous Neural Activity. Trends Cogn. Sci. 2020, 24, 734–746. [Google Scholar] [CrossRef]
- Vecchio, F.; Miraglia, F.; Bramanti, P.; Rossini, P.M. Human brain networks in physiological aging: A graph theoretical analysis of cortical connectivity from EEG data. J. Alzheimers Dis. 2014, 41, 1239–1249. [Google Scholar] [CrossRef]
- Song, J.; Birn, R.M.; Boly, M.; Meier, T.B.; Nair, V.A.; Meyerand, M.E.; Prabhakaran, V. Age-related reorganizational changes in modularity and functional connectivity of human brain networks. Brain Connect. 2014, 4, 662–676. [Google Scholar] [CrossRef]
- Gallen, C.L.; D’Esposito, M. Brain Modularity: A Biomarker of Intervention-related Plasticity. Trends Cogn. Sci. 2019, 23, 293–304. [Google Scholar] [CrossRef]
- Nobukawa, S.; Kikuchi, M.; Takahashi, T. Changes in functional connectivity dynamics with aging: A dynamical phase synchronization approach. NeuroImage 2019, 188, 357–368. [Google Scholar] [CrossRef]
- Geerligs, L.; Renken, R.J.; Saliasi, E.; Maurits, N.M.; Lorist, M.M. A Brain-Wide Study of Age-Related Changes in Functional Connectivity. Cereb. Cortex 2014, 25, 1987–1999. [Google Scholar] [CrossRef]
- Rakesh, D.; Fernando, K.B.; Mansour, L.S. Functional dedifferentiation of the brain during healthy aging. J. Neurophysiol. 2020, 123, 1279–1282. [Google Scholar] [CrossRef]
- McDonough, I.M.; Nolin, S.A.; Visscher, K.M. 25 years of neurocognitive aging theories: What have we learned? Front. Aging Neurosci. 2022, 14, 1002096. [Google Scholar] [CrossRef] [PubMed]
- Park, D.C.; Reuter-Lorenz, P. The Adaptive Brain: Aging and Neurocognitive Scaffolding. Annu. Rev. Psychol. 2009, 60, 173–196. [Google Scholar] [CrossRef] [PubMed]
- Reuter-Lorenz, P.A.; Park, D.C. How Does It STAC Up? Revisiting the Scaffolding Theory of Aging and Cognition. Neuropsychol. Rev. 2014, 24, 355–370. [Google Scholar] [CrossRef] [PubMed]
- Berlingeri, M.; Danelli, L.; Bottini, G.; Sberna, M.; Paulesu, E. Reassessing the HAROLD model: Is the hemispheric asymmetry reduction in older adults a special case of compensatory-related utilisation of neural circuits? Exp. Brain Res. 2013, 224, 393–410. [Google Scholar] [CrossRef] [PubMed]
Measures | Study | Main Results | Subjects (Age Range (yr), Numbers (N)) | Eyes Condition |
---|---|---|---|---|
Aperiodic components | Cellier et al. [78] | exponent, offset: decrease | adolescence (3–24 yr, N = 96) | REO |
Hill et al. [83] | exponent, offset: decrease | early–to–middle childhood (4–12 yr, N = 139) | REO, REC | |
Tröndle et al. [57] | slope, intercept: decrease | adolescence (5–22 yr, N = 2529) | REO, REC | |
Voyetk et al. [68] | 1/f slope: young > old (flatten) | young (20–30 yr, N = 11) old (60–70 yr, N = 13) | – | |
Donoghue et al. [72] | exponent, offset: young > old (flatten) | young (20–30 yr, N = 17) old (60–70 yr, N = 14) | REO | |
Pathania et al. [82] | exponent: young > old (flatten) | young (<35 yr, N = 22) old (>59 yr, N = 24) | REC | |
Cesnaite et al. [59] | 1/f slope: decrease (flatten) | LIFE–Adult DB (40–79 yr, N = 1703) | REC |
Measures | Study | Main Results | Subjects (Age Range (yr), Numbers (N)) | Eyes Condition |
---|---|---|---|---|
Beta power | Marciani et al. [106] | relative power: younger < old | young (29.9 ± 10.4 yr, N = 21) old (60.6 ± 5.4 yr, N = 20) older (78.7 ± 7.3 yr, N = 19) | REC |
Zappasodi et al. [119] | power: inverse U-shape with aging | young (16–25 yr, N = 10) old (25–66 yr, N = 14) older (66–86 yr, N = 16) | REO | |
Caplan et al. [100] | (BOSC) power: young < old | young (18–30 yr, N = 16) old (60–74 yr, N = 12) | REO REC | |
Wang et al. [17] | relative power: young < (middle-age, older) | young (22 ± 3 yr, N = 16) middle-age (45 ± 6 yr, N = 16) older (66 ± 6 yr, N = 16) | REO | |
Al Zoubi et al. [53] | relative power: increase | T–1000 DB (mean age: 34.8 yr, N = 468) | REO | |
Stacey et al. [23] | power: young < old | young (18–30 yr, N = 31) old (61–90 yr, N = 44) | REO REC | |
Delta power | Babiloni et al. [108] | power: young > old | young (18–50 yr, N = 108) old (51–85 yr, N = 107) | REC |
Slow wave (0.5–7.5 Hz) | Whitford et al. [32] | power: decrease | 10–30 yr (N = 138) | REC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.-H.; Bae, J.-H.; Jeon, Y.-J. Age-Related Characteristics of Resting-State Electroencephalographic Signals and the Corresponding Analytic Approaches: A Review. Bioengineering 2024, 11, 418. https://doi.org/10.3390/bioengineering11050418
Kang J-H, Bae J-H, Jeon Y-J. Age-Related Characteristics of Resting-State Electroencephalographic Signals and the Corresponding Analytic Approaches: A Review. Bioengineering. 2024; 11(5):418. https://doi.org/10.3390/bioengineering11050418
Chicago/Turabian StyleKang, Jae-Hwan, Jang-Han Bae, and Young-Ju Jeon. 2024. "Age-Related Characteristics of Resting-State Electroencephalographic Signals and the Corresponding Analytic Approaches: A Review" Bioengineering 11, no. 5: 418. https://doi.org/10.3390/bioengineering11050418
APA StyleKang, J. -H., Bae, J. -H., & Jeon, Y. -J. (2024). Age-Related Characteristics of Resting-State Electroencephalographic Signals and the Corresponding Analytic Approaches: A Review. Bioengineering, 11(5), 418. https://doi.org/10.3390/bioengineering11050418