Femtosecond Laser Cutting of Human Crystalline Lens Capsule and Decellularization for Corneal Endothelial Bioengineering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human crystalline lens
2.2. Femtosecond Laser Cutting
2.3. Anterior Lens Capsule Dissection
2.4. Decellularization
2.5. PCR Analysis
2.6. Corneal Endothelial Cells Culture and TEEK Reconstruction
2.7. Cell Viability Assessment
2.8. Immunolabeling of Endothelial Markers
2.9. Imaging Techniques
2.10. Endothelial Cell Density Measurement
3. Results
3.1. Femtosecond Laser Cutting of Lens Capsule Discs
3.2. Decellularization Efficiency
3.3. Endothelial Cell Viability, Morphology, and Density of TEEKs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, Z.; Forest, F.; Gain, P.; Rageade, D.; Bernard, A.; Acquart, S.; Peoc’h, M.; Defoe, D.M.; Thuret, G. 3D map of the human corneal endothelial cell. Sci. Rep. 2016, 6, 29047. [Google Scholar] [CrossRef] [PubMed]
- Melles, G.R.; Ong, T.S.; Ververs, B.; van der Wees, J. Descemet membrane endothelial keratoplasty (DMEK). Cornea 2006, 25, 987–990. [Google Scholar] [CrossRef]
- Darlington, J.K.; Adrean, S.D.; Schwab, I.R. Trends of Penetrating Keratoplasty in the United States from 1980 to 2004. Ophthalmology 2006, 113, 2171–2175. [Google Scholar] [CrossRef]
- Faye, P.A.; Poumeaud, F.; Chazelas, P.; Duchesne, M.; Rassat, M.; Miressi, F.; Lia, A.S.; Sturtz, F.; Robert, P.-Y.; Favreau, F.; et al. Focus on cell therapy to treat corneal endothelial diseases. Exp. Eye Res. 2021, 204, 108462. [Google Scholar] [CrossRef] [PubMed]
- Dunker, S.L.; Armitage, W.J.; Armitage, M.; Brocato, L.; Figueiredo, F.C.; Heemskerk, M.B.A.; Hjortdal, J.; Jones, G.L.A.; Konijn, C.; Nuijts, R.M.M.A.; et al. Outcomes of corneal transplantation in Europe: Report by the European Cornea and Cell Transplantation Registry. J. Cataract. Refract. Surg. 2021, 47, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Mathews, P.; Benbow, A.; Corcoran, K.; DeMatteo, J.; Philippy, B.; Van Meter, W. 2022 Eye Banking Statistical Report—Executive Summary. Eye Bank. Corneal Transplant. 2023, 2, e0008. [Google Scholar] [CrossRef]
- Gain, P.; Jullienne, R.; He, Z.; Aldossary, M.; Acquart, S.; Cognasse, F.; Thuret, G. Global Survey of Corneal Transplantation and Eye Banking. JAMA Ophthalmol. 2016, 134, 167. [Google Scholar] [CrossRef]
- Català, P.; Thuret, G.; Skottman, H.; Mehta, J.S.; Parekh, M.; Ní Dhubhghaill, S.; Collin, R.W.J.; Nuijts, R.M.M.A.; Ferrari, S.; LaPointe, V.L.S.; et al. Approaches for corneal endothelium regenerative medicine. Prog. Retin. Eye Res. 2022, 87, 100987. [Google Scholar] [CrossRef]
- Kinoshita, S.; Koizumi, N.; Ueno, M.; Okumura, N.; Imai, K.; Tanaka, H.; Yamamoto, Y.; Nakamura, T.; Inatomi, T.; Bush, J.; et al. Injection of Cultured Cells with a ROCK Inhibitor for Bullous Keratopathy. N. Engl. J. Med. 2018, 378, 995–1003. [Google Scholar] [CrossRef]
- Ben Moussa, O.; He, Z.; Okumura, N.; Koizumi, N.; Gain, P.; Thuret, G. Bioengineered endothelial grafts. In The Cornea Endothelium. Issy-les Moulineaux; Thuret, G., Muraine, M., Gain, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 177–182. [Google Scholar]
- Peh, G.S.L.; Ong, H.S.; Adnan, K.; Ang, H.-P.; Lwin, C.N.; Seah, X.-Y.; Lin, S.-J.; Mehta, J.S. Functional Evaluation of Two Corneal Endothelial Cell-Based Therapies: Tissue-Engineered Construct and Cell Injection. Sci. Rep. 2019, 9, 6087. [Google Scholar] [CrossRef]
- Peh, G.S.L.; Ang, H.-P.; Lwin, C.N.; Adnan, K.; George, B.L.; Seah, X.-Y.; Lin, S.-J.; Bhogal, M.; Liu, Y.-C.; Tan, D.T.; et al. Regulatory Compliant Tissue-Engineered Human Corneal Endothelial Grafts Restore Corneal Function of Rabbits with Bullous Keratopathy. Sci. Rep. 2017, 7, 14149. [Google Scholar] [CrossRef]
- Palchesko, R.N.; Lathrop, K.L.; Funderburgh, J.L.; Feinberg, A.W. In Vitro Expansion of Corneal Endothelial Cells on Biomimetic Substrates. Sci. Rep. 2015, 5, 7955. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.P.; Leong, K.W. Scaffolding in tissue engineering: General approaches and tissue-specific considerations. Eur. Spine J. 2008, 17, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Ishino, Y.; Sano, Y.; Nakamura, T.; Connon, C.J.; Rigby, H.; Fullwood, N.J.; Kinoshita, S. Amniotic Membrane as a Carrier for Cultivated Human Corneal Endothelial Cell Transplantation. Investig. Opthalmol. Vis. Sci. 2004, 45, 800. [Google Scholar] [CrossRef] [PubMed]
- Navaratnam, J.; Utheim, T.; Rajasekhar, V.; Shahdadfar, A. Substrates for Expansion of Corneal Endothelial Cells towards Bioengineering of Human Corneal Endothelium. J. Funct. Biomater. 2015, 6, 917–945. [Google Scholar] [CrossRef] [PubMed]
- Higa, A. Prevalence of and Risk Factors for Cornea Guttata in a Population-Based Study in a Southwestern Island of Japan: The Kumejima Study. Arch. Ophthalmol. 2011, 129, 332. [Google Scholar] [CrossRef] [PubMed]
- Arnalich-Montiel, F.; Moratilla, A.; Fuentes-Julián, S.; Aparicio, V.; Cadenas Martin, M.; Peh, G.; Mehta, J.S.; Adnan, K.; Porrua, L.; Pérez-Sarriegui, A.; et al. Treatment of corneal endothelial damage in a rabbit model with a bioengineered graft using human decellularized corneal lamina and cultured human corneal endothelium. PLoS ONE 2019, 14, e0225480. [Google Scholar] [CrossRef] [PubMed]
- Yoeruek, E.; Saygili, O.; Spitzer, M.S.; Tatar, O.; Bartz-Schmidt, K.U.; Szurman, P. Human Anterior Lens Capsule as Carrier Matrix for Cultivated Human Corneal Endothelial Cells. Cornea 2009, 28, 416–420. [Google Scholar] [CrossRef]
- Danysh, B.P.; Duncan, M.K. The lens capsule. Exp. Eye Res. 2009, 88, 151–164. [Google Scholar] [CrossRef]
- Van den Bogerd, B.; Ní Dhubhghaill, S.; Zakaria, N. Characterizing human decellularized crystalline lens capsules as a scaffold for corneal endothelial tissue engineering. J. Tissue Eng. Regen. Med. 2018, 12, e2020–e2028. [Google Scholar] [CrossRef]
- Crouzet, E.; He, Z.; Ben Moussa, O.; Mentek, M.; Isard, P.; Peyret, B.; Forest, F.; Gain, P.; Koizumi, N.; Okumura, N.; et al. Tissue engineered endothelial keratoplasty in rabbit: Tips and tricks. Acta Ophthalmol. 2022, 100, 690–699. [Google Scholar] [CrossRef]
- Bachmann, B.O.; Laaser, K.; Cursiefen, C.; Kruse, F.E. A Method to Confirm Correct Orientation of Descemet Membrane During Descemet Membrane Endothelial Keratoplasty. Am. J. Ophthalmol. 2010, 149, 922–925.e2. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Forest, F.; Bernard, A.; Gauthier, A.-S.; Montard, R.; Peoc’h, M.; Jumelle, C.; Courrier, E.; Perrache, C.; Gain, P.; et al. Cutting and Decellularization of Multiple Corneal Stromal Lamellae for the Bioengineering of Endothelial Grafts. Investig. Opthalmol. Vis. Sci. 2016, 57, 6639. [Google Scholar] [CrossRef] [PubMed]
- Villamil Ballesteros, A.C.; Segura Puello, H.R.; Lopez-Garcia, J.A.; Bernal-Ballen, A.; Nieto Mosquera, D.L.; Muñoz Forero, D.M.; Segura Charry, J.S.; Neira Bejarano, Y.A. Bovine Decellularized Amniotic Membrane: Extracellular Matrix as Scaffold for Mammalian Skin. Polymers 2020, 12, 590. [Google Scholar] [CrossRef] [PubMed]
- Luna® Universal Probe qPCR Master Mix|NEB. Available online: https://www.neb.com/en/products/m3004-luna-universal-probe-qpcr-master-mix#Protocols,%20Manuals%20&%20Usage_Manuals (accessed on 18 January 2024).
- He, Z.; Okumura, N.; Sato, M.; Komori, Y.; Nakahara, M.; Gain, P.; Koizumi, N.; Thuret, G. Corneal endothelial cell therapy: Feasibility of cell culture from corneas stored in organ culture. Cell Tissue Bank. 2021, 22, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Pipparelli, A.; Thuret, G.; Toubeau, D.; He, Z.; Piselli, S.; Lefèvre, S.; Gain, P.; Muraine, M. Pan-Corneal Endothelial Viability Assessment: Application to Endothelial Grafts Predissected by Eye Banks. Investig. Ophthalmol. Vis. Sci. 2011, 52, 6018–6025. [Google Scholar] [CrossRef] [PubMed]
- Forest, F.; Thuret, G.; Gain, P.; Dumollard, J.-M.; Peoc’h, M.; Perrache, C.; He, Z. Optimization of immunostaining on flat-mounted human corneas. Mol. Vis. 2015, 21, 1345–1356. [Google Scholar]
- Challenges in Corneal Endothelial Cell Culture. Available online: https://www.futuremedicine.com/doi/epub/10.2217/rme-2020-0202 (accessed on 19 December 2023).
- Aouimeur, I.; Sagnial, T.; Coulomb, L.; Maurin, C.; Thomas, J.; Forestier, P.; Ninotta, S.; Perrache, C.; Forest, F.; Gain, P.; et al. Investigating the Role of TGF-β Signaling Pathways in Human Corneal Endothelial Cell Primary Culture. Cells 2023, 12, 1624. [Google Scholar] [CrossRef]
- Acquart, S.; Campolmi, N.; He, Z.; Pataia, G.; Jullienne, R.; Garraud, O.; Nguyen, F.; Péoc’h, M.; Lépine, T.; Thuret, G.; et al. Non-invasive measurement of transparency, arcus senilis, and scleral rim diameter of corneas during eye banking. Cell Tissue Bank. 2014, 15, 471–482. [Google Scholar] [CrossRef]
- Weigert, M.; Schmidt, U.; Haase, R.; Sugawara, K.; Myers, G. Star-convex Polyhedra for 3D Object Detection and Segmentation in Microscopy. In Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass Village, CO, USA, 5 March 2020; pp. 3655–3662. [Google Scholar]
- Schmidt, U.; Weigert, M.; Broaddus, C.; Myers, G. Cell Detection with Star-Convex Polygons. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2018; Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 265–273. [Google Scholar]
- Numa, K.; Imai, K.; Ueno, M.; Kitazawa, K.; Tanaka, H.; Bush, J.D.; Teramukai, S.; Okumura, N.; Koizumi, N.; Hamuro, J.; et al. Five-Year Follow-up of First 11 Patients Undergoing Injection of Cultured Corneal Endothelial Cells for Corneal Endothelial Failure. Ophthalmology 2021, 128, 504–514. [Google Scholar] [CrossRef]
- Birbal, R.S.; Hsien, S.; Zygoura, V.; Parker, J.S.; Ham, L.; van Dijk, K.; Dapena, I.; Baydoun, L.; Melles, G.R.J. Outcomes of Hemi-Descemet Membrane Endothelial Keratoplasty for Fuchs Endothelial Corneal Dystrophy. Cornea 2018, 37, 854–858. [Google Scholar] [CrossRef]
- Birbal, R.S.; Ni Dhubhghaill, S.; Baydoun, L.; Ham, L.; Bourgonje, V.J.A.; Dapena, I.; Oellerich, S.; Melles, G.R.J. Quarter-Descemet Membrane Endothelial Keratoplasty: One- to Two-Year Clinical Outcomes. Cornea 2020, 39, 277–282. [Google Scholar] [CrossRef]
- Martinez-Enriquez, E.; de Castro, A.; Mohamed, A.; Sravani, N.G.; Ruggeri, M.; Manns, F.; Marcos, S. Age-Related Changes to the Three-Dimensional Full Shape of the Isolated Human Crystalline Lens. Investig. Opthalmol. Vis. Sci. 2020, 61, 11. [Google Scholar] [CrossRef]
- Price, M.O.; Gupta, P.; Lass, J.; Price, F.W. EK (DLEK, DSEK, DMEK): New Frontier in Cornea Surgery. Annu. Rev. Vis. Sci. 2017, 3, 69–90. [Google Scholar] [CrossRef]
- Garcin, T.; Gain, P.; Thuret, G. Femtosecond laser-cut autologous anterior lens capsule transplantation to treat refractory macular holes. Eye, 2022; Epub ahead of print. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Moussa, O.; Parveau, L.; Aouimeur, I.; Egaud, G.; Maurin, C.; Fraine, S.; Urbaniak, S.; Perrache, C.; He, Z.; Xxx, S.; et al. Femtosecond Laser Cutting of Human Crystalline Lens Capsule and Decellularization for Corneal Endothelial Bioengineering. Bioengineering 2024, 11, 255. https://doi.org/10.3390/bioengineering11030255
Ben Moussa O, Parveau L, Aouimeur I, Egaud G, Maurin C, Fraine S, Urbaniak S, Perrache C, He Z, Xxx S, et al. Femtosecond Laser Cutting of Human Crystalline Lens Capsule and Decellularization for Corneal Endothelial Bioengineering. Bioengineering. 2024; 11(3):255. https://doi.org/10.3390/bioengineering11030255
Chicago/Turabian StyleBen Moussa, Olfa, Louise Parveau, Inès Aouimeur, Grégory Egaud, Corantin Maurin, Sofiane Fraine, Sébastien Urbaniak, Chantal Perrache, Zhiguo He, Sedao Xxx, and et al. 2024. "Femtosecond Laser Cutting of Human Crystalline Lens Capsule and Decellularization for Corneal Endothelial Bioengineering" Bioengineering 11, no. 3: 255. https://doi.org/10.3390/bioengineering11030255
APA StyleBen Moussa, O., Parveau, L., Aouimeur, I., Egaud, G., Maurin, C., Fraine, S., Urbaniak, S., Perrache, C., He, Z., Xxx, S., Dorado Cortez, O., Poinard, S., Mauclair, C., Gain, P., & Thuret, G. (2024). Femtosecond Laser Cutting of Human Crystalline Lens Capsule and Decellularization for Corneal Endothelial Bioengineering. Bioengineering, 11(3), 255. https://doi.org/10.3390/bioengineering11030255