Risk Factors for Early Implant Failure and Selection of Bone Grafting Materials for Various Bone Augmentation Procedures: A Narrative Review
Abstract
:1. Introduction
2. Early Implant Failure
2.1. Difference between Early Failure and Late Implant Failure
2.2. Problems Associated with Early Implant Failure
2.3. Risk Factors for Early Implant Failure
3. Relationship between Early Implant Failure and the Bone Augmentation Procedure
4. Risk Factors for Early Implant Failure and Selection of Graft Material in Various Surgical Procedures
4.1. Alveolar Ridge Preservation
4.1.1. Efficacy of Alveolar Ridge Preservation and Associated Complications
4.1.2. Selection of Bone Grafting Materials in ARP
4.2. Alveolar Ridge Augmentation (Vertical/Horizontal)
4.2.1. Relationship between Alveolar Ridge Augmentation, Complications, and Early Failure
4.2.2. Selection of Bone Graft Material for Alveolar Ridge Augmentation
4.3. Sinus Augmentation (Lateral Approach/Crestal Approach)
4.3.1. Relationship between Early Implant Failure and Sinus Augmentation
4.3.2. Selection of the Graft Material in Sinus Augmentation
5. Characteristics and Selection of Various Bone Grafting Materials
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Howe, M.S.; Keys, W.; Richards, D. Long-term (10-year) dental implant survival: A systematic review and sensitivity meta-analysis. J. Dent. 2019, 84, 9–21. [Google Scholar] [CrossRef]
- Pozzi, A.; Arcuri, L.; Fabbri, G.; Singer, G.; Londono, J. Long-term survival and success of zirconia screw-retained implant-supported prostheses for up to 12 years: A retrospective multicenter study. J. Prosthet. Dent. 2023, 129, 96–108. [Google Scholar] [CrossRef]
- Lini, F.; Poli, P.P.; Beretta, M.; Cortinovis, I.; Maiorana, C. Long-term retrospective observational cohort study on the survival rate of stepped screw titanium implants followed up to 20 years. Int. J. Oral Maxillofac. Implants 2019, 34, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Derks, J.; Håkansson, J.; Wennström, J.L.; Tomasi, C.; Larsson, M.; Berglundh, T. Effectiveness of implant therapy analyzed in a Swedish population: Early and late implant loss. J. Dent. Res. 2015, 94, 44S–51S. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Ye, S.; Liu, F.; He, F. A retrospective study of 30,959 implants: Risk factors associated with early and late implant loss. J. Clin. Periodontol. 2018, 45, 733–743. [Google Scholar] [CrossRef]
- French, D.; Grandin, H.M.; Ofec, R. Retrospective cohort study of 4,591 dental implants: Analysis of risk indicators for bone loss and prevalence of peri-implant mucositis and peri-implantitis. J. Periodontol. 2019, 90, 691–700. [Google Scholar] [CrossRef]
- Laleman, I.; Lambert, F. Implant connection and abutment selection as a predisposing and/or precipitating factor for peri-implant diseases: A review. Clin. Implant. Dent. Relat. Res. 2023, 25, 723–733. [Google Scholar] [CrossRef]
- Manfredini, D.; Poggio, C.E.; Lobbezoo, F. Is bruxism a risk factor for dental implants? A systematic review of the literature. Clin. Implant. Dent. Relat. Res. 2014, 16, 460–469. [Google Scholar] [CrossRef]
- Naert, I.; Duyck, J.; Vandamme, K. Occlusal overload and bone/implant loss. Clin. Oral Implants Res. 2012, 23, 95–107. [Google Scholar] [CrossRef]
- Sun, J.S.; Liu, K.C.; Hung, M.C.; Lin, H.Y.; Chuang, S.L.; Lin, P.J.; Chang, J.Z. A cross-sectional study for prevalence and risk factors of peri-implant marginal bone loss. J. Prosthet. Dent. 2023, in press. [Google Scholar] [CrossRef]
- Do, T.A.; Le, H.S.; Shen, Y.W.; Huang, H.L.; Fuh, L.J. Risk Factors related to Late Failure of Dental Implant-A Systematic Review of Recent Studies. Int. J. Environ. Res. Public Health 2020, 17, 3931. [Google Scholar] [CrossRef] [PubMed]
- Palma-Carrió, C.; Maestre-Ferrín, L.; Peñarrocha-Oltra, D.; Peñarrocha-Diago, M.A.; Peñarrocha-Diago, M. Risk factors associated with early failure of dental implants. A literature review. Med. Oral Patol. Oral Cir. Bucal. 2011, 16, e514–e517. [Google Scholar] [CrossRef] [PubMed]
- Sakka, S.; Baroudi, K.; Nassani, M.Z. Factors associated with early and late failure of dental implants. J. Investig. Clin. Dent. 2012, 3, 258–261. [Google Scholar] [CrossRef]
- Schwarz, F.; Ramanauskaite, A. It is all about peri-implant tissue health. Periodontol 2000 2022, 88, 9–12. [Google Scholar] [CrossRef]
- Takamoli, J.; Pascual, A.; Martinez-Amargant, J.; Garcia-Mur, B.; Nart, J.; Valles, C. Implant failure and associated risk indicators: A retrospective study. Clin. Oral Implants Res. 2021, 32, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Wang, F.; Monje, A.; Elnayef, B.; Huang, W.; Wu, Y. Feasibility of dental implant replacement in failed sites: A systematic review. Int. J. Oral Maxillofac. Implants 2016, 31, 535–545. [Google Scholar] [CrossRef]
- Park, Y.S.; Lee, B.A.; Choi, S.H.; Kim, Y.T. Evaluation of failed implants and reimplantation at sites of previous dental implant failure: Survival rates and risk factors. J. Periodontal Implant. Sci. 2022, 52, 230–241. [Google Scholar] [CrossRef]
- Agari, K.; Le, B. Successive Reimplantation of dental implants into sites of previous failure. J. Oral Maxillofac. Surg. 2020, 78, 375–385. [Google Scholar] [CrossRef]
- Maló, P.; de Araújo Nobre, M.; Lopes, A.; Ferro, A.; Botto, J. The All-on-4 treatment concept for the rehabilitation of the completely edentulous mandible: A longitudinal study with 10 to 18 years of follow-up. Clin. Implant. Dent. Relat. Res. 2019, 21, 565–577. [Google Scholar] [CrossRef]
- Olmedo-Gaya, M.V.; Manzano-Moreno, F.J.; Cañaveral-Cavero, E.; de Dios Luna-del Castillo, J.; Vallecillo-Capilla, M. Risk factors associated with early implant failure: A 5-year retrospective clinical study. J. Prosthet. Dent. 2016, 115, 150–1555. [Google Scholar] [CrossRef]
- Chrcanovic, B.R.; Kisch, J.; Albrektsson, T.; Wennerberg, A. Factors Influencing Early Dental Implant Failures. J. Dent. Res. 2016, 95, 995–1002. [Google Scholar] [CrossRef]
- Grisar, K.; Sinha, D.; Schoenaers, J.; Dormaar, T.; Politis, C. Retrospective Analysis of Dental Implants Placed Between 2012 and 2014: Indications, Risk Factors, and Early Survival. Int. J. Oral Maxillofac. Implants 2017, 32, 649–654. [Google Scholar] [CrossRef]
- Camps-Font, O.; Martín-Fatás, P.; Clé-Ovejero, A.; Figueiredo, R.; Gay-Escoda, C.; Valmaseda-Castellón, E. Postoperative infections after dental implant placement: Variables associated with increased risk of failure. J. Periodontol. 2018, 89, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.Y.; Kim, M.; Lee, S.J.; Cho, I.W.; Shin, H.S.; Caballé-Serrano, J.; Park, J.C. Early implant failure: A retrospective analysis of contributing factors. J. Periodontal Implant. Sci. 2019, 49, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Borba, M.; Deluiz, D.; Lourenço, E.J.V.; Oliveira, L.; Tannure, P.N. Risk factors for implant failure: A retrospective study in an educational institution using GEE analyses. Braz. Oral Res. 2017, 31, e69. [Google Scholar] [CrossRef] [PubMed]
- Hirota, M.; Ozawa, T.; Iwai, T.; Ogawa, T.; Tohnai, I. Effect of Photofunctionalization on Early Implant Failure. Int. J. Oral Maxillofac. Implants 2018, 33, 1098–1102. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.C. Risk factors associated with early failure of maxillary versus mandibular implants: A retrospective study. Int. J. Oral Implantol. 2020, 13, 55–63. [Google Scholar]
- De Angelis, F.; Papi, P.; Mencio, F.; Rosella, D.; Di Carlo, S.; Pompa, G. Implant survival and success rates in patients with risk factors: Results from a long-term retrospective study with a 10 to 18 years follow-up. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 433–437. [Google Scholar] [PubMed]
- Jemt, T. A retro-prospective effectiveness study on 3448 implant operations at one referral clinic: A multifactorial analysis. Part I: Clinical factors associated to early implant failures. Clin. Implant. Dent. Relat. Res. 2017, 19, 980–988. [Google Scholar] [CrossRef] [PubMed]
- Antoun, H.; Karouni, M.; Abitbol, J.; Zouiten, O.; Jemt, T. A retrospective study on 1592 consecutively performed operations in one private referral clinic. Part I: Early inflammation and early implant failures. Clin. Implant. Dent. Relat. Res. 2017, 19, 404–412. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, H.; Zeng, M.; Chu, H.; Gan, Z.; Duan, J.; Rong, M. The survival rates and risk factors of implants in the early stage: A retrospective study. BMC Oral Health 2021, 21, 293. [Google Scholar] [CrossRef]
- Jemt, T.; Nilsson, M.; Olsson, M.; Stenport, V.F. Associations Between Early Implant Failure, Patient Age, and Patient Mortality: A 15-Year Follow-Up Study on 2,566 Patients Treated with Implant-Supported Prostheses in the Edentulous Jaw. Int. J. Prosthodont. 2017, 30, 189–197. [Google Scholar] [CrossRef]
- Tattan, M.; Puranam, M.; Comnick, C.; McBrearty, C.; Xie, X.J.; Caplan, D.J.; Avila-Ortiz, G.; Elangovan, S. Surgery start time and early implant failure: A case-control study. Clin. Oral Implants Res. 2021, 32, 871–880. [Google Scholar] [CrossRef]
- Wu, X.; Chen, S.; Ji, W.; Shi, B. The risk factors of early implant failure: A retrospective study of 6113 implants. Clin. Implant Dent. Relat. Res. 2021, 23, 280–288. [Google Scholar] [CrossRef]
- Staedt, H.; Rossa, M.; Lehmann, K.M.; Al-Nawas, B.; Kämmerer, P.W.; Heimes, D. Potential risk factors for early and late dental implant failure: A retrospective clinical study on 9080 implants. Int. J. Implant Dent. 2020, 6, 81. [Google Scholar] [CrossRef]
- Malm, M.O.; Jemt, T.; Stenport, V. Early implant failures in edentulous patients: A multivariable regression analysis of 4615 consecutively treated jaws. A retrospective study. J. Prosthodont. 2018, 27, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.B.; Arwani, N.; Lohse, C.M.; Gonzalez, R.L.V.; Muller, O.M.; Salinas, T.J. Early implant failure associated with patient factors, surgical manipulations, and systemic conditions. J. Prosthodont. 2019, 28, 623–633. [Google Scholar] [CrossRef] [PubMed]
- da Rocha Costa Coelho, T.; Almeida de Azevedo, R.; Borges Maia, W.W.; Nunes Dos Santos, J.; Ramos Cury, P. Evaluation of the association of early implant failure with local, environmental, and systemic factors: A retrospective study. J. Oral Maxillofac. Surg. 2021, 79, 1237–1245. [Google Scholar] [CrossRef] [PubMed]
- Ceruso, F.M.; Ieria, I.; Tallarico, M.; Meloni, S.M.; Lumbau, A.I.; Mastroianni, A.; Zotti, A.; Gargari, M. Comparison between Early Loaded Single Implants with Internal Conical Connection or Implants with Transmucosal Neck Design: A Non-Randomized Controlled Trial with 1-Year Clinical, Aesthetics, and Radiographic Evaluation. Materials 2022, 15, 511. [Google Scholar] [CrossRef] [PubMed]
- Prati, C.; Zamparini, F.; Canullo, L.; Pirani, C.; Botticelli, D.; Gandolfi, M.G. Factors Affecting Soft and Hard Tissues Around Two-Piece Transmucosal Implants: A 3-Year Prospective Cohort Study. Int. J. Oral Maxillofac. Implants 2020, 35, 1022–1036. [Google Scholar] [CrossRef] [PubMed]
- Asa’ad, F.; Thomsen, P.; Kunrath, M.F. The Role of Titanium Particles and Ions in the Pathogenesis of Peri-Implantitis. J. Bone Metab. 2022, 29, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Clauser, T.; Lin, G.H.; Lee, E.; Del Fabbro, M.; Wang, H.L.; Testori, T. Risk of early implant failure in grafted and non-grafted sites: A systematic review and meta-analysis. Int. J. Oral Implantol. 2022, 15, 31–41. [Google Scholar]
- Aribau-Gumà, C.; Jorba-García, A.; Sánchez-Torres, A.; Sànchez-Garcés, M.À. Alveolar ridge preservation: An overview of systematic reviews. Int. J. Oral Maxillofac. Surg. 2022, 51, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Bassir, S.H.; Alhareky, M.; Wangsrimongkol, B.; Jia, Y.; Karimbux, N. Systematic Review and Meta-Analysis of Hard Tissue Outcomes of Alveolar Ridge Preservation. Int. J. Oral Maxillofac. Implants 2018, 33, 979–994. [Google Scholar] [CrossRef] [PubMed]
- Atieh, M.A.; Alsabeeha, N.H.; Payne, A.G.; Ali, S.; Faggion, C.M.J.; Esposito, M. Interventions for replacing missing teeth: Alveolar ridge preservation techniques for dental implant site development. Cochrane Database Syst. Rev. 2021, 4, CD010176. [Google Scholar] [CrossRef] [PubMed]
- Barootchi, S.; Tavelli, L.; Majzoub, J.; Stefanini, M.; Wang, H.L.; Avila-Ortiz, G. Alveolar ridge preservation: Complications and cost-effectiveness. Periodontol 2000 2023, 92, 235–262. [Google Scholar] [CrossRef] [PubMed]
- Avila-Ortiz, G.; Gubler, M.; Romero-Bustillos, M.; Nicholas, C.L.; Zimmerman, M.B.; Barwacz, C.A. Efficacy of Alveolar Ridge Preservation: A Randomized Controlled Trial. J. Dent. Res. 2020, 99, 402–409. [Google Scholar] [CrossRef]
- Cha, J.K.; Song, Y.W.; Park, S.H.; Jung, R.E.; Jung, U.W.; Thoma, D.S. Alveolar ridge preservation in the posterior maxilla reduces vertical dimensional change: A randomized controlled clinical trial. Clin. Oral Implants Res. 2019, 30, 515–523. [Google Scholar] [CrossRef]
- Lee, J.; Yun, J.; Kim, J.J.; Koo, K.T.; Seol, Y.J.; Lee, Y.M. Retrospective study of alveolar ridge preservation compared with no alveolar ridge preservation in periodontally compromised extraction sockets. Int. J. Implant Dent. 2021, 7, 23. [Google Scholar] [CrossRef]
- Atieh, M.A.; Alnaqbi, M.; Abdunabi, F.; Lin, L.; Alsabeeha, N.H.M. Alveolar ridge preservation in extraction sockets of periodontally compromised teeth: A systematic review and meta-analysis. Clin. Oral Implants Res. 2022, 33, 869–885. [Google Scholar] [CrossRef]
- Hoang, T.N.; Mealey, B.L. Histologic comparison of healing after ridge preservation using human demineralized bone matrix putty with one versus two different-sized bone particles. J. Periodontol. 2012, 83, 174–181. [Google Scholar] [CrossRef]
- De Risi, V.; Clementini, M.; Vittorini, G.; Mannocci, A.; De Sanctis, M. Alveolar ridge preservation techniques: A systematic review and meta-analysis of histological and histomorphometrical data. Clin. Oral Implants Res. 2015, 26, 50–68. [Google Scholar] [CrossRef]
- Santana, R.; Gyurko, R.; Kanasi, E.; Xu, W.P.; Dibart, S. Synthetic polymeric barrier membrane associated with blood coagulum, human allograft, or bovine bone substitute for ridge preservation: A randomized, controlled, clinical and histological trial. Int. J. Oral Maxillofac. Surg. 2019, 48, 675–683. [Google Scholar] [CrossRef]
- Jambhekar, S.; Kernen, F.; Bidra, A.S. Clinical and histologic outcomes of socket grafting after flapless tooth extraction: A systematic review of randomized controlled clinical trials. J. Prosthet. Dent. 2015, 113, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Corbella, S.; Taschieri, S.; Francetti, L.; Weinstein, R.; Del Fabbro, M. Histomorphometric Results After Postextraction Socket Healing with Different Biomaterials: A Systematic Review of the Literature and Meta-Analysis. Int. J. Oral Maxillofac. Implants 2017, 32, 1001–1017. [Google Scholar] [CrossRef] [PubMed]
- Couso-Queiruga, E.; Weber, H.A.; Garaicoa-Pazmino, C.; Barwacz, C.; Kalleme, M.; Galindo-Moreno, P.; Avila-Ortiz, G. Influence of healing time on the outcomes of alveolar ridge preservation using a collagenated bovine bone xenograft: A randomized clinical trial. J. Clin. Periodontol. 2023, 50, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Lim, G.; Lin, G.H.; Monje, A.; Chan, H.L.; Wang, H.L. Wound healing complications following guided bone regeneration for ridge augmentation: A systematic review and meta-analysis. Int. J. Oral Maxillofac. Implants 2018, 33, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Jensen, A.T.; Jensen, S.S.; Worsaae, N. Complications related to bone augmentation procedures of localized defects in the alveolar ridge. A retrospective clinical study. Oral Maxillofac. Surg. 2016, 20, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Troeltzsch, M.; Troeltzsch, M.; Kauffmann, P.; Gruber, R.; Brockmeyer, P.; Moser, N.; Rau, A.; Schliephake, H. Clinical efficacy of grafting materials in alveolar ridge augmentation: A systematic review. J. Craniomaxillofac. Surg. 2016, 44, 1618–1629. [Google Scholar] [CrossRef] [PubMed]
- Moy, P.K.; Aghaloo, T. Risk factors in bone augmentation procedures. Periodontol 2000 2019, 81, 76–90. [Google Scholar] [CrossRef] [PubMed]
- Aloy-Prósper, A.; Peñarrocha-Oltra, D.; Peñarrocha-Diago, M.; Peñarrocha-Diago, M. Dental implants with versus without peri-implant bone defects treated with guided bone regeneration. J. Clin. Exp. Dent 2015, 7, e361–e368. [Google Scholar] [CrossRef] [PubMed]
- Barone, A.; Orlando, B.; Tonelli, P.; Covani, U. Survival rate for implants placed in the posterior maxilla with and without sinus augmentation: A comparative cohort study. J. Periodontol. 2011, 82, 219–226. [Google Scholar] [CrossRef]
- Cannizzaro, G.; Felice, P.; Minciarelli, A.F.; Leone, M.; Viola, P.; Esposito, M. Early implant loading in the atrophic posterior maxilla: 1-stage lateral versus crestal sinus lift and 8 mm hydroxyapatite-coated implants. A 5-year randomised controlled trial. Eur. J. Oral Implantol. 2013, 6, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Zinser, M.J.; Randelzhofer, P.; Kuiper, L.; Zöller, J.E.; De Lange, G.L. The predictors of implant failure after maxillary sinus floor augmentation and reconstruction: A retrospective study of 1045 consecutive implants. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 115, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Ohayon, L.; Taschieri, S.; Friedmann, A.; Del Fabbro, M. Bone Graft Displacement After Maxillary Sinus Floor Augmentation with or Without Covering Barrier Membrane: A Retrospective Computed Tomographic Image Evaluation. Int. J. Oral Maxillofac. Implants 2019, 34, 681–691. [Google Scholar] [CrossRef]
- Kozuma, A.; Sasaki, M.; Seki, K.; Toyoshima, T.; Nakano, H.; Mori, Y. Preoperative chronic sinusitis as significant cause of postoperative infection and implant loss after sinus augmentation from a lateral approach. Oral Maxillofac. Surg. 2017, 21, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, J.S. Lateral window sinus augmentation: Complications and outcomes of 101 consecutive procedures. Implant. Dent. 2015, 24, 354–361. [Google Scholar] [CrossRef]
- Shi, J.Y.; Gu, Y.X.; Zhuang, L.F.; Lai, H.C. Survival of implants using the osteotome technique with or without grafting in the posterior maxilla: A systematic review. Int. J. Oral Maxillofac. Implants 2016, 31, 1077–1088. [Google Scholar] [CrossRef]
- Călin, C.; Petre, A.; Drafta, S. Osteotome-mediated sinus floor elevation: A systematic review and meta-analysis. Int J Oral Maxillofac. Implants 2014, 29, 558–576. [Google Scholar] [CrossRef]
- Li, N.; Jiang, Z.; Pu, R.; Zhu, D.; Yang, G. Implant failure and associated risk factors of transcrestal sinus floor elevation: A retrospective study. Clin. Oral Implants Res. 2023, 34, 66–77. [Google Scholar] [CrossRef]
- Stacchi, C.; Bernardello, F.; Spinato, S.; Mura, R.; Perelli, M.; Lombardi, T.; Troiano, G.; Canullo, L. Intraoperative complications and early implant failure after transcrestal sinus floor elevation with residual bone height ≤5 mm: A retrospective multicenter study. Clin. Oral Implants Res. 2022, 33, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Garbacea, A.; Lozada, J.L.; Church, C.A.; Al-Ardah, A.J.; Seiberling, K.A.; Naylor, W.P.; Chen, J.W. The incidence of maxillary sinus membrane perforation during endoscopically assessed crestal sinus floor elevation: A pilot study. J. Oral Implantol. 2012, 38, 345–359. [Google Scholar] [CrossRef] [PubMed]
- Gargallo-Albiol, J.; Sinjab, K.H.; Barootchi, S.; Chan, H.L.; Wang, H.L. Microscope and micro-camera assessment of Schneiderian membrane perforation via transcrestal sinus floor elevation: A randomized ex vivo study. Clin. Oral Implants Res. 2019, 30, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Pesce, P.; Menini, M.; Canullo, L.; Khijmatgar, S.; Modenese, L.; Gallifante, G.; Del Fabbro, M. Radiographic and Histomorphometric Evaluation of Biomaterials Used for Lateral Sinus Augmentation: A Systematic Review on the Effect of Residual Bone Height and Vertical Graft Size on New Bone Formation and Graft Shrinkage. J. Clin. Med. 2021, 10, 4996. [Google Scholar] [CrossRef] [PubMed]
- Al-Moraissi, E.A.; Alkhutari, A.S.; Abotaleb, B.; Altairi, N.H.; Del Fabbro, M. Do osteoconductive bone substitutes result in similar bone regeneration for maxillary sinus augmentation when compared to osteogenic and osteoinductive bone grafts? A systematic review and frequentist network meta-analysis. Int. J. Oral Maxillofac Surg. 2020, 49, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Park, W.B.; Han, J.Y.; Oh, S.L. Maxillary sinusitis associated with peri-implantitis at sinus floor augmented sites: Case series. Implant Dent. 2019, 28, 484–489. [Google Scholar] [CrossRef]
- Scarano, A.; Cholakis, A.K.; Piattelli, A. Histologic evaluation of sinus grafting materials after peri-implantitis-induced failure: A case series. Int. J. Oral Maxillofac. Implants 2017, 32, e69–e75. [Google Scholar] [CrossRef]
- Zhao, R.; Yang, R.; Cooper, P.R.; Khurshid, Z.; Shavandi, A.; Ratnayake, J. Bone Grafts and Substitutes in Dentistry: A Review of Current Trends and Developments. Molecules 2021, 26, 3007. [Google Scholar] [CrossRef]
Study | Patients/ Implant | Definition of Early Failure | Implant Placement Year | Yes | No | Rate of Early Failure |
---|---|---|---|---|---|---|
Olmedo-Gaya et al., 2016 [20] | 142/276 | Occurs before loading | 2007–2011 | Male, severe periodontal disease, short implant (7–8.5 mm), bone augmentation, pain and inflammation 1 week postoperatively | Age, systemic disease, smoking, alcohol consumption, bruxism, edentulous jaw, implant site and diameter, bone quality, bone augmentation | Implant level: 5.8% |
Chrcanovic et al., 2016 [21] | 2670/10,096 | Before abutment connection | 1980–2014 | Smoking, antidepressants | Age, sex, bruxism, systemic disease, irradiation, hormone replacement therapy, antiplatelet drugs, immunosuppressants | Implant level: 6.36% |
Grisar et al., 2017 [22] | 509/1139 | Occurs before loading | 2012–2014 | Male, smoking, edentulous jaw | Age, alcohol abuse, radiation | |
Lin et al., 2018 [5] | 18,199/30,959 | Before abutment connection | 2011–2015 | Male, elderly, lower anterior teeth, bone augmentation (OR, 1.29) | Number, diameter and length of implants | Failure rate within 1 year: 38.8% failure |
Camps-Font et al., 2018 [23] | 1322/2673 | Before prosthetics placement | 2004–2015 | Rough-surfaced coloured implants, mandible | Sex, ASA classification, smoking, type of periodontal disease, implant system | Implant level: 1.38% Patient level: 2.80% |
Kang et al., 2019 [24] | 409/1031 | Before or within a few weeks after placement of final superstructure | 2015–2017 | Mandible, experience of surgeon | Sex, age, diameter and length of implants, type of maxillary sinus floor elevation, bone augmentation | Implant level: 4.1% (of which, early failure 3.3%) Patient level: early 6.5%, Late 1.7% |
Borba et al., 2017 [25] | 202/774 | Occurs before placement of provisional restoration | 2002–2014 | Bone augmentation (OR, 2.7) | Age, sex, site, implant diameter/length | Implant level: 3.2% Patient level: 8.9% |
Hirota et al., 2018 [26] | 219/563 | Occurs before loading | 2005–2017 | Postoperative wound dehiscence, optimal functionalisation | Surface properties, bone quality | Optimal functionalisation reduces early failure Implant level: 2.7% |
Chang 2020 [27] | 376/1050 | Occurs before placement of final superstructure | 2003–2016 | Bone augmentation (OR, 9.45), surgical technique including skills and experience | Patient level: 4.8% Implant level: 4.7% | |
De Angelis et al., 2017 [28] | 272/871 | Occurs before placement of final superstructure | 1998–2006 | Bruxism, smoking | Age, sex, implant length | Implant level: early 6.8%, late 8.9% |
Jemt T et al., 2017 [29] | 2848/9582 | ①Before abutment placement ②Before placement of superstructure ③Up to one year after placement of superstructure | 2003–2011 | Bone resorption, Both jaws, number of implants, not prosthetic treatment at the referred clinic, surgeon | Case level: ① 1.4% ② 2.1% ③ 2.3% | |
Antoun et al., 2016 [30] | 1017/3080 | Placement to one year of loading | 2000–2011 | Smoking (OR, 2.08), surgical technique (OR, 3.7), simultaneous GBR, immediate tooth extraction (OR, 2.09), one-stage procedure | Implant level: 1.6%; patient level: 4.0% | |
Yang et al., 2021 [31] | 1078/2053 | Placement to one year of loading | 2006–2017 | Bone quality Type Ⅰ (OR, 3.689), placement immediately after tooth extraction (OR, 3.509), implant length < 10 mm (OR, 2.972), male, age (30–60) | Bone augmentation (1.742) | Implant level: 4.0% |
Jemt et al., 2017 [32] | 2566/14,083 | Placement to several weeks after prosthetic placement | 1986–1997 | Edentulous jaw (11.3%) 60 years or older < 60 years old | 209 (71.8%) had implant failure before superstructure placement; 35 (12.0%) had implant failure between superstructure placement to first maintenance | |
Tattan et al., 2021 [33] | 201/ | Before prosthetic placement | 2008–2019 | Socket preservation (HR, 7.5), soft tissue grafting (HR, 5.03), or bone grafting (HR, 3.4) at the same time of implantation | Smoking, diabetes, osteoporosis, history of periodontal disease, implant length and design, type of graft material | Patient level: 30.3% |
Wu et al., 2021 [34] | 3785/6113 | Before prosthetic placement | 2015–2019 | Maxilla (OR, 3.7): molar (OR, 2.73); implant surface characteristics, bone graft; Mandible: anterior teeth, male, bone graft | Implant length, design, and shape | Patient level: 1.6%; Implant level: 1.2% |
Staedt et al., 2020 [35] | /9080 | Before abutment connection | 2002–2012 | Lower molar, young patients | Gender, systemic disease, diabetes | |
Malm et al., 2018 [36] | 4899/25,781 | 1 year after superstructure placement | 1986–2013 | Bone quality, implant surface characteristics, age, number of implants | Gender | Failure in 8.6% of edentulous cases before prosthetic placement (implant level: 1.6%; patient level: 6.3%) |
Carr et al., 2019 [37] | 362/8540 | Within 1 year after placement | 1983–2014 | Bone grafting alone, ridge preservation, xenograft, postoperative complications | Age, gender, periodontal disease | Implant level: 4.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munakata, M.; Kataoka, Y.; Yamaguchi, K.; Sanda, M. Risk Factors for Early Implant Failure and Selection of Bone Grafting Materials for Various Bone Augmentation Procedures: A Narrative Review. Bioengineering 2024, 11, 192. https://doi.org/10.3390/bioengineering11020192
Munakata M, Kataoka Y, Yamaguchi K, Sanda M. Risk Factors for Early Implant Failure and Selection of Bone Grafting Materials for Various Bone Augmentation Procedures: A Narrative Review. Bioengineering. 2024; 11(2):192. https://doi.org/10.3390/bioengineering11020192
Chicago/Turabian StyleMunakata, Motohiro, Yu Kataoka, Kikue Yamaguchi, and Minoru Sanda. 2024. "Risk Factors for Early Implant Failure and Selection of Bone Grafting Materials for Various Bone Augmentation Procedures: A Narrative Review" Bioengineering 11, no. 2: 192. https://doi.org/10.3390/bioengineering11020192
APA StyleMunakata, M., Kataoka, Y., Yamaguchi, K., & Sanda, M. (2024). Risk Factors for Early Implant Failure and Selection of Bone Grafting Materials for Various Bone Augmentation Procedures: A Narrative Review. Bioengineering, 11(2), 192. https://doi.org/10.3390/bioengineering11020192