Novel Flowchart Guiding the Non-Surgical and Surgical Management of Peri-Implant Complications: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Non-Surgical Treatment
3.1. Debridement Methods in Non-Surgical Treatment
3.2. Effectiveness of Local and Systemic Antibiotics and Antiseptics in Non-Surgical Treatment
3.3. Type of Materials Considered for the Non-Surgical Treatment of Peri-Implant Diseases
4. Surgical Treatment
4.1. Decontamination Methods of the Implant Surface for Surgical Treatment of Peri-Implantitis
4.2. Use of Antibacterial Agents in Surgical Treatment
4.3. Types of Regeneration Material Used in Surgical Treatment of Peri-Implantitis
5. Clinical Parameters for Evaluating the Peri-Implant Condition
5.1. Probing Depth
5.2. Bleeding on Probing
5.3. Radiographic Interpretation
5.4. Bone Sounding
6. Management of Peri-Implant Health and Treatment Protocol of Peri-Implant Disease
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sakka, S.; Baroudi, K.; Nassani, M.Z. Factors associated with early and late failure of dental implants. J. Investig. Clin. Dent. 2012, 3, 258–261. [Google Scholar] [CrossRef]
- Suárez-López Del Amo, F.; Garaicoa-Pazmiño, C.; Fretwurst, T.; Castilho, R.M.; Squarize, C.H. Dental implants-associated release of titanium particles: A systematic review. Clin. Oral Implant. Res. 2018, 29, 1085–1100. [Google Scholar] [CrossRef]
- Berglundh, T.; Armitage, G.; Araujo, M.G.; Avila-Ortiz, G.; Blanco, J.; Camargo, P.M.; Chen, S.; Cochran, D.; Derks, J.; Figuero, E.; et al. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Periodontol. 2018, 89 (Suppl. S1), S313–S318. [Google Scholar] [CrossRef] [PubMed]
- Derks, J.; Tomasi, C. Peri-implant health and disease. A systematic review of current epidemiology. J. Clin. Periodontol. 2015, 42 (Suppl. S16), S158–S171. [Google Scholar] [CrossRef] [PubMed]
- Salvi, G.E.; Cosgarea, R.; Sculean, A. Prevalence and Mechanisms of Peri-implant Diseases. J. Dent. Res. 2017, 96, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Lindhe, J.; Meyle, J.; Group D of the European Workshop on Periodontology. Peri-implant diseases: Consensus Report of the Sixth European Workshop on Periodontology. J. Clin. Periodontol. 2008, 35 (Suppl. S8), 282–285. [Google Scholar] [CrossRef]
- Carcuac, O.; Derks, J.; Charalampakis, G.; Abrahamsson, I.; Wennstrom, J.; Berglundh, T. Adjunctive Systemic and Local Antimicrobial Therapy in the Surgical Treatment of Peri-implantitis: A Randomized Controlled Clinical Trial. J. Dent. Res. 2016, 95, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Klinge, B.; Gustafsson, A.; Berglundh, T. A systematic review of the effect of anti-infective therapy in the treatment of peri-implantitis. J. Clin. Periodontol. 2002, 29 (Suppl. S3), 213–225; discussion 232–233. [Google Scholar] [CrossRef] [PubMed]
- Louropoulou, A.; Slot, D.E.; Van der Weijden, F. The effects of mechanical instruments on contaminated titanium dental implant surfaces: A systematic review. Clin. Oral Implant. Res. 2014, 25, 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Heitz-Mayfield, L.J.A.; Salvi, G.E.; Mombelli, A.; Loup, P.J.; Heitz, F.; Kruger, E.; Lang, N.P. Supportive peri-implant therapy following anti-infective surgical peri-implantitis treatment: 5-year survival and success. Clin. Oral Implant. Res. 2018, 29, 1–6. [Google Scholar] [CrossRef]
- Renvert, S.; Polyzois, I. Treatment of pathologic peri-implant pockets. Periodontol. 2000 2018, 76, 180–190. [Google Scholar] [CrossRef]
- Renvert, S.; Roos-Jansaker, A.M.; Claffey, N. Non-surgical treatment of peri-implant mucositis and peri-implantitis: A literature review. J. Clin. Periodontol. 2008, 35 (Suppl. S8), 305–315. [Google Scholar] [CrossRef]
- Iorio-Siciliano, V.; Blasi, A.; Isola, G.; Sculean, A.; Salvi, G.E.; Ramaglia, L. Resolution of peri-implant mucositis at tissue- and bone-level implants: A 6-month prospective controlled clinical trial. Clin. Oral Implant. Res. 2023, 34, 450–462. [Google Scholar] [CrossRef]
- Persson, G.R.; Samuelsson, E.; Lindahl, C.; Renvert, S. Mechanical non-surgical treatment of peri-implantitis: A single-blinded randomized longitudinal clinical study. II. Microbiological results. J. Clin. Periodontol. 2010, 37, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Renvert, S.; Samuelsson, E.; Lindahl, C.; Persson, G.R. Mechanical non-surgical treatment of peri-implantitis: A double-blind randomized longitudinal clinical study. I: Clinical results. J. Clin. Periodontol. 2009, 36, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Romandini, M.; Laforí, A.; Pedrinaci, I.; Baima, G.; Ferrarotti, F.; Lima, C.; Paternó Holtzman, L.; Aimetti, M.; Cordaro, L.; Sanz, M. Effect of sub-marginal instrumentation before surgical treatment of peri-implantitis: A multi-centre randomized clinical trial. J. Clin. Periodontol. 2022, 49, 1334–1345. [Google Scholar] [CrossRef] [PubMed]
- Wagner, T.P.; Pires, P.R.; Rios, F.S.; de Oliveira, J.A.P.; Costa, R.; Cunha, K.F.; Silveira, H.L.D.; Pimentel, S.; Casati, M.Z.; Rosing, C.K.; et al. Surgical and non-surgical debridement for the treatment of peri-implantitis: A two-center 12-month randomized trial. Clin. Oral Investig. 2021, 25, 5723–5733. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.N.; Koldsland, O.C.; Roos-Jansåker, A.M.; Wohlfahrt, J.C.; Verket, A.; Mdala, I.; Magnusson, A.; Salvesen, E.; Hjortsjö, C. Non-surgical treatment of mild to moderate peri-implantitis using an oscillating chitosan brush or a titanium curette-A randomized multicentre controlled clinical trial. Clin. Oral Implant. Res. 2022, 33, 1254–1264. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.N.; Koldsland, O.C.; Roos-Jansaker, A.M.; Wohlfahrt, J.C.; Verket, A.; Mdala, I.; Magnusson, A.; Salvesen, E.; Hjortsjo, C. Non-surgical treatment of mild to moderate peri-implantitis with an oscillating chitosan brush or a titanium curette-12-month follow-up of a multicenter randomized clinical trial. Clin. Oral Implant. Res. 2023, 34, 684–697. [Google Scholar] [CrossRef]
- Ji, Y.J.; Tang, Z.H.; Wang, R.; Cao, J.; Cao, C.F.; Jin, L.J. Effect of glycine powder air-polishing as an adjunct in the treatment of peri-implant mucositis: A pilot clinical trial. Clin. Oral Implant. Res. 2014, 25, 683–689. [Google Scholar] [CrossRef]
- Hentenaar, D.F.M.; De Waal, Y.C.M.; Stewart, R.E.; Van Winkelhoff, A.J.; Meijer, H.J.A.; Raghoebar, G.M. Erythritol airpolishing in the non-surgical treatment of peri-implantitis: A randomized controlled trial. Clin. Oral Implant. Res. 2021, 32, 840–852. [Google Scholar] [CrossRef] [PubMed]
- Riben-Grundstrom, C.; Norderyd, O.; André, U.; Renvert, S. Treatment of peri-implant mucositis using a glycine powder air-polishing or ultrasonic device: A randomized clinical trial. J. Clin. Periodontol. 2015, 42, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Persson, G.R.; Roos-Jansåker, A.M.; Lindahl, C.; Renvert, S. Microbiologic results after non-surgical erbium-doped:yttrium, aluminum, and garnet laser or air-abrasive treatment of peri-implantitis: A randomized clinical trial. J. Periodontol. 2011, 82, 1267–1278. [Google Scholar] [CrossRef] [PubMed]
- Renvert, S.; Lindahl, C.; Roos Jansåker, A.M.; Persson, G.R. Treatment of peri-implantitis using an Er:YAG laser or an air-abrasive device: A randomized clinical trial. J. Clin. Periodontol. 2011, 38, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Selimović, A.; Bunæs, D.F.; Lie, S.A.; Lobekk, M.A.; Leknes, K.N. Non-surgical treatment of peri-implantitis with and without erythritol air-polishing a 12-month randomized controlled trial. BMC Oral Health 2023, 23, 240. [Google Scholar] [CrossRef] [PubMed]
- Sahm, N.; Becker, J.; Santel, T.; Schwarz, F. Non-surgical treatment of peri-implantitis using an air-abrasive device or mechanical debridement and local application of chlorhexidine: A prospective, randomized, controlled clinical study. J. Clin. Periodontol. 2011, 38, 872–878. [Google Scholar] [CrossRef] [PubMed]
- Alpaslan Yayli, N.Z.; Talmac, A.C.; Keskin Tunc, S.; Akbal, D.; Altindal, D.; Ertugrul, A.S. Erbium, chromium-doped: Yttrium, scandium, gallium, garnet and diode lasers in the treatment of peri-implantitis: Clinical and biochemical outcomes in a randomized-controlled clinical trial. Lasers Med. Sci. 2022, 37, 665–674. [Google Scholar] [CrossRef]
- Roccuzzo, A.; Klossner, S.; Stähli, A.; Imber, J.C.; Eick, S.; Sculean, A.; Salvi, G.E. Non-surgical mechanical therapy of peri-implantitis with or without repeated adjunctive diode laser application. A 6-month double-blinded randomized clinical trial. Clin. Oral Implant. Res. 2022, 33, 900–912. [Google Scholar] [CrossRef]
- Tenore, G.; Montori, A.; Mohsen, A.; Mattarelli, G.; Palaia, G.; Romeo, U. Evaluation of adjunctive efficacy of diode laser in the treatment of peri-implant mucositis: A randomized clinical trial. Lasers Med. Sci. 2020, 35, 1411–1417. [Google Scholar] [CrossRef]
- Bassetti, M.; Schär, D.; Wicki, B.; Eick, S.; Ramseier, C.A.; Arweiler, N.B.; Sculean, A.; Salvi, G.E. Anti-infective therapy of peri-implantitis with adjunctive local drug delivery or photodynamic therapy: 12-month outcomes of a randomized controlled clinical trial. Clin. Oral Implant. Res. 2014, 25, 279–287. [Google Scholar] [CrossRef]
- De Waal, Y.C.M.; Vangsted, T.E.; Van Winkelhoff, A.J. Systemic antibiotic therapy as an adjunct to non-surgical peri-implantitis treatment: A single-blind RCT. J. Clin. Periodontol. 2021, 48, 996–1006. [Google Scholar] [CrossRef]
- Hallström, H.; Persson, G.R.; Lindgren, S.; Olofsson, M.; Renvert, S. Systemic antibiotics and debridement of peri-implant mucositis. A randomized clinical trial. J. Clin. Periodontol. 2012, 39, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Polymeri, A.; van der Horst, J.; Anssari Moin, D.; Wismeijer, D.; Loos, B.G.; Laine, M.L. Non-surgical peri-implantitis treatment with or without systemic antibiotics: A randomized controlled clinical trial. Clin. Oral Implant. Res. 2022, 33, 548–557. [Google Scholar] [CrossRef] [PubMed]
- Shibli, J.A.; Ferrari, D.S.; Siroma, R.S.; Figueiredo, L.C.; Faveri, M.; Feres, M. Microbiological and clinical effects of adjunctive systemic metronidazole and amoxicillin in the non-surgical treatment of peri-implantitis: 1 year follow-up. Braz. Oral Res. 2019, 33 (Suppl. S1), e080. [Google Scholar] [CrossRef] [PubMed]
- Blanco, C.; Pico, A.; Dopico, J.; Gándara, P.; Blanco, J.; Liñares, A. Adjunctive benefits of systemic metronidazole on non-surgical treatment of peri-implantitis. A randomized placebo-controlled clinical trial. J. Clin. Periodontol. 2022, 49, 15–27. [Google Scholar] [CrossRef]
- Alqutub, M.N.; Alhumaidan, A.A.; Alali, Y.; Al-Aali, K.A.; Javed, F.; Vohra, F.; Abduljabbar, T. Comparison of the postoperative anti-inflammatory efficacy of chlorhexidine, saline rinses and herbal mouthwashes after mechanical debridement in patients with peri-implant mucositis: A randomized controlled trial. Int. J. Dent. Hyg. 2023, 21, 203–210. [Google Scholar] [CrossRef]
- Alzoman, H.; Alojaym, T.G.; Chalikkandy, S.N.; Mehmood, A.; Rashed, F.; Divakar, D.D. Comparison of an Herbal- and a 0.12% Chlorhexidine-based Oral Rinse as Adjuncts to Nonsurgical Mechanical Debridement in the Management of Peri-implant Mucositis: A Randomised Controlled Trial. Oral Health Prev. Dent. 2020, 18, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Cosola, S.; Oldoini, G.; Giammarinaro, E.; Covani, U.; Genovesi, A.; Marconcini, S. The effectiveness of the information-motivation model and domestic brushing with a hypochlorite-based formula on peri-implant mucositis: A randomized clinical study. Clin. Exp. Dent. Res. 2022, 8, 350–358. [Google Scholar] [CrossRef]
- Menezes, K.M.; Fernandes-Costa, A.N.; Silva-Neto, R.D.; Calderon, P.S.; Gurgel, B.C. Efficacy of 0.12% Chlorhexidine Gluconate for Non-Surgical Treatment of Peri-Implant Mucositis. J. Periodontol. 2016, 87, 1305–1313. [Google Scholar] [CrossRef]
- Heitz-Mayfield, L.J.; Salvi, G.E.; Botticelli, D.; Mombelli, A.; Faddy, M.; Lang, N.P.; Implant Complication Research Group. Anti-infective treatment of peri-implant mucositis: A randomised controlled clinical trial. Clin. Oral Implant. Res. 2011, 22, 237–241. [Google Scholar] [CrossRef]
- Roos-Jansåker, A.M.; Almhöjd, U.S.; Jansson, H. Treatment of peri-implantitis: Clinical outcome of chloramine as an adjunctive to non-surgical therapy, a randomized clinical trial. Clin. Oral Implant. Res. 2017, 28, 43–48. [Google Scholar] [CrossRef]
- Philip, J.; Laine, M.L.; Wismeijer, D. Adjunctive effect of mouthrinse on treatment of peri-implant mucositis using mechanical debridement: A randomized clinical trial. J. Clin. Periodontol. 2020, 47, 883–891. [Google Scholar] [CrossRef]
- Kashefimehr, A.; Pourabbas, R.; Faramarzi, M.; Zarandi, A.; Moradi, A.; Tenenbaum, H.C.; Azarpazhooh, A. Effects of enamel matrix derivative on non-surgical management of peri-implant mucositis: A double-blind randomized clinical trial. Clin. Oral Investig. 2017, 21, 2379–2388. [Google Scholar] [CrossRef]
- Galofré, M.; Palao, D.; Vicario, M.; Nart, J.; Violant, D. Clinical and microbiological evaluation of the effect of Lactobacillus reuteri in the treatment of mucositis and peri-implantitis: A triple-blind randomized clinical trial. J. Periodontal. Res. 2018, 53, 378–390. [Google Scholar] [CrossRef]
- Laleman, I.; Pauwels, M.; Quirynen, M.; Teughels, W. The usage of a lactobacilli probiotic in the non-surgical therapy of peri-implantitis: A randomized pilot study. Clin. Oral Implant. Res. 2020, 31, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Khoury, F.; Keeve, P.L.; Ramanauskaite, A.; Schwarz, F.; Koo, K.-T.; Sculean, A.; Romanos, G. Surgical treatment of peri-implantitis—Consensus report of working group 4. Int. Dent. J. 2019, 69 (Suppl. S2), 18–22. [Google Scholar] [CrossRef] [PubMed]
- De Waal, Y.C.; Raghoebar, G.M.; Meijer, H.J.; Winkel, E.G.; van Winkelhoff, A.J. Prognostic indicators for surgical peri-implantitis treatment. Clin. Oral Implant. Res. 2016, 27, 1485–1491. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, F.; Sahm, N.; Iglhaut, G.; Becker, J. Impact of the method of surface debridement and decontamination on the clinical outcome following combined surgical therapy of peri-implantitis: A randomized controlled clinical study. J. Clin. Periodontol. 2011, 38, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, F.; John, G.; Mainusch, S.; Sahm, N.; Becker, J. Combined surgical therapy of peri-implantitis evaluating two methods of surface debridement and decontamination. A two-year clinical follow up report. J. Clin. Periodontol. 2012, 39, 789–797. [Google Scholar] [CrossRef]
- Schwarz, F.; Hegewald, A.; John, G.; Sahm, N.; Becker, J. Four-year follow-up of combined surgical therapy of advanced peri-implantitis evaluating two methods of surface decontamination. J. Clin. Periodontol. 2013, 40, 962–967. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, C.A.; Vouros, I.; Menexes, G.; Konstantinidis, A. The utilization of a diode laser in the surgical treatment of peri-implantitis. A randomized clinical trial. Clin. Oral Investig. 2015, 19, 1851–1860. [Google Scholar] [CrossRef]
- Esposito, M.; Grusovin, M.G.; De Angelis, N.; Camurati, A.; Campailla, M.; Felice, P. The adjunctive use of light-activated disinfection (LAD) with FotoSan is ineffective in the treatment of peri-implantitis: 1-year results from a multicentre pragmatic randomised controlled trial. Eur. J. Oral Implantol. 2013, 6, 109–119. [Google Scholar]
- Pranno, N.; Cristalli, M.P.; Mengoni, F.; Sauzullo, I.; Annibali, S.; Polimeni, A.; La Monaca, G. Comparison of the effects of air-powder abrasion, chemical decontamination, or their combination in open-flap surface decontamination of implants failed for peri-implantitis: An ex vivo study. Clin. Oral Investig. 2021, 25, 2667–2676. [Google Scholar] [CrossRef] [PubMed]
- Bombeccari, G.P.; Guzzi, G.; Gualini, F.; Gualini, S.; Santoro, F.; Spadari, F. Photodynamic therapy to treat periimplantitis. Implant Dent. 2013, 22, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.W.; Ashnagar, S.; Gianfilippo, R.D.; Arnett, M.; Kinney, J.; Wang, H.L. Laser-assisted regenerative surgical therapy for peri-implantitis: A randomized controlled clinical trial. J. Periodontol. 2021, 92, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Romeo, E.; Ghisolfi, M.; Murgolo, N.; Chiapasco, M.; Lops, D.; Vogel, G. Therapy of peri-implantitis with resective surgery. A 3-year clinical trial on rough screw-shaped oral implants. Part I: Clinical outcome. Clin. Oral Implant. Res. 2005, 16, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Hallstrom, H.; Persson, G.R.; Lindgren, S.; Renvert, S. Open flap debridement of peri-implantitis with or without adjunctive systemic antibiotics: A randomized clinical trial. J. Clin. Periodontol. 2017, 44, 1285–1293. [Google Scholar] [CrossRef]
- De Waal, Y.C.; Raghoebar, G.M.; Huddleston Slater, J.J.; Meijer, H.J.; Winkel, E.G.; van Winkelhoff, A.J. Implant decontamination during surgical peri-implantitis treatment: A randomized, double-blind, placebo-controlled trial. J. Clin. Periodontol. 2013, 40, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Teughels, W.; Celik, G.U.; Tarce, M.; De Cock, I.; Persyn, S.M.; Haytac, M.C. The effect of choline-stabilized orthosilicic acid in patients with peri-implantitis: An exploratory randomized, double-blind, placebo controlled study. BMC Oral Health 2021, 21, 485. [Google Scholar] [CrossRef] [PubMed]
- Wohlfahrt, J.C.; Aass, A.M.; Granfeldt, F.; Lyngstadaas, S.P.; Reseland, J.E. Sulcus fluid bone marker levels and the outcome of surgical treatment of peri-implantitis. J. Clin. Periodontol. 2014, 41, 424–431. [Google Scholar] [CrossRef]
- Isehed, C.; Holmlund, A.; Renvert, S.; Svenson, B.; Johansson, I.; Lundberg, P. Effectiveness of enamel matrix derivative on the clinical and microbiological outcomes following surgical regenerative treatment of peri-implantitis. A randomized controlled trial. J. Clin. Periodontol. 2016, 43, 863–873. [Google Scholar] [CrossRef] [PubMed]
- Derks, J.; Ortiz-Vigon, A.; Guerrero, A.; Donati, M.; Bressan, E.; Ghensi, P.; Schaller, D.; Tomasi, C.; Karlsson, K.; Abrahamsson, I.; et al. Reconstructive surgical therapy of peri-implantitis: A multicenter randomized controlled clinical trial. Clin. Oral Implant. Res. 2022, 33, 921–944. [Google Scholar] [CrossRef] [PubMed]
- Jepsen, K.; Jepsen, S.; Laine, M.L.; Anssari Moin, D.; Pilloni, A.; Zeza, B.; Sanz, M.; Ortiz-Vigon, A.; Roos-Jansaker, A.M.; Renvert, S. Reconstruction of Peri-implant Osseous Defects: A Multicenter Randomized Trial. J. Dent. Res. 2016, 95, 58–66. [Google Scholar] [CrossRef]
- Wohlfahrt, J.C.; Lyngstadaas, S.P.; Ronold, H.J.; Saxegaard, E.; Ellingsen, J.E.; Karlsson, S.; Aass, A.M. Porous titanium granules in the surgical treatment of peri-implant osseous defects: A randomized clinical trial. Int. J. Oral Maxillofac. Implant. 2012, 27, 401–410. [Google Scholar]
- Emanuel, N.; Machtei, E.E.; Reichart, M.; Shapira, L. D-PLEX500: A local biodegradable prolonged release doxycycline-formulated bone graft for the treatment for peri-implantitis. A randomized controlled clinical study. Quintessence Int. 2020, 51, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Solonko, M.; Regidor, E.; Ortiz-Vigón, A.; Montero, E.; Vilchez, B.; Sanz, M. Efficacy of keratinized mucosal augmentation with a collagen matrix concomitant to the surgical treatment of peri-implantitis: A dual-center randomized clinical trial. Clin. Oral Implant. Res. 2022, 33, 105–119. [Google Scholar] [CrossRef]
- Schwarz, F.; Sahm, N.; Bieling, K.; Becker, J. Surgical regenerative treatment of peri-implantitis lesions using a nanocrystalline hydroxyapatite or a natural bone mineral in combination with a collagen membrane: A four-year clinical follow-up report. J. Clin. Periodontol. 2009, 36, 807–814. [Google Scholar] [CrossRef]
- Schwarz, F.; Sculean, A.; Bieling, K.; Ferrari, D.; Rothamel, D.; Becker, J. Two-year clinical results following treatment of peri-implantitis lesions using a nanocrystalline hydroxyapatite or a natural bone mineral in combination with a collagen membrane. J. Clin. Periodontol. 2008, 35, 80–87. [Google Scholar] [CrossRef]
- Schwarz, F.; Bieling, K.; Latz, T.; Nuesry, E.; Becker, J. Healing of intrabony peri-implantitis defects following application of a nanocrystalline hydroxyapatite (Ostim) or a bovine-derived xenograft (Bio-Oss) in combination with a collagen membrane (Bio-Gide). A case series. J. Clin. Periodontol. 2006, 33, 491–499. [Google Scholar] [CrossRef]
- Araujo, M.G.; Lindhe, J. Peri-implant health. J. Clin. Periodontol. 2018, 45 (Suppl. S20), S230–S236. [Google Scholar] [CrossRef]
- Schwarz, F.; Becker, K.; Sahm, N.; Horstkemper, T.; Rousi, K.; Becker, J. The prevalence of peri-implant diseases for two-piece implants with an internal tube-in-tube connection: A cross-sectional analysis of 512 implants. Clin. Oral Implant. Res. 2017, 28, 24–28. [Google Scholar] [CrossRef]
- Fransson, C.; Wennstrom, J.; Berglundh, T. Clinical characteristics at implants with a history of progressive bone loss. Clin. Oral Implant. Res. 2008, 19, 142–147. [Google Scholar] [CrossRef]
- Listgarten, M.A. Periodontal probing: What does it mean? J. Clin. Periodontol. 1980, 7, 165–176. [Google Scholar] [CrossRef]
- Lang, N.P.; Wetzel, A.C.; Stich, H.; Caffesse, R.G. Histologic probe penetration in healthy and inflamed peri-implant tissues. Clin. Oral Implant. Res. 1994, 5, 191–201. [Google Scholar] [CrossRef]
- Serino, G.; Turri, A.; Lang, N.P. Probing at implants with peri-implantitis and its relation to clinical peri-implant bone loss. Clin. Oral Implant. Res. 2013, 24, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, F.; Derks, J.; Monje, A.; Wang, H.L. Peri-implantitis. J. Periodontol. 2018, 89 (Suppl. S1), S267–S290. [Google Scholar] [CrossRef] [PubMed]
- Lang, N.P.; Joss, A.; Orsanic, T.; Gusberti, F.A.; Siegrist, B.E. Bleeding on probing. A predictor for the progression of periodontal disease? J. Clin. Periodontol. 1986, 13, 590–596. [Google Scholar] [CrossRef]
- Lang, N.P.; Adler, R.; Joss, A.; Nyman, S. Absence of bleeding on probing. An indicator of periodontal stability. J. Clin. Periodontol. 1990, 17, 714–721. [Google Scholar] [CrossRef]
- Luterbacher, S.; Mayfield, L.; Bragger, U.; Lang, N.P. Diagnostic characteristics of clinical and microbiological tests for monitoring periodontal and peri-implant mucosal tissue conditions during supportive periodontal therapy (SPT). Clin. Oral Implant. Res. 2000, 11, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Hashim, D.; Cionca, N.; Combescure, C.; Mombelli, A. The diagnosis of peri-implantitis: A systematic review on the predictive value of bleeding on probing. Clin. Oral Implant. Res. 2018, 29 (Suppl. S16), 276–293. [Google Scholar] [CrossRef] [PubMed]
- Albrektsson, T.; Zarb, G.; Worthington, P.; Eriksson, A.R. The long-term efficacy of currently used dental implants: A review and proposed criteria of success. Int. J. Oral Maxillofac. Implant. 1986, 1, 11–25. [Google Scholar]
- Lang, N.P.; Hill, R.W. Radiographs in periodontics. J. Clin. Periodontol. 1977, 4, 16–28. [Google Scholar] [CrossRef] [PubMed]
- Serino, G.; Sato, H.; Holmes, P.; Turri, A. Intra-surgical vs. radiographic bone level assessments in measuring peri-implant bone loss. Clin. Oral Implant. Res. 2017, 28, 1396–1400. [Google Scholar] [CrossRef] [PubMed]
- Tsitoura, E.; Tucker, R.; Suvan, J.; Laurell, L.; Cortellini, P.; Tonetti, M. Baseline radiographic defect angle of the intrabony defect as a prognostic indicator in regenerative periodontal surgery with enamel matrix derivative. J. Clin. Periodontol. 2004, 31, 643–647. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, F.; Sahm, N.; Schwarz, K.; Becker, J. Impact of defect configuration on the clinical outcome following surgical regenerative therapy of peri-implantitis. J. Clin. Periodontol. 2010, 37, 449–455. [Google Scholar] [CrossRef]
- Li, F.; Jia, P.Y.; Ouyang, X.Y. Comparison of Measurements on Cone Beam Computed Tomography for Periodontal Intrabony Defect with Intra-surgical Measurements. Chin. J. Dent. Res. 2015, 18, 171–176. [Google Scholar]
- Misch, K.A.; Yi, E.S.; Sarment, D.P. Accuracy of cone beam computed tomography for periodontal defect measurements. J. Periodontol. 2006, 77, 1261–1266. [Google Scholar] [CrossRef]
- Draenert, F.G.; Coppenrath, E.; Herzog, P.; Muller, S.; Mueller-Lisse, U.G. Beam hardening artefacts occur in dental implant scans with the NewTom cone beam CT but not with the dental 4-row multidetector CT. Dentomaxillofac. Radiol. 2007, 36, 198–203. [Google Scholar] [CrossRef]
- Miracle, A.C.; Mukherji, S.K. Conebeam CT of the head and neck, part 1: Physical principles. AJNR Am. J. Neuroradiol. 2009, 30, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Barootchi, S.; Tavelli, L.; Majzoub, J.; Chan, H.L.; Wang, H.L.; Kripfgans, O.D. Ultrasonographic Tissue Perfusion in Peri-implant Health and Disease. J. Dent. Res. 2022, 101, 278–285. [Google Scholar] [CrossRef]
- Christiaens, V.; Jacobs, R.; Dierens, M.; Vervaeke, S.; De Bruyn, H.; Koole, S.; Cosyn, J. Intraoral radiography lacks accuracy for the assessment of peri-implant bone level—A controlled clinical study. Eur. J. Oral Implantol. 2017, 10, 435–441. [Google Scholar]
- Shah, M.A.; Shah, S.S.; Dave, D. Dentascan—Is the investment worth the hype? J. Clin. Diagn. Res. 2013, 7, 3039–3043. [Google Scholar] [CrossRef]
- Trombelli, L.; Severi, M.; Farina, R.; Simonelli, A. Sub-Periosteal Peri-Implant Augmented Layer Technique to Treat Peri-Implantitis Lesions. Clin. Adv. Periodontics 2020, 10, 169–174. [Google Scholar] [CrossRef]
- Froum, S.J.; Froum, S.H.; Rosen, P.S. Successful management of peri-implantitis with a regenerative approach: A consecutive series of 51 treated implants with 3- to 7.5-year follow-up. Int. J. Periodontics Restor. Dent. 2012, 32, 11–20. [Google Scholar]
- Schlee, M.; Rathe, F.; Brodbeck, U.; Ratka, C.; Weigl, P.; Zipprich, H. Treatment of Peri-implantitis-Electrolytic Cleaning Versus Mechanical and Electrolytic Cleaning-A Randomized Controlled Clinical Trial-Six-Month Results. J. Clin. Med. 2019, 8, 1909. [Google Scholar] [CrossRef]
- Brito, C.; Tenenbaum, H.C.; Wong, B.K.; Schmitt, C.; Nogueira-Filho, G. Is keratinized mucosa indispensable to maintain peri-implant health? A systematic review of the literature. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102, 643–650. [Google Scholar] [CrossRef]
- Gobbato, L.; Avila-Ortiz, G.; Sohrabi, K.; Wang, C.W.; Karimbux, N. The effect of keratinized mucosa width on peri-implant health: A systematic review. Int. J. Oral Maxillofac. Implant. 2013, 28, 1536–1545. [Google Scholar] [CrossRef]
- Lin, G.H.; Chan, H.L.; Wang, H.L. The significance of keratinized mucosa on implant health: A systematic review. J. Periodontol. 2013, 84, 1755–1767. [Google Scholar] [CrossRef]
- Thoma, D.S.; Muhlemann, S.; Jung, R.E. Critical soft-tissue dimensions with dental implants and treatment concepts. Periodontol. 2000 2014, 66, 106–118. [Google Scholar] [CrossRef]
- Wennstrom, J.L.; Derks, J. Is there a need for keratinized mucosa around implants to maintain health and tissue stability? Clin. Oral Implant. Res. 2012, 23 (Suppl. S6), 136–146. [Google Scholar] [CrossRef]
- Bouri, A., Jr.; Bissada, N.; Al-Zahrani, M.S.; Faddoul, F.; Nouneh, I. Width of keratinized gingiva and the health status of the supporting tissues around dental implants. Int. J. Oral Maxillofac. Implant. 2008, 23, 323–326. [Google Scholar]
- Boynuegri, D.; Nemli, S.K.; Kasko, Y.A. Significance of keratinized mucosa around dental implants: A prospective comparative study. Clin. Oral Implant. Res. 2013, 24, 928–933. [Google Scholar] [CrossRef]
- Chung, D.M.; Oh, T.J.; Shotwell, J.L.; Misch, C.E.; Wang, H.L. Significance of keratinized mucosa in maintenance of dental implants with different surfaces. J. Periodontol. 2006, 77, 1410–1420. [Google Scholar] [CrossRef]
- Schrott, A.R.; Jimenez, M.; Hwang, J.W.; Fiorellini, J.; Weber, H.P. Five-year evaluation of the influence of keratinized mucosa on peri-implant soft-tissue health and stability around implants supporting full-arch mandibular fixed prostheses. Clin. Oral Implant. Res. 2009, 20, 1170–1177. [Google Scholar] [CrossRef]
- Linkevicius, T.; Puisys, A.; Steigmann, M.; Vindasiute, E.; Linkeviciene, L. Influence of Vertical Soft Tissue Thickness on Crestal Bone Changes around Implants with Platform Switching: A Comparative Clinical Study. Clin. Implant Dent. Relat. Res. 2015, 17, 1228–1236. [Google Scholar] [CrossRef]
- Halperin-Sternfeld, M.; Zigdon-Giladi, H.; Machtei, E.E. The association between shallow vestibular depth and peri-implant parameters: A retrospective 6 years longitudinal study. J. Clin. Periodontol. 2016, 43, 305–310. [Google Scholar] [CrossRef]
- Schwarz, F.; Herten, M.; Sager, M.; Bieling, K.; Sculean, A.; Becker, J. Comparison of naturally occurring and ligature-induced peri-implantitis bone defects in humans and dogs. Clin. Oral Implant. Res. 2007, 18, 161–170. [Google Scholar] [CrossRef]
- Daugela, P.; Cicciu, M.; Saulacic, N. Surgical Regenerative Treatments for Peri-Implantitis: Meta-analysis of Recent Findings in a Systematic Literature Review. J. Oral Maxillofac. Res. 2016, 7, e15. [Google Scholar] [CrossRef]
- Suh, J.J.; Simon, Z.; Jeon, Y.S.; Choi, B.G.; Kim, C.K. The use of implantoplasty and guided bone regeneration in the treatment of peri-implantitis: Two case reports. Implant Dent. 2003, 12, 277–282. [Google Scholar] [CrossRef]
- Schwarz, F.; John, G.; Schmucker, A.; Sahm, N.; Becker, J. Combined surgical therapy of advanced peri-implantitis evaluating two methods of surface decontamination: A 7-year follow-up observation. J. Clin. Periodontol. 2017, 44, 337–342. [Google Scholar] [CrossRef]
- Schwarz, F.; John, G.; Sahm, N.; Becker, J. Combined surgical resective and regenerative therapy for advanced peri-implantitis with concomitant soft tissue volume augmentation: A case report. Int. J. Periodontics Restor. Dent. 2014, 34, 489–495. [Google Scholar] [CrossRef]
- Mombelli, A.; Lang, N.P. The diagnosis and treatment of peri-implantitis. Periodontol. 2000 1998, 17, 63–76. [Google Scholar] [CrossRef]
- Renvert, S.; Hirooka, H.; Polyzois, I.; Kelekis-Cholakis, A.; Wang, H.L.; Working, G. Diagnosis and non-surgical treatment of peri-implant diseases and maintenance care of patients with dental implants—Consensus report of working group 3. Int. Dent. J. 2019, 69 (Suppl. S2), 12–17. [Google Scholar] [CrossRef]
- Sinjab, K.; Garaicoa-Pazmino, C.; Wang, H.L. Decision Making for Management of Periimplant Diseases. Implant Dent. 2018, 27, 276–281. [Google Scholar] [CrossRef]
- Okayasu, K.; Wang, H.L. Decision tree for the management of periimplant diseases. Implant Dent. 2011, 20, 256–261. [Google Scholar] [CrossRef]
- Prati, C.; Zamparini, F.; Canullo, L.; Pirani, C.; Botticelli, D.; Gandolfi, M.G. Factors Affecting Soft and Hard Tissues around Two-Piece Transmucosal Implants: A 3-Year Prospective Cohort Study. Int. J. Oral Maxillofac. Implant. 2020, 35, 1022–1036. [Google Scholar] [CrossRef]
- Cabanes-Gumbau, G.; Pascual-Moscardó, A.; Peñarrocha-Oltra, D.; García-Mira, B.; Aizcorbe-Vicente, J.; Peñarrocha-Diago, M.A. Volumetric variation of peri-implant soft tissues in convergent collar implants and crowns using the biologically oriented preparation technique (BOPT). Med. Oral Patol. Oral Cir. Bucal. 2019, 24, e643–e651. [Google Scholar] [CrossRef]
- Serino, G.; Turri, A.; Lang, N.P. Maintenance therapy in patients following the surgical treatment of peri-implantitis: A 5-year follow-up study. Clin. Oral Implant. Res. 2015, 26, 950–956. [Google Scholar] [CrossRef]
Reference Number | Authors | Number of Patients | Intervention | Observation Period | Main Findings |
---|---|---|---|---|---|
[13] | Iorio-Siciliano et al. (2023) | 54 | Subgingival debridement of soft tissue-level and bone-level implants affected by peri-implant mucositis using a sonic scaler with a plastic tip. | 6 months | Although non-surgical mechanical treatment improved PD and BOP for both tissue-level and bone-level implants, complete resolution of the disease could not be achieved. |
[14] | Persson GR et al. (2010) | 37 | Mechanical debridement of peri-implantitis lesions using curettes or an ultrasonic device. | 6 months | Both methods were ineffective in achieving consistent reductions in bacterial counts. |
[15] | Renvert S et al. (2009) | 37 | Non-surgical, mechanical debridement for peri-implantitis using a titanium hand-instrument or an ultrasonic device. | 6 months | Both treatments had comparable levels of improvements in plaque and bleeding scores. Neither approach was found to have any effect on PD. |
[16] | Romandini M et al. (2022) | 42 | Control group: supra- and sub-marginal treatment using an ultrasonic instrument and titanium curettes 6 weeks before peri-implantitis surgery; test group: only supra-marginal cleaning 6 weeks before peri-implantitis surgery. | 12 months | Submarginal instrumentation 6 weeks prior to surgical treatment did not have any additional benefit on peri-implantitis. |
[17] | Wagner TP et al. (2021) | 45 | Non-surgical and surgical debridement for peri-implantitis using a Teflon curette and/or a stainless-steel Mini-Five curette. | 12 months | Both types of debridement resulted in similar clinical outcomes. |
[18] | Khan SN et al. (2022) | 39 | Debridement for peri-implantitis using an oscillating chitosan brush or titanium curette at baseline and 3 months later. | 6 months | There were no discernible discrepancies in treatment outcomes between the two groups. The level of predictability of disease eradication was low. |
[19] | Khan SN et al. (2023) | 39 | Non-surgical treatment of peri-implantitis using an oscillating chitosan brush or titanium curette every 3 months. | 12 months | Clinical improvement was observed in both groups, although inflammation persisted in certain cases. |
[20] | Ji YJ et al. (2014) | 24 | Peri-implant mucositis treatment using non-surgical debridement with and without glycine powder air-polishing. | 3 months | Clinical parameters improved in both groups, but the use of glycine powder air-polishing did not provide any significant benefits as compared to mechanical debridement alone. |
[21] | Hentenaar DFM et al. (2021) | 79 | Non-surgical peri-implantitis treatment using erythritol air polishing or piezoelectric ultrasonic scaling. | 12 months | Neither treatment could resolve peri-implantitis effectively. |
[22] | Riben-Grundstrom C et al. (2015) | 37 | Peri-implant mucositis treatment using glycine powder air-polishing or ultrasonic treatment at baseline and subsequently at 3-month and 6-month intervals. | 12 months | The number of diseased sites was significantly lower in both treatment groups. |
[23] | Person GR et al. (2011) | 42 | Peri-implantitis treatment using Er:YAG laser irradiation and air-abrasion. | 6 months | Both methods failed to reduce bacterial counts, and clinical improvement was limited. |
[24] | Renvert S et al. (2011) | 42 | Peri-implantitis treatment using Er:YAG laser or an air-abrasive device and a hydrophobic powder. | 6 months | Both approaches resulted in a reduction in PD, the frequency of suppuration, and bleeding at implant sites. |
[25] | Selimović A et al. (2023) | 43 | Low-abrasion erythritol air polishing as an adjunct to conventional non-surgical management of mild to severe peri-implantitis using titanium curettes and an ultrasonic device with a titanium tip. | 12 months | The use of the erythritol air-polishing and conventional non-surgical treatment was unlikely to offer any additional clinical benefits. |
[26] | Sahm N et al. (2011) | 32 | Non-surgical treatment of peri-implantitis using an air-abrasion device or mechanical debridement. | 6 months | Both treatments showed similar CAL gains. However, glycine powder abrasion resulted in greater BOP reduction compared to carbon curette and chlorhexidine therapy. |
[27] | Alpaslan Yayli NZ et al. (2022) | 54 | Conventional non-surgical mechanical treatment alone or mechanical treatment along with the additional 940 nm diode laser or 2780 nm Er,Cr:YSGG laser treatment for peri-implantitis. | 6 months | Additional diode laser treatment with non-surgical mechanical treatment did not provide any additional benefits in terms of treatment outcome. However, Er,Cr:YSGG laser treatment was more efficient than the other two methods at the clinical and molecular levels. |
[28] | Roccuzzo A et al. (2022) | 30 | Mechanical debridement for peri-implantitis with or without diode laser treatment on days 0, 7, and 14. | 6 months | Diode laser treatment alongside non-surgical treatment did not offer significant advantages over mechanical treatment alone. |
[29] | Tenore G et al. (2020) | 30 | Mechanical debridement therapy with/without diode laser treatment. | 3 months | The adjunct use of the diode laser resulted in greater improvements in PD and BOP than conventional non-surgical treatment alone. |
[30] | Bassetti M et al. (2014) | 40 | Non-surgical treatment after mechanical debridement for initial peri-implantitis: adjunctive local drug delivery or PDT. | 12 months | Both adjunctive PDT and the adjunctive delivery of minocycline microspheres had a similar effect on reducing mucosal inflammation. |
Reference Number | Authors | Number of Patients | Intervention | Observation Period | Main Findings |
---|---|---|---|---|---|
[31] | De Waal YCM et al. (2021) | 62 | Mechanical debridement and decontamination with chlorhexidine for peri-implantitis. Test group patients also received systemic antibiotic therapy (AMX and MTZ). | 3 months | Systemic administration of AMX and MTZ did not provide any additional improvement in clinical and microbiological outcomes compared to non-surgical treatment alone. |
[32] | Hallström H et al. (2012) | 48 | Non-surgical debridement for peri-implant mucositis with or without systemic azithromycin administration for 4 days. | 6 months | A decrease in implant bleeding over was observed in both groups, but there were no other significant differences between the groups. |
[33] | Polymeri, A. et al. (2022) | 37 | Adjunctive systemic AMX and MTZ administration in patients undergoing non-surgical treatment of peri-implantitis. | 3 months | Both approaches proved ineffective in completely resolving the inflammation around dental implants. |
[34] | Shibli JA et al. (2019) | 40 | Non-surgical treatment of severe peri-implantitis with or without MTZ and AMX administration. | 12 months | AMX and MTZ administration did not result in any additional benefits with non-surgical treatment. |
[35] | Blanco C. et al. (2022) | 32 | Non-surgical treatment of peri-implantitis with or without adjunctive systemic MTZ administration. | 12 months | Administering MTZ systemically as an adjunct to non-surgical peri-implantitis treatment was significantly beneficial. |
[36] | Alqutub M. N et al. (2023) | 60 | Non-surgical mechanical debridement for the treatment of peri-implant mucositis followed by CHX treatment, 2% saline rinses, or herbal mouthwash use. | 3 months | Use of CHX, herbal mouthwash, and saline rinse after non-surgical treatment was beneficial for short-term peri-implant mucositis management. |
[37] | Alzoman H et al. (2020) | 48 | Non-surgical mechanical debridement for peri-implant mucositis with herbal or 0.12% CHX oral rinses. | 3 months | Use of herbal and 0.12% CHX oral rinses led to significant reductions in peri-implant plaque index, BOP, and PD. |
[38] | Cosola S. et al. (2022) | 40 | Non-surgical treatment of peri-implant mucositis using a CHX toothpaste and mouthwash or a hypochlorite-based brushing solution. | 90 days | Combined use of the hypochlorite-based formula may help resolve peri-implant mucositis. |
[39] | Menezes KM et al. (2016) | 51 | Non-surgical treatment of peri-implant mucositis using a 0.12% CHX mouthwash. | 6 months | No additional benefit of the 0.12% CHX mouthwash was observed. |
[40] | Heitz-Mavfield LJ et al. (2011) | 29 | Non-surgical mechanical debridement for peri-implant mucositis and brushing around the implant twice daily using a CHX or placebo gel. | 3 months | Adjunctive CHX gel application did not enhance the results of mechanical debridement alone. |
[41] | Roos-Jansåker AM et al. (2017) | 18 | Non-surgical treatment of peri-implantitis with/without local applications of a chloramine gel. | 3 months | Both treatments effectively reduced mucosal inflammation, with no significant difference between the groups. |
[42] | Philip J et al. (2020) | 89 | Non-surgical mechanical debridement and rinsing with either DEL, CHX, or a placebo for peri-implant mucositis. | 3 months | All treatments reduced peri-implant mucositis symptoms, with no significant differences between the DEL, CHX, and placebo groups, except for a difference in plaque index between the CHX and placebo groups at 1 month. |
Reference Number | Authors | Number of Patients | Intervention | Observation Period | Main Findings |
---|---|---|---|---|---|
[43] | Kashefimehr A et al. (2017) | 41 | Mechanical debridement alone or with an enamel matrix derivative for peri-implant mucositis treatment. | 3 months | The application of the enamel matrix derivative significantly improved clinical parameters and reduced cytokine levels compared to debridement alone. |
[44] | Galofré M et al. (2018) | 44 | Patients with peri-implant mucositis or peri-implantitis received mechanical debridement combined with either daily probiotic or placebo administration for 30 days. | 90 days | The probiotic improved the clinical parameters of affected implants; however, the impact on the peri-implant microbiota was limited. |
[45] | Laleman I et al. (2020) | 23 | Non-surgical therapy for peri-implantitis with or without additional administration of Lactobacillus reuteri probiotics. | 6 months | L. reuteri probiotics did not have any additional benefits. |
Reference Number | Study | Number of Patients | Intervention | Observation Period | Main Findings |
---|---|---|---|---|---|
[48] | Schwarz F et al. (2011) | 32 | In the test group, implantoplasty at buccally and supracrestally exposed parts of implants and debridement of other implant surfaces using Er:YAG laser were conducted in combination with surgical therapy. In the control group, plastic curettes, cotton pellets, and sterile saline were used for the debridement of the implant surface. | 24 months | There were no statistically significantly differences in clinical parameters between the Er:YAG laser and control groups. |
[49] | Schwarz F et al. (2012) | 24 | The same as in the study by Schwarz et al. in 2011. | 24 months | There were no significant differences in mean BOP and CAL values between the Er:YAG laser and control groups. |
[50] | Schwarz F et al. (2013) | 17 | The same as in the study by Schwarz et al. in 2011. | 48 months | The differences between the two surface decontamination methods did not influence the assessed long-term clinical outcome. |
[51] | Papadopoulos CA et al. (2015) | 19 | Adjunctive diode laser irradiation with OFD for peri-implantitis. In the control group, debridement was performed using a plastic curette and a sterile saline-soaked gauze. Patients in the test group also underwent low-power diode laser irradiation (980 nm, 0.8 W) three times. | 6 months | No clinical benefit of additional diode laser irradiation was observed. |
[52] | Esposito M et al. (2013) | 80 | OFD for peri-implantitis; patients in the test group underwent debridement using curettes in addition to light-activated disinfection treatment. | 12 months | The additional light-activated disinfection therapy did not yield any clinical improvements compared to mechanical cleaning alone. |
[53] | Pranno N et al. (2021) | 20 | Surface decontamination for treating severe peri-implantitis: mechanical debridement with air-powder polishing, chemical decontamination with hydrogen peroxide and chlorhexidine gluconate, or a combination of mechanical and chemical decontamination. The implant was then carefully removed, and the amount of residual plaque on the surface was assessed. | 12 months | Mechanical debridement with sodium bicarbonate and glycine powder was significantly superior to chemical decontamination with hydrogen peroxide and chlorhexidine gluconate in removing bacterial biofilm from infected implant surfaces. |
[54] | Bombeccari GP (2013) | 40 | OFD with photodynamic therapy and debridement using plastic scalers. | 6 months | A significantly lower proinflammatory index of peri-implantitis was observed in the photodynamic therapy group. |
[55] | Wang CW et al. (2021) | 24 | Additional laser debridement during regenerative therapy for peri-implantitis. | 6 months | There was a significantly greater reduction in PD at the site level in the test group than in the control group. |
[56] | Romeo E et al. (2005) | 17 | In test group the surface was polished using a diamond bur, Arkansas burs, and silicone polishers in addition to the debridement using hand curettes, cleaning of the implant surface using a metronidazole gel and a tetracycline hydrochloride solution, and washing with cold sterile physiologic saline solution. | 36 months | The cumulative survival rates in the test and control groups were 100% and 87.5%, respectively. The recession index in the control group was significantly lower than that in the test group. PD, CAL, and mBI were lower in the test group than in the control group. Thus, implantoplasty positively influenced oral implant survival. |
Reference Number | Authors | Number of Patients | Intervention | Observation Period | Main Findings |
---|---|---|---|---|---|
[57] | Hallström H et al. (2017) | 39 | OFD for surgical treatment of peri-implantitis without any additional therapy. The test group also received AZM on the day of surgery (250 mg × 2) and for four additional days (250 mg per day). | 12 months | The adjunctive systemic administration of AZM with OFD did not result in any clinical benefits compared to OFD alone. |
[58] | de Waal YC et al. (2013) | 30 | Resective surgical therapy for peri-implantitis. Patients in the test group underwent decontamination with 0.12% CHX + 0.05% cetylpyridinium chloride. | 12 months | No benefits with regard to clinical parameters were observed in the test group compared to those in the control group. |
[59] | Teughels W et al. (2021) | 21 | OFD for surgical treatment of peri-implantitis with oral administration of CS-OSA for 1 year in the test group. | 12 months | CS-OSA application led to the stabilization and potential prevention of further bone loss following surgery. |
Reference Number | Authors | Number of Patients | Intervention | Observation Period | Main Findings | |
---|---|---|---|---|---|---|
Test Group | Control Group | |||||
[60] | Wohlfahrt JC et al. (2014) | 32 | PTGs | - | 12 months | No differences in clinical parameters or bone marker levels between the groups. |
[61] | Isehed C et al. (2016) | 26 | Enamel matrix derivative | - | 12 months | No statistically significant differences in bone level change and PD difference between the groups. |
[62] | Derks J et al. (2022) | 138 | Cancellous bone granules with10% highly purified porcine collagen | - | 12 months | Utilization of the bone substitute material resulted in less pronounced buccal REC but did not lead to improvements in terms of reducing PD and BOP. |
[63] | Jepsen K et al. (2016) | 63 | PTGs | - | 12 months | Radiographic defect fill was significantly higher in the test group than in the control group. |
[64] | Wohlfahrt JC et al. (2012) | 32 | PTGs | - | 12 months | Radiographic bone fill around implants was significantly higher in the test group than in the control group. |
[65] | Emanuel N et al. (2020) | 27 | Biodegradable prolonged release local doxycycline formulated with β-tricalcium phosphate bone graft | - | 12 months | There were statistically significant differences in mean periodontal probing depth, clinical attachment levels, radiographic bone levels, and BOP between the groups. In contrast, there was no statistically significant difference in REC between the groups. |
[66] | Solonko M et al. (2022) | 49 | CM | FGG | 12 months | Both treatments groups showed a significant increase in the amount of peri-implant keratinized mucosa width. However, the increase in keratinized mucosa in the control group was significantly greater than that in the test group. |
[67] | Schwarz F (2009) | 22 | NHA | NBM + CM | 48 months | NBM + CM application resulted in higher mean PD reduction (NBM + CM: 2.5 ± 0.9 mm vs. NHA: 1.1 ± 0.3 mm) and clinical attachment-level gain (NBM + CM: 2.0 ± 1.0 mm vs. NHA: 0.6 ± 0.5 mm). |
[68] | Schwarz F et al. (2008) | 22 | NHA | NBM + CM | 24 months | The application of NBM + CM resulted in higher mean PD reduction (NBM + CM: 2.4 ± 0.8 mm vs. NHA: 1.5 ± 0.6 mm) and mean PD reduction (NBM + CM: 2.0 ± 0.8 mm vs. NHA: 1.0 ± 0.4 mm). |
[69] | Schwarz F et al. (2006) | 22 | NHA | Bovine-derived xenograft in combination with a CM | 6 months | Clinically significant PD reductions and CAL gains were observed in both groups. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiba, T.; Komatsu, K.; Takeuchi, Y.; Koyanagi, T.; Taniguchi, Y.; Takagi, T.; Maekawa, S.; Nagai, T.; Kobayashi, R.; Matsumura, S.; et al. Novel Flowchart Guiding the Non-Surgical and Surgical Management of Peri-Implant Complications: A Narrative Review. Bioengineering 2024, 11, 118. https://doi.org/10.3390/bioengineering11020118
Shiba T, Komatsu K, Takeuchi Y, Koyanagi T, Taniguchi Y, Takagi T, Maekawa S, Nagai T, Kobayashi R, Matsumura S, et al. Novel Flowchart Guiding the Non-Surgical and Surgical Management of Peri-Implant Complications: A Narrative Review. Bioengineering. 2024; 11(2):118. https://doi.org/10.3390/bioengineering11020118
Chicago/Turabian StyleShiba, Takahiko, Keiji Komatsu, Yasuo Takeuchi, Tatsuro Koyanagi, Yoichi Taniguchi, Toru Takagi, Shogo Maekawa, Takahiko Nagai, Ryota Kobayashi, Shunsuke Matsumura, and et al. 2024. "Novel Flowchart Guiding the Non-Surgical and Surgical Management of Peri-Implant Complications: A Narrative Review" Bioengineering 11, no. 2: 118. https://doi.org/10.3390/bioengineering11020118