Leveraging Technology for Vestibular Assessment and Rehabilitation in the Operational Environment: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Prevention
4.2. Monitoring Exposure
4.3. Vestibular-Ocular Motor Evaluation
4.4. Assessment, Treatment and Monitoring Rehabilitation Progress
4.5. Rehabilitation and Return-to-Duty Determination
5. Limitations
6. Conclusions
7. Future Directions
Funding
Conflicts of Interest
References
- Hoffer, M.E.; Balaban, C.; Gottshall, K.; Balough, B.J.; Maddox, M.R.; Penta, J.R. Blast exposure: Vestibular consequences and associated characteristics. Otol. Neurotol. 2010, 31, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Hoffer, M.E.; Levin, B.E.; Snapp, H.; Buskirk, J.; Balaban, C. Acute findings in an acquired neurosensory dysfunction. Laryngoscope Investig. Otolaryngol. 2018, 4, 124–131. [Google Scholar] [CrossRef]
- Swanson, R.L., 2nd; Hampton, S.; Green-McKenzie, J.; Diaz-Arrastia, R.; Grady, M.S.; Verma, R.; Biester, R.; Duda, D.; Wolf, R.L.; Smith, D.H. Neurological Manifestations among US Government Personnel Reporting Directional Audible and Sensory Phenomena in Havana, Cuba. JAMA 2018, 319, 1125–1133. [Google Scholar] [CrossRef] [PubMed]
- Akin, F.W.; Murnane, O.D.; Hall, C.D.; Riska, K.M. Vestibular consequences of mild traumatic brain injury and blast exposure: A review. Brain Inj. 2017, 31, 1188–1194. [Google Scholar] [CrossRef]
- Tuohimaa, P. Vestibular disturbances after acute mild head injury. Acta Otolaryngol. Suppl. 1978, 359, 3–67. [Google Scholar]
- Shupak, A.; Doweck, I.; Nachtigal, D.; Spitzer, O.; Gordon, C.R. Vestibular and audiometric consequences of blast injury to the ear. Arch. Otolaryngol. Head Neck Surg. 1993, 119, 1362–1367. [Google Scholar] [CrossRef]
- Van Campen, L.E.; Dennis, J.M.; King, S.B.; Hanlin, R.C.; Velderman, A.M. One-year vestibular and balance outcomes of Oklahoma City bombing survivors. J. Am. Acad. Audiol. 1999, 10, 467–483. [Google Scholar] [CrossRef]
- Scherer, M.R.; Burrows, H.; Pinto, R.; Littlefield, P.; French, L.M.; Tarbett, A.K.; Schubert, M.C. Evidence of central and peripheral vestibular pathology in blast-related traumatic brain injury. Otol. Neurotol. 2011, 32, 571–580. [Google Scholar] [CrossRef]
- World Health Organization. International Classification of Functioning, Disability and Health (ICF). Updated 11 November 2023. Available online: https://icd.who.int/dev11/l-icf/en (accessed on 13 November 2023).
- Heffernan, A.; Booth, L.; Fletcher, R.; Nunez, D.A. Vestibular rehabilitation potential of commercially available virtual reality video games. J. Otolaryngol. Head Neck Surg. 2023, 52, 54. [Google Scholar] [CrossRef]
- Kamo, T.; Ogihara, H.; Azami, M.; Momosaki, R.; Fushiki, H.E. Effects of Early Vestibular Rehabilitation in Patients with Acute Vestibular Disorder: A Systematic Review and Meta-Analysis. Otol. Neurotol. 2023, 44, e641–e647. [Google Scholar] [CrossRef] [PubMed]
- Thompson, T.L.; Amedee, R. Vertigo: A review of common peripheral and central vestibular disorders. Ochsner J. 2009, 9, 20–26. [Google Scholar] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 372, n71. [Google Scholar] [CrossRef]
- Gera, G.; Chesnutt, J.; Mancini, M.; Horak, F.B.; King, L.A.A. Inertial Sensor-Based Assessment of Central Sensory Integration for Balance after Mild Traumatic Brain Injury. Mil. Med. 2018, 183, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Martini, D.N.; Gera, G.; Brumbach, B.H.; Campbell, K.R.; Parrington, L.; Chesnutt, J.; King, L.A. Symptoms and Central Sensory Integration in People with Chronic mTBI: Clinical Implications. Mil. Med. 2022, 188, 3553–3560. [Google Scholar] [CrossRef]
- Prim, J.H.; Favorov, O.V.; Cecchini, A.S.; Scherer, M.R.; Weightman, M.M.; McCulloch, K.L. Clinical Utility and Analysis of the Run-Roll-Aim Task: Informing Return-to-Duty Readiness Decisions in Active-Duty Service Members. Mil. Med. 2019, 184, e268–e277. [Google Scholar] [CrossRef]
- Suttles, S.T. Potential of Visual Sensory Screening, Diagnostic Evaluation, and Training for Treatment of Postconcussive Symptoms and Performance Enhancement for Special Forces Qualified Personnel. J. Spéc. Oper. Med. 2015, 15, 54–63. [Google Scholar] [CrossRef]
- Vartanian, O.; Coady, L.; Blackler, K.; Fraser, B.; Cheung, B. Neuropsychological, Neurocognitive, Vestibular, and Neuroimaging Correlates of Exposure to Repetitive Low-Level Blast Waves: Evidence from Four Nonoverlapping Samples of Canadian Breachers. Mil. Med. 2021, 186, e393–e400. [Google Scholar] [CrossRef]
- Smith, E.; Houtchens, K.; Pearson, M.; Dolbeer, J.A.; Kneller, S.; Fitzgerald, S.M.; Lambert, K.H.; Hoppes, C.W. Post-concussion Return to Shooting Progression for Military Service Members: A Scoping Review and Conceptual Framework. Mil. Med. 2023, usad399. [Google Scholar] [CrossRef]
- Whitney, S.L.; Ou, V.; Hovareshti, P.; Costa, C.M.; Cassidy, A.R.; Dunlap, P.M.; Roeder, S.; Holt, L.; Tolani, D.; Klatt, B.N.; et al. Utility of VestAid to Detect Eye-Gaze Accuracy in a Participant Exposed to Directed Energy. Mil. Med. 2022, 188, e1795–e1801. [Google Scholar] [CrossRef]
- Bagaianu, D.; Van Tiggelen, D.; Duvigneaud, N.; Stevens, V.; Schroyen, D.; Vissenaeken, D.; D’Hondt, G.; Pitance, L. Cervical Joint Position Sense in Hypobaric Conditions: A Randomized Double-Blind Controlled Trial. Mil. Med. 2017, 182, e1969–e1975. [Google Scholar] [CrossRef]
- Kontos, A.P.; Van Cott, A.C.; Roberts, J.; Pan, J.W.; Kelly, M.B.; McAllister-Deitrick, J.; Hetherington, H.P. Clinical and Magnetic Resonance Spectroscopic Imaging Findings in Veterans with Blast Mild Traumatic Brain Injury and Post-Traumatic Stress Disorder. Mil. Med. 2017, 182 (Suppl. S1), 99–104. [Google Scholar] [CrossRef]
- Sessoms, P.H.; Gottshall, K.R.; Sturdy, J.; Viirre, E. Head stabilization measurements as a potential evaluation tool for comparison of persons with TBI and vestibular dysfunction with healthy controls. Mil. Med. 2015, 180 (Suppl. S3), 135–142. [Google Scholar] [CrossRef]
- Sessoms, P.H.; Gottshall, K.R.; Collins, J.-D.; Markham, A.E.; Service, K.A.; Reini, S.A. Improvements in gait speed and weight shift of persons with traumatic brain injury and vestibular dysfunction using a virtual reality computer-assisted rehabilitation environment. Mil. Med. 2015, 180 (Suppl. S3), 143–149. [Google Scholar] [CrossRef]
- Rosen, K.B.; Delpy, K.B.; Pape, M.M.; Kodosky, P.N.; Kruger, S.E. Examining the Relationship Between Conventional Outcomes and Immersive Balance Task Performance in Service Members with Mild Traumatic Brain Injury. Mil. Med. 2021, 186, 577–586. [Google Scholar] [CrossRef] [PubMed]
- Modica, C.M.; Johnson, B.R.; Zalewski, C.; King, K.; Brewer, C.; King, J.E.; Yarnell, A.M.; LoPresti, M.L.; Walker, P.B.; Dell, K.C.; et al. Hearing Loss and Irritability Reporting without Vestibular Differences in Explosive Breaching Professionals. Front. Neurol. 2020, 11, 588377. [Google Scholar] [CrossRef]
- Talian, D.S.; Eitel, M.M.; Zion, D.J.; Kuchinsky, S.E.; French, L.M.; Brickell, T.A.; Lippa, S.M.; Lange, R.T.; Brungart, D.S. Normative Ranges for, and Interrater Reliability of, Rotational Vestibular and Balance Tests in U.S. Military Service Members and Veterans. Am. J. Audiol. 2023, 32 (Suppl. S3), 694–705. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, C.K.F.; Green, B.; Moore, J.; Wyatt, M.; Boulanger, L.; Belnap, B.; Harsch, P.; Donaldson, D.S. Integrated musculoskeletal rehabilitation care at a comprehensive combat and complex casualty care program. J. Manip. Physiol. Ther. 2009, 32, 781–791. [Google Scholar] [CrossRef]
- King, J.E.; Pape, M.M.; Kodosky, P.N. Vestibular Test Patterns in the NICoE Intensive Outpatient Program Patient Population. Mil. Med. 2018, 183 (Suppl. S1), 237–244. [Google Scholar] [CrossRef] [PubMed]
- Loftin, M.C.; Arango, J.I.; Bobula, S.; Hill-Pearson, C.; Pazdan, R.M.; Souvignier, A.R. Implementation of a Generalized Vestibular Rehabilitation Approach. Mil. Med. 2019, 185, E221–E226. [Google Scholar] [CrossRef] [PubMed]
- Kelley, A.M.; Showers, M. Evaluation of the Military Functional Assessment Program for Return-to-Duty Decision Making: A Longitudinal Study. Mil. Med. 2019, 184 (Suppl. S1), 160–167. [Google Scholar] [CrossRef]
- Stewart, C.E.; Holt, A.G.; Altschuler, R.A.; Cacace, A.T.; Hall, C.D.; Murnane, O.D.; King, W.M.; Akin, F.W. Effects of Noise Exposure on the Vestibular System: A Systematic Review. Front. Neurol. 2020, 11, 593919. [Google Scholar] [CrossRef]
- AR 40-501; Standards of Medical Fitness. Headquarters Department of the Army: Washington, DC, USA, 2019.
- Patil, M.M.; Breeze, J. Use of hearing protection on military operations. J. R. Army Med. Corps 2011, 157, 381–384. [Google Scholar] [CrossRef]
- Jones, G.H.; Pearson, C.R. The use of personal hearing protection in hostile territory and the effect of health promotion activity: Advice falling upon deaf ears. J. R. Army Med. Corps 2015, 162, 280–283. [Google Scholar] [CrossRef]
- Abel, S.M. Barriers to hearing conservation programs in combat arms occupations. Aviat. Space Environ. Med. 2008, 79, 591–598. [Google Scholar] [CrossRef]
- Jiang, L.; Zheng, Z.; He, Y. Progress in protecting vestibular hair cells. Arch. Toxicol. 2021, 95, 2613–2623. [Google Scholar] [CrossRef]
- O’Connor, K.L.; Rowson, S.; Duma, S.M.; Broglio, S.P. Head-Impact-Measurement Devices: A Systematic Review. J. Athl. Train. 2017, 52, 206–227. [Google Scholar] [CrossRef] [PubMed]
- Halmagyi, G.M.; McGarvie, L.A.; Strupp, M. Nystagmus goggles: How to use them, what you find and what it means. Pract. Neurol. 2020, 20, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Strupp, M.; Fischer, C.; Hanß, L.; Bayer, O. The takeaway Frenzel goggles: A Fresnel-based device. Neurology 2014, 83, 1241–1245. [Google Scholar] [CrossRef] [PubMed]
- Tsunoda, R.; Fushiki, H.; Tanaka, R.; Endo, M. A new portable Fresnel magnifying loupe for nystagmus observation: A clinical education and clinical practice setting study. BMC Med. Educ. 2023, 23, 472. [Google Scholar] [CrossRef] [PubMed]
- Dhonde, P.; Khadilkar, S. Frenzel glasses: An affordable alternative. Pract. Neurol. 2020, 20, 504. [Google Scholar] [CrossRef]
- Strupp, M.; Bisdorff, A.; Furman, J.; Hornibrook, J.; Jahn, K.; Maire, R.; Newman-Toker, D.; Magnusson, M. Acute unilateral vestibulopathy/vestibular neuritis: Diagnostic criteria. J. Vestib. Res. 2022, 32, 389–406. [Google Scholar] [CrossRef] [PubMed]
- MacDougall, H.G.; McGarvie, L.A.; Halmagyi, G.M.; Rogers, S.J.; Manzari, L.; Burgess, A.M.; Curthoys, I.S.; Weber, K.P. A new saccadic indicator of peripheral vestibular function based on the video head impulse test. Neurology 2016, 87, 410–418. [Google Scholar] [CrossRef] [PubMed]
- van Dooren, T.; Starkov, D.; Lucieer, F.; Dobbels, B.; Janssen, M.; Guinand, N.; Fornos, A.P.; Kingma, H.; Van Rompaey, V.; van de Berg, R. Suppression Head Impulse Test (SHIMP) versus Head Impulse Test (HIMP) When Diagnosing Bilateral Vestibulopathy. J. Clin. Med. 2022, 11, 2444. [Google Scholar] [CrossRef] [PubMed]
- Parker, T.M.; Farrell, N.; Otero-Millan, J.; Kheradmand, A.; McClenney, A.; Newman-Toker, D.E. Proof of Concept for an “eyePhone” App to Measure Video Head Impulses. Digit. Biomark. 2020, 5, 1–8. [Google Scholar] [CrossRef]
- Kuroda, T.; Kuroda, K.; Fushiki, H. Development of a Prototype Video Head Impulse Test System Using an iPhone for Screening of Peripheral Vestibular Dysfunction. Digit. Biomark. 2023, 7, 150–156. [Google Scholar] [CrossRef]
- Kattah, J.C.; Talkad, A.V.; Wang, D.Z.; Hsieh, Y.H.; Newman-Toker, D.E. HINTS to diagnose stroke in the acute vestibular syndrome: Three-step bedside oculomotor examination more sensitive than early MRI diffusion-weighted imaging. Stroke 2009, 40, 3504–3510. [Google Scholar] [CrossRef]
- Brown, J.C.; Goldszer, I.M.; Brooks, M.C.; Milano, N.J. An Evaluation of the Emerging Techniques in Sports-Related Concussion. J. Clin. Neurophysiol. 2023, 40, 384–390. [Google Scholar] [CrossRef]
- Patterson, J.A.; Amick, R.Z.; Thummar, T.; Rogers, M.E. Validation of measures from the smartphone sway balance application: A pilot study. Int. J. Sports Phys. Ther. 2014, 9, 135–139. [Google Scholar]
- Dewan, B.M.; James, C.R.; Kumar, N.A.; Sawyer, S.F. Kinematic Validation of Postural Sway Measured by Biodex Biosway (Force Plate) and SWAY Balance (Accelerometer) Technology. BioMed Res. Int. 2019, 2019, 8185710. [Google Scholar] [CrossRef]
- Seemungal, B.M.; Agrawal, Y.; Bisdorff, A.; Bronstein, A.; Cullen, K.E.; Goadsby, P.J.; Lempert, T.; Kothari, S.; Lim, P.B.; Magnusson, M.; et al. The Bárány Society position on ‘Cervical Dizziness’. J. Vestib. Res. 2022, 32, 487–499. [Google Scholar] [CrossRef]
- Natalis, M.; König, A. Nichtinvasive, akkurate und reliable Messung der Halswirbelsäulenbeweglichkeit mittels ultraschallgestützter 3D-Echtzeit-Bewegungsanalyse [Noninvasive, accurate and reliable measurement of cervical spine motion with a 3D real-time ultrasound motion analyzer]. Ultraschall Med. 1999, 20, 70–73. (In German) [Google Scholar] [CrossRef] [PubMed]
- Noda, M.; Kuroda, T.; Nomura, A.; Ito, M.; Yoshizaki, T.; Fushiki, H. Smartphone-Assisted Medical Care for Vestibular Dysfunction as a Telehealth Strategy for Digital Therapy Beyond COVID-19: Scoping Review. JMIR mHealth uHealth 2023, 11, e4863. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.U.; Lotterman, S.; Roberts, D.; Eisen, M. Smartphone telemedical emergency department consults for screening of nonacute dizziness. Laryngoscope 2018, 129, 466–469. [Google Scholar] [CrossRef] [PubMed]
- Young, A.S.; Lechner, C.; Bradshaw, A.P.; MacDougall, H.G.; Black, D.A.; Halmagyi, G.M.; Welgampola, M.S. Capturing acute vertigo: A vestibular event monitor. Neurology 2019, 92, e2743–e2753. [Google Scholar] [CrossRef] [PubMed]
- Kıroğlu, M.; Dağkıran, M. The Role of Mobile Phone Camera Recordings in the Diagnosis of Meniere’s Disease and Pathophysiological Implications. J. Int. Adv. Otol. 2020, 16, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Brodsky, J.R.; Cusick, B.A.; Kawai, K.; Kenna, M.; Zhou, G. Peripheral vestibular loss detected in pediatric patients using a smartphone-based test of the subjective visual vertical. Int. J. Pediatr. Otorhinolaryngol. 2015, 79, 2094–2098. [Google Scholar] [CrossRef]
- Ulozienė, I.; Totilienė, M.; Paulauskas, A.; Blažauskas, T.; Marozas, V.; Kaski, D.; Ulozas, V. Subjective visual vertical assessment with mobile virtual reality system. Medicina 2017, 53, 394–4022. [Google Scholar] [CrossRef]
- Zabaneh, S.I.; Voss, L.J.; Szczepek, A.J.; Olze, H.; Stölzel, K. Methods for Testing the Subjective Visual Vertical during the Chronic Phase of Menière’s Disease. Diagnostics 2021, 11, 249. [Google Scholar] [CrossRef]
- Zaleski-King, A.; Pinto, R.; Lee, G.; Brungart, D. Use of Commercial Virtual Reality Technology to Assess Verticality Perception in Static and Dynamic Visual Backgrounds. Ear Hear. 2019, 41, 125–135. [Google Scholar] [CrossRef]
- Kerr, A.G.; Byrne, J.E. Concussive effects of bomb blast on the ear. J. Laryngol. Otol. 1975, 89, 131–144. [Google Scholar] [CrossRef]
- Meldrum, D.; Murray, D.; Vance, R.; Coleman, S.; McConnell, S.; Hardiman, O.; Walsh, R.M. Toward a Digital Health Intervention for Vestibular Rehabilitation: Usability and Subjective Outcomes of a Novel Platform. Front. Neurol. 2022, 13, 836796. [Google Scholar] [CrossRef]
- Nehrujee, A.; Vasanthan, L.; Lepcha, A.; Balasubramanian, S. A Smartphone-based gaming system for vestibular rehabilitation: A usability study. J. Vestib. Res. 2019, 29, 147–160. [Google Scholar] [CrossRef] [PubMed]
- Pavlou, M.; Kanegaonkar, R.; Swapp, D.; Bamiou, D.; Slater, M.; Luxon, L.M. The effect of virtual reality on visual vertigo symptoms in patients with peripheral vestibular dysfunction: A pilot study. J. Vestib. Res. 2012, 22, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Plontke, S.K.; Götze, G.; Rahne, T.; Liebau, A. Intracochlear drug delivery in combination with cochlear implants: Current aspects. Hno 2016, 65 (Suppl. S1), 19–28. [Google Scholar] [CrossRef]
- de Azevedo, Y.J.; Ledesma, A.L.L.; Pereira, L.V.; Oliveira, C.A.; Bahmad, F. Vestibular implant: Does it really work? A systematic review. J. Otorhinolaryngol. 2019, 85, 788–798. [Google Scholar] [CrossRef] [PubMed]
- Haxby, F.; Akrami, M.; Zamani, R. Finding a Balance: A Systematic Review of the Biomechanical Effects of Vestibular Prostheses on Stability in Humans. J. Funct. Morphol. Kinesiol. 2020, 5, 23. [Google Scholar] [CrossRef] [PubMed]
- Carmona, S.; Ferrero, A.; Pianetti, G.; Escolá, N.; Arteaga, M.V.; Frankel, L. Galvanic vestibular stimulation improves the results of vestibular rehabilitation. Ann. N. Y. Acad. Sci. 2011, 1233, E1–E7. [Google Scholar] [CrossRef]
- Ceylan, D.; Ataş, A.; Kaya, M. The Effect of Galvanic Vestibular Stimulation in the Rehabilitation of Patients with Vestibular Disorders. ORL 2020, 83, 25–34. [Google Scholar] [CrossRef]
- Mattei, C.; Lim, R.; Drury, H.; Nasr, B.; Li, Z.; Tadros, M.A.; D’Abaco, G.M.; Stok, K.S.; Nayagam, B.A.; Dottori, M. Generation of Vestibular Tissue-Like Organoids from Human Pluripotent Stem Cells Using the Rotary Cell Culture System. Front. Cell Dev. Biol. 2019, 7, 25. [Google Scholar] [CrossRef]
- Quan, Y.-Z.; Wei, W.; Ergin, V.; Rameshbabu, A.P.; Huang, M.; Tian, C.; Saladi, S.V.; Indzhykulian, A.A.; Chen, Z.-Y. Reprogramming by drug-like molecules leads to regeneration of cochlear hair cell-like cells in adult mice. Proc. Natl. Acad. Sci. USA 2023, 120, e2215253120. [Google Scholar] [CrossRef]
Title and Authors | Population | Technology Used | Potential Application in the Operational Environment |
---|---|---|---|
Cervical Joint Position Sense in Hypobaric Conditions: A Randomized Double-Blind Controlled Trial [21]; Diana Bagaianu et al. | Healthy males (n = 36) 27.29 ± 9.71 years old recruited from the faculty, staff, students, and family of the students from a university and military hospital | Zebris CMS 20 (Zebris Medizinetechnik GmbH, Isny, Germany) | Measurement of range of motion and joint position sense for cervical dizziness |
Inertial Sensor-Based Assessment of Central Sensory Integration for Balance After Mild Traumatic Brain Injury [14]; Geetanjali Gera et al. | Collegiate athletes who had sustained a mTBI within the past 2–3 days (n = 38; 20.6 ± 1.3 years old; 25 M/13 F) or who had not sustained a mTBI within the past 6 months (controls; n = 81; 21.0 ± 1.4 years old; 44 M/37 F) | Inertial measurement units (Opal; APDM, Inc., Portland, OR, USA) | Instrumented balance/gait measures for assessment and monitoring of rehabilitation progress |
Symptoms and Central Sensory Integration in People With Chronic mTBI: Clinical Implications [15]; Douglas N. Martini et al. | 41 people with chronic mTBI (39.8 ± 11.5 years old; 12M/29F) and 53 age- and sex-matched healthy controls (36.5 ± 12.1 years old; 21M/32F) | Inertial measurement units (Opals Version 1; APDM, Inc., Portland, OR, USA) | Instrumented balance/gait measures for assessment and monitoring of rehabilitation progress |
Clinical Utility and Analysis of the Run-Roll-Aim Task: Informing Return-to-Duty Readiness Decisions in Active-Duty Service Members [16]; Julianna H. Prim et al. | 33 people with mTBI (26.2 ± 5.2 years old; 31M/2F) and 50 healthy controls (30.2 ± 6.1 years old; 40M/10F) | Near focus scope (BARSKA Blueline 10 × 40 Monocular; Barska, Pomona, CA, USA) mounted on a simulated weapon (Bluegun; Rings Manufacturing, Inc., Melbourne, FL, USA) and computer display | Identification of impairments post-mTBI during a military-specific task to inform return-to-duty determination |
Post-concussion Return to Shooting Progression for Military Service Members: A Scoping Review and Conceptual Framework [19]; Erin Smith et al. | Military service members (Scoping Review) | Virtual reality systems (in general) | Implementation of cognitive, visual, and vestibular training for returning service members to shooting and to duty |
Potential of Visual Sensory Screening, Diagnostic Evaluation, and Training for Treatment of Postconcussive Symptoms and Performance Enhancement for Special Forces Qualified Personnel [17]; Sean T. Suttles | Special Operations Forces soldiers (Narrative Review) | Head Impact Telemetry System (Simbex, Lebanon, NH, USA); Nike Visual Sensory Training Stations and Nike SPARQ Package (Nike, Inc., Beaverton, OR, USA); Peripheral Awareness Trainer (Wayne Enterprises); Wayne Saccadic Fixator, Visual Choice Reaction Time Apparatus, and Multi-Domain Apparatus for Reaction Time (Lafayette Instrument Co., Lafayette, IN, USA); SVT (Sports Vision, Sydney, Australia); and Dynavision 2000 and D2 light boards (Dynavision International, LLC, Cincinnati, OH, USA) | Measurement of head impact features to quantify exposure and prompt injury screening; Identification and rehabilitation of visual impairments post-mTBI |
Neuropsychological, Neurocognitive, Vestibular, and Neuroimaging Correlates of Exposure to Repetitive Low-Level Blast Waves: Evidence From Four Nonoverlapping Samples of Canadian Breachers [18]; Oshin Vartanian et al. | Male breachers (n = 70) and male Canadian Special Operations Forces Command members of similar average age with no experience in breaching (n = 14) | Blast gauges (BlackBox Biometrics, Rochester, NY, USA) | Measurement of changes in overpressure and acceleration to quantify exposure and prompt injury screening |
Utility of VestAid to Detect Eye-Gaze Accuracy in a Participant Exposed to Directed Energy [20]; Susan L. Whitney et al. | Control (46 year old M), person exposed to directed energy (47 year old M), person post-concussion (19 year old F), and person with vestibular neuritis (71 year old F) | VestAid (Intelligent Automation dba BlueHalo, Rockville, MD, USA) | Instrumented gaze stability measures for assessment and monitoring of rehabilitation progress |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoppes, C.W.; Lambert, K.H.; Whitney, S.L.; Erbele, I.D.; Esquivel, C.R.; Yuan, T.T. Leveraging Technology for Vestibular Assessment and Rehabilitation in the Operational Environment: A Scoping Review. Bioengineering 2024, 11, 117. https://doi.org/10.3390/bioengineering11020117
Hoppes CW, Lambert KH, Whitney SL, Erbele ID, Esquivel CR, Yuan TT. Leveraging Technology for Vestibular Assessment and Rehabilitation in the Operational Environment: A Scoping Review. Bioengineering. 2024; 11(2):117. https://doi.org/10.3390/bioengineering11020117
Chicago/Turabian StyleHoppes, Carrie W., Karen H. Lambert, Susan L. Whitney, Isaac D. Erbele, Carlos R. Esquivel, and Tony T. Yuan. 2024. "Leveraging Technology for Vestibular Assessment and Rehabilitation in the Operational Environment: A Scoping Review" Bioengineering 11, no. 2: 117. https://doi.org/10.3390/bioengineering11020117
APA StyleHoppes, C. W., Lambert, K. H., Whitney, S. L., Erbele, I. D., Esquivel, C. R., & Yuan, T. T. (2024). Leveraging Technology for Vestibular Assessment and Rehabilitation in the Operational Environment: A Scoping Review. Bioengineering, 11(2), 117. https://doi.org/10.3390/bioengineering11020117