Computational Fluid Dynamics in Medicine and Biology
1. Introduction
2. Exploring the Flows of Life: CFD in Medicine and Biology
3. Conclusions
Conflicts of Interest
References
- Das, A.; Hameed, M.; Prather, R.; Farias, M.; Divo, E.; Kassab, A.; Nykanen, D.; DeCampli, W. In-Silico and In-Vitro Analysis of the Novel Hybrid Comprehensive Stage II Operation for Single Ventricle Circulation. Bioengineering 2023, 10, 135. [Google Scholar] [CrossRef] [PubMed]
- Pannone, M. Modeling Left Ventricle Perfusion in Healthy and Stenotic Conditions. Bioengineering 2021, 8, 64. [Google Scholar] [CrossRef] [PubMed]
- de Azevedo, F.S.; Almeida, G.d.C.; Alvares de Azevedo, B.; Ibanez Aguilar, I.F.; Azevedo, B.N.; Teixeira, P.S.; Camargo, G.C.; Correia, M.G.; Nieckele, A.O.; Oliveira, G.M.M. Stress Load and Ascending Aortic Aneurysms: An Observational, Longitudinal, Single-Center Study Using Computational Fluid Dynamics. Bioengineering 2024, 11, 204. [Google Scholar] [CrossRef] [PubMed]
- Albadawi, M.; Abuouf, Y.; Elsagheer, S.; Sekiguchi, H.; Ookawara, S.; Ahmed, M. Influence of Rigid–Elastic Artery Wall of Carotid and Coronary Stenosis on Hemodynamics. Bioengineering 2022, 9, 708. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, Y.; Fujimura, S.; Takao, H.; Suzuki, T.; Hayakawa, M.; Ishibashi, T.; Karagiozov, K.; Fukudome, K.; Murayama, Y.; Yamamoto, M. Hemodynamic Investigation of the Effectiveness of a Two Overlapping Flow Diverter Configuration for Cerebral Aneurysm Treatment. Bioengineering 2021, 8, 143. [Google Scholar] [CrossRef] [PubMed]
- Salman, H.E.; Jurisch-Yaksi, N.; Yalcin, H.C. Computational Modeling of Motile Cilia-Driven Cerebrospinal Flow in the Brain Ventricles of Zebrafish Embryo. Bioengineering 2022, 9, 421. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Feng, Y. In Silico Study to Enhance Delivery Efficiency of Charged Nanoscale Nasal Spray Aerosols to the Olfactory Region Using External Magnetic Fields. Bioengineering 2022, 9, 40. [Google Scholar] [CrossRef] [PubMed]
- Turova, V.; Kovtanyuk, A.; Pykhteev, O.; Sidorenko, I.; Lampe, R. Glycocalyx Sensing with a Mathematical Model of Acoustic Shear Wave Biosensor. Bioengineering 2022, 9, 462. [Google Scholar] [CrossRef] [PubMed]
- Taebi, A. Deep Learning for Computational Hemodynamics: A Brief Review of Recent Advances. Fluids 2022, 7, 197. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taebi, A. Computational Fluid Dynamics in Medicine and Biology. Bioengineering 2024, 11, 1168. https://doi.org/10.3390/bioengineering11111168
Taebi A. Computational Fluid Dynamics in Medicine and Biology. Bioengineering. 2024; 11(11):1168. https://doi.org/10.3390/bioengineering11111168
Chicago/Turabian StyleTaebi, Amirtahà. 2024. "Computational Fluid Dynamics in Medicine and Biology" Bioengineering 11, no. 11: 1168. https://doi.org/10.3390/bioengineering11111168
APA StyleTaebi, A. (2024). Computational Fluid Dynamics in Medicine and Biology. Bioengineering, 11(11), 1168. https://doi.org/10.3390/bioengineering11111168