Featured Papers in Computer Methods in Biomedicine
1. Introduction
2. This Special Issue
3. Future Perspectives
- An important objective could be the use of enhanced ML and AI approaches to develop more personalized models [30].
- Enhancing the interpretability of AI models could ensure that they become trusted and fully understood by clinicians [31].
- The integration of multimodal data from multiple sources, such as data derived from imaging, genomics, and proteomics, as well as clinical data, is another important direction that needs to be investigated further in order to provide a comprehensive view of patient health [32].
- Real-Time data processing is fundamental to supporting timely clinical decisions [33].
- Improving algorithms for EEG and ECG analysis is important for better capturing the complexity of these physiological signals [34].
- Most of the above issues can only be resolved by promoting collaboration between computer scientists, biomedical researchers, and clinicians to foster innovation.
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Inui, A.; Nishimoto, H.; Mifune, Y.; Yoshikawa, T.; Shinohara, I.; Furukawa, T.; Kato, T.; Tanaka, S.; Kusunose, M.; Kuroda, R. Screening for Osteoporosis from Blood Test Data in Elderly Women Using a Machine Learning Approach. Bioengineering 2023, 10, 277. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, J.W.; Lee, D.Y.; Lee, H.M.; Park, J.Y.; Choe, J.W.; Hong, S.H.; Kim, K.H. Predicting osteoporosis with machine learning models using various health data: Nationwide population-based study. J. Med. Internet Res. 2018, 20, e11012. [Google Scholar]
- Wang, Y.; Zhang, Y.; Liang, S.; Cheng, G.; Qiu, L.; Liu, L.; Liu, L. Predicting bone mineral density from clinical factors and laboratory markers using machine learning. Bone 2020, 137, 115390. [Google Scholar]
- Song, K.; Zhou, Y. Leveraging Scheme for Cross-Study Microbiome Machine Learning Prediction and Feature Evaluations. Bioengineering 2023, 10, 231. [Google Scholar] [CrossRef] [PubMed]
- Knights, D.; Parfrey, L.W.; Zaneveld, J.; Lozupone, C.; Knight, R.; Gilbert, J.A. Supervised classification of microbiota mitigates mislabeling errors. J. Clin. Microbiol. 2011, 49, 3301–3307. [Google Scholar] [CrossRef]
- Sze, M.A.; Schloss, P.D. Looking for gold in all the wrong places: The fate of microbiome-wide association studies. Gut Microbes 2016, 7, 223–230. [Google Scholar]
- Wysocki, M.; Lewis, S.; Doyle, S. Developing Patient-Specific Statistical Reconstructions of Healthy Anatomical Structures to Improve Patient Outcomes. Bioengineering 2023, 10, 123. [Google Scholar] [CrossRef]
- Modenese, L.; Phillips, A.T.; Bull, A.M. An anatomically-based patient-specific finite element model of the ulna. J. Biomech. 2018, 44, 2536–2541. [Google Scholar]
- Viceconti, M.; Olsen, S.; Nolte, L.P.; Burton, K. Extracting clinically relevant data from finite element simulations. Clin. Biomech. 2005, 20, 451–454. [Google Scholar] [CrossRef]
- Wei, T.; Lu, S.; Yan, Y. Automated Atrial Fibrillation Detection with ECG. Bioengineering 2022, 9, 523. [Google Scholar] [CrossRef]
- Rajpurkar, P.; Hannun, A.Y.; Haghpanahi, M.; Bourn, C.; Ng, A.Y. Cardiologist-level arrhythmia detection with convolutional neural networks. Nat. Med. 2019, 25, 65–69. [Google Scholar]
- Hannun, A.Y.; Rajpurkar, P.; Haghpanahi, M.; Tison, G.H.; Bourn, C.; Ng, A.Y. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 2019, 25, 65–69. [Google Scholar] [CrossRef]
- Yao, Q.; Wei, D.; Zhang, H.; Ding, X.; Shen, C. Time-incremental convolutional neural network for arrhythmia detection using electrocardiogram. Biocybern. Biomed. Eng. 2020, 40, 564–574. [Google Scholar]
- Safi, K.; Aly, W.; AlAkkoumi, M.; Kanj, H.; Ghedira, M.; Hutin, E. EMD-Based Method for Supervised Classification of Parkinson’s Disease Patients Using Balance Control Data. Bioengineering 2022, 9, 283. [Google Scholar] [CrossRef] [PubMed]
- Huo, W.; Wang, Z.; Xu, Y.; Xie, Q.; Li, F.; Li, H. Supervised machine learning classification of Parkinson’s disease using magnetic resonance imaging. Front. Neurosci. 2019, 13, 1234. [Google Scholar]
- Piro, N.; Gharehbolagh, S.S.; Amiri, P.; Wu, Y.; Du, G. Early diagnosis of Parkinson’s disease using machine learning algorithms and partial least squares. Comput. Biol. Med. 2017, 90, 37–43. [Google Scholar]
- Farmer, C.; Zhao, J.; Duncan, D.; Fox, J.; Feindt, M.; Zhu, L. Machine learning for the classification of Parkinson’s disease and other neurodegenerative diseases. Front. Neurosci. 2019, 13, 1358. [Google Scholar]
- Mesin, L.; Porcu, P.; Russu, D.; Farina, G.; Borzì, L.; Zhang, W.; Guo, Y.; Olmo, G. A Multi-Modal Analysis of the Freezing of Gait Phenomenon in Parkinson’s Disease. Sensors 2022, 22, 2613. [Google Scholar] [CrossRef]
- Chiarion, G.; Sparacino, L.; Antonacci, Y.; Faes, L.; Mesin, L. Connectivity Analysis in EEG Data: A Tutorial Review of the State of the Art and Emerging Trends. Bioengineering 2023, 10, 372. [Google Scholar] [CrossRef]
- Tomagra, G.; Franchino, C.; Cesano, F.; Chiarion, G.; de lure, A.; Carbone, E.; Calabresi, P.; Mesin, L.; Picconi, B.; Marcantoni, A.; et al. Alpha-synuclein oligomers alter the spontaneous firing discharge of cultured midbrain neurons. Front. Cell. Neurosci. 2023, 17, 107855. [Google Scholar] [CrossRef]
- Chiarion, G.; Mesin, L. Functional connectivity of EEG in encephalitis during slow biphasic complexes. Electronics 2021, 10, 2978. [Google Scholar] [CrossRef]
- Stam, C.J. Modern network science of neurological disorders. Nat. Rev. Neurosci. 2014, 15, 683–695. [Google Scholar] [CrossRef]
- Friston, K.J. Functional and effective connectivity: A review. Brain Connect. 2011, 1, 13–36. [Google Scholar] [CrossRef] [PubMed]
- Bullmore, E.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10, 186–198. [Google Scholar] [CrossRef]
- Mesin, L.; Cipriani, G.; Amanzio, M. Electroencephalography-Based Brain–Machine Interfaces in Older Adults: A Literature Review. Bioengineering 2023, 10, 395. [Google Scholar] [CrossRef] [PubMed]
- Lebedev, M.A.; Nicolelis, M.A. Brain-machine interfaces: Past, present and future. Trends Neurosci. 2006, 29, 536–546. [Google Scholar] [CrossRef]
- Mesin, L.; Ghani, U.; Niazi, I.K. Non-Linear Adapted Spatio-Temporal Filter for Single-Trial Identification of Movement-Related Cortical Potential. Electronics 2023, 12, 1246. [Google Scholar] [CrossRef]
- Ahmadi, H.; Mesin, L. Enhancing Motor Imagery Electroencephalography Classification with a Correlation-Optimized Weighted Stacking Ensemble Model. Electronics 2024, 13, 1033. [Google Scholar] [CrossRef]
- Ahmadi, H.; Mesin, L. Enhancing MI EEG Signal Classification with a Novel Weighted and Stacked Adaptive Integrated Ensemble Model: A Multi-Dataset Approach. IEEE Access 2024, 12, 103626–103646. [Google Scholar] [CrossRef]
- Collins, F.S.; Varmus, H. A new initiative on precision medicine. New Engl. J. Med. 2015, 372, 793–795. [Google Scholar] [CrossRef]
- Gilpin, L.H.; Bau, D.; Yuan, B.Z.; Bajwa, A.; Specter, M.; Kagal, L. Explaining explanations: An overview of interpretability of machine learning. In Proceedings of the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), Turin, Italy, 1–3 October 2018; pp. 80–89. [Google Scholar]
- Zhang, Y.; An, Q.; Hu, W.; Yang, F.; Liu, Z. Multi-modal data fusion for biomedical diagnosis. Inf. Fusion 2020, 64, 173–183. [Google Scholar]
- Raghunathan, V.; Radha, R.; Mahajan, S. Real-time data processing architecture for continuous remote health monitoring systems. IEEE Access 2018, 6, 40462–40469. [Google Scholar]
- Krusienski, D.J.; Grosse-Wentrup, M.; Galán, F.; Coyle, D.; Miller, K.J.; Forney, E.; Anderson, C.W. Critical issues in state-of-the-art brain–computer interface signal processing. J. Neural Eng. 2011, 8, 025002. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, J.P.A. Translational research: What’s there to worry about? Am. J. Transl. Res. 2017, 9, 1–5. [Google Scholar]
- Price, W.N.; Cohen, I.G. Privacy in the age of medical big data. Nat. Med. 2019, 25, 37–43. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesin, L. Featured Papers in Computer Methods in Biomedicine. Bioengineering 2024, 11, 985. https://doi.org/10.3390/bioengineering11100985
Mesin L. Featured Papers in Computer Methods in Biomedicine. Bioengineering. 2024; 11(10):985. https://doi.org/10.3390/bioengineering11100985
Chicago/Turabian StyleMesin, Luca. 2024. "Featured Papers in Computer Methods in Biomedicine" Bioengineering 11, no. 10: 985. https://doi.org/10.3390/bioengineering11100985
APA StyleMesin, L. (2024). Featured Papers in Computer Methods in Biomedicine. Bioengineering, 11(10), 985. https://doi.org/10.3390/bioengineering11100985