Microalgae Biotechnology: Methods and Applications
1. Introduction
2. Synthetic Biology Facilitates Antimicrobial Peptide Production in Microalgae
3. Advancements in Microalgae as Novel Chassis for Biotechnology
4. Innovations in Cost-Effective Microalgae Cultivation Techniques and Applications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Einhaus, A.; Baier, T.; Kruse, O. Molecular Design of Microalgae as Sustainable Cell Factories. Trends Biotechnol. 2023, 42, 728–738. [Google Scholar] [CrossRef] [PubMed]
- Li-Beisson, Y.; Thelen, J.J.; Fedosejevs, E.; Harwood, J.L. The Lipid Biochemistry of Eukaryotic Algae. Prog. Lipid Res. 2019, 74, 31–68. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Meng, W.; Su, Y.; Qian, C.; Fu, W. Emerging Technologies for Advancing Microalgal Photosynthesis and Metabolism toward Sustainable Production. Front. Mar. Sci. 2023, 10, 1260709. [Google Scholar] [CrossRef]
- Naduthodi, M.I.S.; Claassens, N.J.; D’Adamo, S.; Van Der Oost, J.; Barbosa, M.J. Synthetic Biology Approaches To Enhance Microalgal Productivity. Trends Biotechnol. 2021, 39, 1019–1036. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Blot, C.; Liu, K.; Kim, M.; Li-Beisson, Y. Advances in Algal Lipid Metabolism and Their Use to Improve Oil Content. Curr. Opin. Biotechnol. 2024, 87, 103130. [Google Scholar] [CrossRef]
- Xin, Y.; Wu, S.; Miao, C.; Xu, T.; Lu, Y. Towards Lipid from Microalgae: Products, Biosynthesis, and Genetic Engineering. Life 2024, 14, 447. [Google Scholar] [CrossRef]
- Kong, F.; Yamaoka, Y.; Ohama, T.; Lee, Y.; Li-Beisson, Y. Molecular Genetic Tools and Emerging Synthetic Biology Strategies to Increase Cellular Oil Content in Chlamydomonas reinhardtii. Plant Cell Physiol. 2019, 60, 1184–1196. [Google Scholar] [CrossRef]
- Muñoz, C.F.; Südfeld, C.; Naduthodi, M.I.S.; Weusthuis, R.A.; Barbosa, M.J.; Wijffels, R.H.; D’Adamo, S. Genetic Engineering of Microalgae for Enhanced Lipid Production. Biotechnol. Adv. 2021, 52, 107836. [Google Scholar] [CrossRef]
- Zhu, C.; Xi, Y.; Zhai, X.; Wang, J.; Kong, F.; Chi, Z. Pilot Outdoor Cultivation of an Extreme Alkalihalophilic Trebouxiophyte in a Floating Photobioreactor Using Bicarbonate as Carbon Source. J. Clean. Prod. 2021, 283, 124648. [Google Scholar] [CrossRef]
- Zhu, C.; Zhai, X.; Xi, Y.; Wang, J.; Kong, F.; Zhao, Y.; Chi, Z. Progress on the Development of Floating Photobioreactor for Microalgae Cultivation and Its Application Potential. World J. Microbiol. Biotechnol. 2019, 35, 190. [Google Scholar] [CrossRef]
- Ayswaria, R.; Vijayan, J.; Nathan, V.K. Antimicrobial Peptides Derived from Microalgae for Combating Antibiotic Resistance: Current Status and Prospects. Cell Biochem. Funct. 2023, 41, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Xue, B.; Dong, C.-M.; Hu, H.-H.; Dong, B.; Fan, Z.-C. Chlamydomonas reinhardtii-Expressed Multimer of ToAMP4 Inhibits the Growth of Bacteria of Both Gram-Positive and Gram-Negative. Process Biochem. 2020, 91, 311–318. [Google Scholar] [CrossRef]
- Liu, Y.-X.; Li, Z.-F.; Lv, Y.-J.; Dong, B.; Fan, Z.-C. Chlamydomonas reinhardtii-Expressed Multimer of Bacteriocin LS2 Potently Inhibits the Growth of Bacteria. Process Biochem. 2020, 95, 139–147. [Google Scholar] [CrossRef]
- Hadiatullah, H.; Wang, H.; Liu, Y.-X.; Fan, Z.-C. Chlamydomonas reinhardtii-Derived Multimer Mytichitin-CB Possesses Potent Antibacterial Properties. Process Biochem. 2020, 96, 21–29. [Google Scholar] [CrossRef]
- Jaree, P.; Tassanakajon, A.; Somboonwiwat, K. Effect of the Anti-Lipopolysaccharide Factor Isoform 3 (ALFPm3) from Penaeus monodon on Vibrio harveyi Cells. Dev. Comp. Immunol. 2012, 38, 554–560. [Google Scholar] [CrossRef]
- Zhou, L.; Li, G.; Jiao, Y.; Huang, D.; Li, A.; Chen, H.; Liu, Y.; Li, S.; Li, H.; Wang, C. Molecular and Antimicrobial Characterization of a Group G Anti-Lipopolysaccharide Factor (ALF) from Penaeus monodon. Fish Shellfish Immunol. 2019, 94, 149–156. [Google Scholar] [CrossRef]
- Ou, Y.; Zhuang, H.; Chen, R.; Huang, D.; Wang, C. Secretory Expression and Application of Antilipopolysaccharide Factor 3 in Chlamydomonas reinhardtii. Bioengineering 2023, 10, 564. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Khare, T.; Shriram, V.; Bae, H.; Kumar, V. Plant Synthetic Biology for Producing Potent Phyto-Antimicrobials to Combat Antimicrobial Resistance. Biotechnol. Adv. 2021, 48, 107729. [Google Scholar] [CrossRef] [PubMed]
- Sproles, A.E.; Fields, F.J.; Smalley, T.N.; Le, C.H.; Badary, A.; Mayfield, S.P. Recent Advancements in the Genetic Engineering of Microalgae. Algal Res. 2021, 53, 102158. [Google Scholar] [CrossRef]
- Abreu, A.P.; Martins, R.; Nunes, J. Emerging Applications of Chlorella sp. and Spirulina (Arthrospira) sp. Bioengineering 2023, 10, 955. [Google Scholar] [CrossRef]
- Sharma, P.K.; Saharia, M.; Srivstava, R.; Kumar, S.; Sahoo, L. Tailoring Microalgae for Efficient Biofuel Production. Front. Mar. Sci. 2018, 5, 382. [Google Scholar] [CrossRef]
- Sundaram, T.; Rajendran, S.; Gnanasekaran, L.; Rachmadona, N.; Jiang, J.-J.; Khoo, K.S.; Show, P.L. Bioengineering Strategies of Microalgae Biomass for Biofuel Production: Recent Advancement and Insight. Bioengineered 2023, 14, 2252228. [Google Scholar] [CrossRef] [PubMed]
- Schroda, M.; Remacle, C. Molecular Advancements Establishing Chlamydomonas as a Host for Biotechnological Exploitation. Front. Plant Sci. 2022, 13, 911483. [Google Scholar] [CrossRef] [PubMed]
- Salomé, P.A.; Merchant, S.S. A Series of Fortunate Events: Introducing Chlamydomonas as a Reference Organism. Plant Cell 2019, 31, 1682–1707. [Google Scholar] [CrossRef]
- Sasso, S.; Stibor, H.; Mittag, M.; Grossman, A.R. From Molecular Manipulation of Domesticated Chlamydomonas reinhardtii to Survival in Nature. eLife 2018, 7, e39233. [Google Scholar] [CrossRef]
- Safi, C.; Zebib, B.; Merah, O.; Pontalier, P.-Y.; Vaca-Garcia, C. Morphology, Composition, Production, Processing and Applications of Chlorella vulgaris: A Review. Renew. Sustain. Energy Rev. 2014, 35, 265–278. [Google Scholar] [CrossRef]
- Athiyappan, K.D.; Routray, W.; Paramasivan, B. Phycocyanin from Spirulina: A Comprehensive Review on Cultivation, Extraction, Purification, and Its Application in Food and Allied Industries. Food Humanit. 2024, 2, 100235. [Google Scholar] [CrossRef]
- Liu, J.; Chen, F. Biology and Industrial Applications of Chlorella: Advances and Prospects. Adv. Biochem. Eng. Biotechnol. 2016, 153, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Varshney, P.; Mikulic, P.; Vonshak, A.; Beardall, J.; Wangikar, P.P. Extremophilic Micro-Algae and Their Potential Contribution in Biotechnology. Bioresour. Technol. 2015, 184, 363–372. [Google Scholar] [CrossRef]
- Ezzedine, J.A.; Uwizeye, C.; Si Larbi, G.; Villain, G.; Louwagie, M.; Schilling, M.; Hagenmuller, P.; Gallet, B.; Stewart, A.; Petroutsos, D.; et al. Adaptive Traits of Cysts of the Snow Alga Sanguina nivaloides Unveiled by 3D Subcellular Imaging. Nat. Commun. 2023, 14, 7500. [Google Scholar] [CrossRef]
- Gupta, A.; Molino, J.V.D.; Wnuk-Fink, K.M.; Bruckbauer, A.; Tessman, M.; Kang, K.; Diaz, C.J.; Saucedo, B.; Malik, A.; Mayfield, S.P. Engineering the Novel Extremophile Alga Chlamydomonas pacifica for High Lipid and High Starch Production as a Path to Developing Commercially Relevant Strains. bioRxiv 2024. bioRxiv:2024.07.18.604193. [Google Scholar] [CrossRef]
- Saratale, R.G.; Ponnusamy, V.K.; Jeyakumar, R.B.; Sirohi, R.; Piechota, G.; Shobana, S.; Dharmaraja, J.; Lay, C.H.; Saratale, G.D.; Shin, H.S.; et al. Microalgae Cultivation Strategies Using Cost–Effective Nutrient Sources: Recent Updates and Progress towards Biofuel Production. Bioresour. Technol. 2022, 361, 127691. [Google Scholar] [CrossRef]
- Okoro, V.; Azimov, U.; Munoz, J.; Hernandez, H.H.; Phan, A.N. Microalgae Cultivation and Harvesting: Growth Performance and Use of Flocculants—A Review. Renew. Sustain. Energy Rev. 2019, 115, 109364. [Google Scholar] [CrossRef]
- Kuo, C.-M.; Yang, Y.-C.; Zhang, W.-X.; Wu, J.-X.; Chen, Y.-T.; Lin, C.-H.; Lin, M.-W.; Lin, C.-S. A Low-Cost Fertilizer Medium Supplemented with Urea for the Lutein Production of Chlorella Sp. and the Ability of the Lutein to Protect Cells against Blue Light Irradiation. Bioengineering 2023, 10, 594. [Google Scholar] [CrossRef]
- Abdur Razzak, S.; Bahar, K.; Islam, K.M.O.; Haniffa, A.K.; Faruque, M.O.; Hossain, S.M.Z.; Hossain, M.M. Microalgae Cultivation in Photobioreactors: Sustainable Solutions for a Greener Future. Green Chem. Eng. 2023, 5, 418–439. [Google Scholar] [CrossRef]
- Maltsev, Y.; Maltseva, K.; Kulikovskiy, M.; Maltseva, S. Influence of Light Conditions on Microalgae Growth and Content of Lipids, Carotenoids, and Fatty Acid Composition. Biology 2021, 10, 1060. [Google Scholar] [CrossRef]
- Zeng, X.; Danquah, M.K.; Chen, X.D.; Lu, Y. Microalgae Bioengineering: From CO2 Fixation to Biofuel Production. Renew. Sustain. Energy Rev. 2011, 15, 3252–3260. [Google Scholar] [CrossRef]
- Do, T.-T.; Quach-Van, T.-E.; Nguyen, T.-C.; Show, P.L.; Nguyen, T.M.-L.; Huynh, D.-H.; Tran, D.-L.; Melkonian, M.; Tran, H.-D. Effect of LED Illumination Cycle and Carbon Sources on Biofilms of Haematococcus pluvialis in Pilot-Scale Angled Twin-Layer Porous Substrate Photobioreactors. Bioengineering 2023, 10, 596. [Google Scholar] [CrossRef]
- Abdelfattah, A.; Ali, S.S.; Ramadan, H.; El-Aswar, E.I.; Eltawab, R.; Ho, S.-H.; Elsamahy, T.; Li, S.; El-Sheekh, M.M.; Schagerl, M.; et al. Microalgae-Based Wastewater Treatment: Mechanisms, Challenges, Recent Advances, and Future Prospects. Environ. Sci. Ecotechnol. 2023, 13, 100205. [Google Scholar] [CrossRef]
- Kurniawan, S.B.; Ahmad, A.; Imron, M.F.; Abdullah, S.R.S.; Othman, A.R.; Hasan, H.A. Potential of Microalgae Cultivation Using Nutrient-Rich Wastewater and Harvesting Performance by Biocoagulants/Bioflocculants: Mechanism, Multi-Conversion of Biomass into Valuable Products, and Future Challenges. J. Clean. Prod. 2022, 365, 132806. [Google Scholar] [CrossRef]
- Torres, M.J.; Bellido-Pedraza, C.M.; Llamas, A. Applications of the Microalgae Chlamydomonas and Its Bacterial Consortia in Detoxification and Bioproduction. Life 2024, 14, 940. [Google Scholar] [CrossRef] [PubMed]
- Abraham, J.; Abimbola, T.; Braida, W.J.; Terracciano, A.; Su, T.-L.; Christodoulatos, C.; Koutsospyros, A.; RoyChowdhury, A.; Smolinski, B.; Lawal, A. On-Site Pilot-Scale Microalgae Cultivation Using Industrial Wastewater for Bioenergy Production: A Case Study towards Circular Bioeconomy. Bioengineering 2023, 10, 1339. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Ma, S.; Kong, F. Microalgae Biotechnology: Methods and Applications. Bioengineering 2024, 11, 965. https://doi.org/10.3390/bioengineering11100965
Wang X, Ma S, Kong F. Microalgae Biotechnology: Methods and Applications. Bioengineering. 2024; 11(10):965. https://doi.org/10.3390/bioengineering11100965
Chicago/Turabian StyleWang, Xianmin, Songlin Ma, and Fantao Kong. 2024. "Microalgae Biotechnology: Methods and Applications" Bioengineering 11, no. 10: 965. https://doi.org/10.3390/bioengineering11100965
APA StyleWang, X., Ma, S., & Kong, F. (2024). Microalgae Biotechnology: Methods and Applications. Bioengineering, 11(10), 965. https://doi.org/10.3390/bioengineering11100965