Pull-Up Performance Is Affected Differently by the Muscle Contraction Regimens Practiced during Training among Climbers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Materials
2.4. Pre- and Post-Test Sessions
2.5. Training Sessions
2.5.1. Eccentric Protocol (ECC)
2.5.2. Plyometric Protocol (PLYO)
2.5.3. Isometric Protocol (ISO)
2.6. Data Analysis
2.7. Statistics
3. Results
3.1. Jump Test Conditions
3.2. F-V Relationship
3.3. Muscular Endurance
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Magiera, A.; Roczniok, R.; Maszczyk, A.; Czuba, M.; Kantyka, J.; Kurek, P. The Structure of Performance of a Sport Rock Climber. J. Hum. Kinet. 2013, 36, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Winkler, M.; Künzell, S.; Augste, C. Competitive Performance Predictors in Speed Climbing, Bouldering, and Lead Climbing. J. Sport. Sci. 2023, 41, 736–746. [Google Scholar] [CrossRef]
- Draper, N.; Giles, D.; Taylor, N.; Vigouroux, L.; España-Romero, V.; Baláš, J.; Solar Altamirano, I.; Mally, F.; Beeretz, I.; Couceiro Canalejo, J.; et al. Performance Assessment for Rock Climbers: The International Rock Climbing Research Association Sport-Specific Test Battery. Int. J. Sport. Physiol. Perform. 2021, 16, 1242–1252. [Google Scholar] [CrossRef] [PubMed]
- Devise, M.; Lechaptois, C.; Berton, E.; Vigouroux, L. Effects of Different Hangboard Training Intensities on Finger Grip Strength, Stamina, and Endurance. Front. Sport. Act. Living 2022, 4, 862782. [Google Scholar] [CrossRef] [PubMed]
- Levernier, G.; Laffaye, G. Four Weeks of Finger Grip Training Increases the Rate of Force Development and the Maximal Force in Elite and Top World-Ranking Climbers. J. Strength Cond. Res. 2019, 33, 2471–2480. [Google Scholar] [CrossRef]
- López-Rivera, E.; González-Badillo, J.J. The Effects of Two Maximum Grip Strength Training Methods Using the Same Effort Duration and Different Edge Depth on Grip Endurance in Elite Climbers. Sport Technol. 2012, 5, 100–110. [Google Scholar] [CrossRef]
- Grant, S.; Hynes, V.; Whittaker, A.; Aitchison, T. Anthropometric, Strength, Endurance and Flexibility Characteristics of Elite and Recreational Climbers. J. Sport. Sci. 1996, 14, 301–309. [Google Scholar] [CrossRef]
- Berrostegieta, J.I. Relation Between Specific Force Tests and Chained Degree in High Level Sport Climbers. In The Engineering of Sport 6; Springer: New York, NY, USA, 2006; pp. 275–280. ISBN 978-0-387-34678-6. [Google Scholar]
- Draper, N.; Dickson, T.; Blackwell, G.; Priestley, S.; Fryer, S.; Marshall, H.; Shearman, J.; Hamlin, M.; Winter, D.; Ellis, G. Sport-Specific Power Assessment for Rock Climbing. J. Sport. Med. Phys. Fit. 2011, 51, 10. [Google Scholar]
- Devise, M.; Quaine, F.; Vigouroux, L. Assessing Climbers’ Pull-up Capabilities by Differentiating the Parameters Involved in Power Production. PeerJ 2023, 11, e15886. [Google Scholar] [CrossRef]
- Garavaglia, L.; Romanò, J.; Lazzari, F.; Pittaccio, S. Biomechanical Characterisation of the Pull-up Exercise. Sport Sci. Health 2023. [Google Scholar] [CrossRef]
- Laffaye, G.; Collin, J.-M.; Levernier, G.; Padulo, J. Upper-Limb Power Test in Rock-Climbing. Int. J. Sport. Med. 2014, 35, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Levernier, G.; Samozino, P.; Laffaye, G. Force–Velocity–Power Profile in High-Elite Boulder, Lead, and Speed Climber Competitors. Int. J. Sport. Physiol. Perform. 2020, 15, 1012–1018. [Google Scholar] [CrossRef]
- Antinori, F.; Felici, F.; Figura, F.; Marchetti, M.; Ricci, B. Joint Moments and Work in Pull-Ups. J. Sport. Med. Phys. Fit. 1988, 28, 132–137. [Google Scholar]
- Vigouroux, L.; Cartier, T.; Rao, G.; Berton, É. Pull-up Forms of Completion Impacts Deeply the Muscular and Articular Involvements. Sci. Sport. 2022, 38, 150–160. [Google Scholar] [CrossRef]
- Dinunzio, C.; Porter, N.; Van Scoy, J.; Cordice, D.; McCulloch, R.S. Alterations in Kinematics and Muscle Activation Patterns with the Addition of a Kipping Action during a Pull-up Activity. Sport. Biomech. 2018, 18, 622–635. [Google Scholar] [CrossRef]
- Ozimek, M.; Rokowski, R.; Draga, P.; Ljakh, V.; Ambroży, T.; Krawczyk, M.; Ręgwelski, T.; Stanula, A.; Görner, K.; Jurczak, A.; et al. The Role of Physique, Strength and Endurance in the Achievements of Elite Climbers. PLoS ONE 2017, 12, e0182026. [Google Scholar] [CrossRef]
- Philippe, M.; Filzwieser, I.; Leichtfried, V.; Blank, C.; Haslinger, S.; Fleckenstein, J.; Schobersberger, W. The Effects of 8 Weeks of Two Different Training Methods on On-Sight Lead Climbing Performance. J. Sport. Med. Phys. Fit. 2019, 59, 561–568. [Google Scholar] [CrossRef]
- Stien, N.; Pedersen, H.; Vereide, V.A.; Saeterbakken, A.H.; Hermans, E.; Kalland, J.; Schoenfeld, B.J.; Andersen, V. Effects of Two vs. Four Weekly Campus Board Training Sessions on Bouldering Performance and Climbing-Specific Tests in Advanced and Elite Climbers. J. Sport. Sci. Med. 2021, 20, 438–447. [Google Scholar] [CrossRef]
- Morris, S.J.; Oliver, J.L.; Pedley, J.S.; Haff, G.G.; Lloyd, R.S. Comparison of Weightlifting, Traditional Resistance Training and Plyometrics on Strength, Power and Speed: A Systematic Review with Meta-Analysis. Sport. Med. 2022, 52, 1533–1554. [Google Scholar] [CrossRef]
- Sáez-Sáez De Villarreal, E.; Requena, B.; Newton, R.U. Does Plyometric Training Improve Strength Performance? A Meta-Analysis. J. Sci. Med. Sport. 2010, 13, 513–522. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Ogborn, D.I.; Vigotsky, A.D.; Franchi, M.V.; Krieger, J.W. Hypertrophic Effects of Concentric vs. Eccentric Muscle Actions: A Systematic Review and Meta-Analysis. J. Strength Cond. Res. 2017, 31, 2599–2608. [Google Scholar] [CrossRef]
- Folland, J.P.; Hawker, K.; Leach, B.; Little, T.; Jones, D.A. Strength Training: Isometric Training at a Range of Joint Angles versus Dynamic Training. J Sport. Sci. 2005, 23, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Lum, D.; Barbosa, T.M. Brief Review: Effects of Isometric Strength Training on Strength and Dynamic Performance. Int. J. Sport. Med. 2019, 40, 363–375. [Google Scholar] [CrossRef]
- Draper, N.; Giles, D.; Schöffl, V.; Konstantin Fuss, F.; Watts, P.; Wolf, P.; Baláš, J.; Espana-Romero, V.; Blunt Gonzalez, G.; Fryer, S.; et al. Comparative Grading Scales, Statistical Analyses, Climber Descriptors and Ability Grouping: International Rock Climbing Research Association Position Statement. Sport Technol. 2015, 8, 88–94. [Google Scholar] [CrossRef]
- Vigouroux, L.; Devise, M.; Cartier, T.; Aubert, C.; Berton, E. Performing Pull-Ups with Small Climbing Holds Influences Grip and Biomechanical Arm Action. J. Sport. Sci. 2019, 37, 886–894. [Google Scholar] [CrossRef]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Chronic Adaptations to Eccentric Training: A Systematic Review. Sport. Med. 2017, 47, 917–941. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Moreno, M.; Cornejo-Daza, P.J.; González-Badillo, J.J.; Pareja-Blanco, F. Effects of Velocity Loss During Body Mass Prone-Grip Pull-up Training on Strength and Endurance Performance. J. Strength Cond. Res. 2020, 34, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988; ISBN 978-0-8058-0283-2. [Google Scholar]
- Kawamori, N.; Haff, G.G. The Optimal Training Load for the Development of Muscular Power. J. Strength Cond. Res. 2004, 18, 675–684. [Google Scholar] [CrossRef]
- Iglesias-Soler, E.; Fernández-del-Olmo, M.; Mayo, X.; Fariñas, J.; Río-Rodríguez, D.; Carballeira, E.; Carnero, E.A.; Standley, R.A.; Giráldez-García, M.A.; Dopico-Calvo, X.; et al. Changes in the Force-Velocity Mechanical Profile After Short Resistance Training Programs Differing in Set Configurations. J. Appl. Biomech. 2017, 33, 144–152. [Google Scholar] [CrossRef]
- Jovanović, M.; Flanagan, E.P. Researched Applications of Velocity Based Strength Training. J. Aust. Strength Cond. 2014, 22, 58–69. [Google Scholar]
- O’Sullivan, K.; McAulliffe, S.; DeBurca, N. The Effects Of Eccentric Training On Lower Limb Flexibility: A Systematic Review. Br. J. Sport. Med. 2012, 48, 648. [Google Scholar] [CrossRef]
- Higbie, E.J.; Cureton, K.J.; Warren, G.L.; Prior, B.M. Effects of Concentric and Eccentric Training on Muscle Strength, Cross-Sectional Area, and Neural Activation. J. Appl. Physiol. 1996, 81, 2173–2181. [Google Scholar] [CrossRef] [PubMed]
- Markovic, G.; Mikulic, P. Neuro-Musculoskeletal and Performance Adaptations to Lower-Extremity Plyometric Training. Sport. Med. 2010, 40, 859–895. [Google Scholar] [CrossRef]
- English, K.L.; Loehr, J.A.; Lee, S.M.C.; Smith, S.M. Early-Phase Musculoskeletal Adaptations to Different Levels of Eccentric Resistance after 8 Weeks of Lower Body Training. Eur. J. Appl. Physiol. 2014, 114, 2263–2280. [Google Scholar] [CrossRef] [PubMed]
- Seynnes, O.R.; de Boer, M.; Narici, M.V. Early Skeletal Muscle Hypertrophy and Architectural Changes in Response to High-Intensity Resistance Training. J. Appl. Physiol. 2007, 102, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Staron, R.S.; Karapondo, D.L.; Kraemer, W.J.; Fry, A.C.; Gordon, S.E.; Falkel, J.E.; Hagerman, F.C.; Hikida, R.S. Skeletal Muscle Adaptations during Early Phase of Heavy-Resistance Training in Men and Women. J. Appl. Physiol. 1994, 76, 1247–1255. [Google Scholar] [CrossRef]
- Blazevich, A.J.; Cannavan, D.; Coleman, D.R.; Horne, S. Influence of Concentric and Eccentric Resistance Training on Architectural Adaptation in Human Quadriceps Muscles. J. Appl. Physiol. 2007, 103, 1565–1575. [Google Scholar] [CrossRef]
- Van Cutsem, M.; Duchateau, J. Preceding Muscle Activity Influences Motor Unit Discharge and Rate of Torque Development during Ballistic Contractions in Humans. J. Physiol. 2005, 562, 635–644. [Google Scholar] [CrossRef]
- Van Hooren, B.; Zolotarjova, J. The Difference Between Countermovement and Squat Jump Performances: A Review of Underlying Mechanisms With Practical Applications. J. Strength Cond. Res. 2017, 31, 2011–2020. [Google Scholar] [CrossRef]
- Burgess, K.E.; Connick, M.J.; Graham-Smith, P.; Pearson, S.J. Plyometric vs. Isometric Training Influences on Tendon Properties and Muscle Output. J. Strength Cond. Res. 2007, 21, 986–989. [Google Scholar] [CrossRef]
- Duclay, J.; Martin, A.; Duclay, A.; Cometti, G.; Pousson, M. Behavior of Fascicles and the Myotendinous Junction of Human Medial Gastrocnemius Following Eccentric Strength Training. Muscle Nerve 2009, 39, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Pousson, M.; Van Hoecke, J.; Goubel, F. Changes in Elastic Characteristics of Human Muscle Induced by Eccentric Exercise. J. Biomech. 1990, 23, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.J.; Murphy, A.J.; Pryor, J.F. Musculotendinous Stiffness: Its Relationship to Eccentric, Isometric, and Concentric Performance. J. Appl. Physiol. 1994, 76, 2714–2719. [Google Scholar] [CrossRef]
- Watts, P.B. Physiology of Difficult Rock Climbing. Eur. J. Appl. Physiol. 2004, 91, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-López, M.; Marchante, D.; Cano-Ruiz, M.A.; Chicharro, J.L.; Balsalobre-Fernández, C. Load-, Force-, and Power-Velocity Relationships in the Prone Pull-Up Exercise. Int. J. Sport. Physiol. Perform. 2017, 12, 1249–1255. [Google Scholar] [CrossRef]
- Ozimek, M.; Staszkiewicz, R.; Rokowski, R.; Stanula, A. Analysis of Tests Evaluating Sport Climbers’ Strength and Isometric Endurance. J. Hum. Kinet. 2016, 53, 249–260. [Google Scholar] [CrossRef]
- Sánchez-Moreno, M.; Rodríguez-Rosell, D.; Pareja-Blanco, F.; Mora-Custodio, R.; González-Badillo, J.J. Movement Velocity as Indicator of Relative Intensity and Level of Effort Attained During the Set in Pull-Up Exercise. Int. J. Sport. Physiol. Perform. 2017, 12, 1378–1384. [Google Scholar] [CrossRef]
Training Group | p-Value | ||||
---|---|---|---|---|---|
CTRL | ECC | ISO | PLYO | ||
Number of participants (discipline preference: boulderers/lead climbers) | 9 (4/5) | 8 (5/3) | 7 (3/4) | 6 (3/3) | - |
Age (y) | 25.7 ± 4.3 | 26.8 ± 8.4 | 22.7 ± 6.2 | 22.7 ± 5.8 | 0.51 |
Height (cm) | 176.3 ± 5.1 | 177 ± 8.2 | 179.5 ± 4.4 | 178.7 ± 6.4 | 0.75 |
Body mass (kg) | 67.2 ± 9.0 | 63.4 ± 6.1 | 65.7 ± 6.4 | 67.8 ± 6.7 | 0.65 |
Redpoint grade | 24.1 ± 2.8 | 23.4 ± 2.1 | 22.9 ± 1.5 | 21.7 ± 2.4 | 0.28 |
Practice frequency (sessions/week) | 2.7 ± 0.7 | 2.9 ± 0.7 | 3.3 ± 1.1 | 3.0 ± 0.9 | 0.59 |
Training Group | ES | |||||
---|---|---|---|---|---|---|
CTRL | ECC | ISO | PLYO | |||
1-RM (kg) | Pre | 112.3 ± 17.6 | 96.4 ± 14.5 | 102.1 ± 16.8 | 98.0 ± 9.2 | |
Post | 111.0 ± 19.6 | 101.3 ± 15.2 | 104.3 ± 16.9 | 101.1 ± 8.3 | ||
Difference (%) | −1.5 ± 3.2 | 5.0 ± 2.4 a | 2.2 ± 3.6 a | 3.2 ± 2.2 a | 0.47 | |
Slope | Pre | −12.8 ± 3.7 | −10.2 ± 2.2 | −11.0 ± 3.8 | −9.8 ± 2.4 | |
Post | −13.8 ± 5.4 | −10.7 ± 2.5 | −10.6 ± 3.1 | −9.5 ± 1.1 | ||
Difference (%) | 5.9 ± 14.2 | 5.7 ± 16.1 | −2.2 ± 16.0 | 0.9 ± 21.2 | 0.04 | |
F0 (N·kg−1) | Pre | 19.5 ± 3.1 | 17.2 ± 2.7 | 18.0 ± 2.8 | 16.6 ± 2.0 | |
Post | 19.8 ± 3.9 | 17.9 ± 2.6 | 17.9 ± 2.4 | 16.6 ± 1.1 | ||
Difference (%) | 1.3 ± 4.9 | 4.4 ± 5.4 | −0.4 ± 4.4 | 1.0 ± 6.4 | 0.11 | |
V0 (m·s−1) | Pre | 1.57 ± 0.18 | 1.71 ± 0.15 | 1.71 ± 0.3 | 1.74 ± 0.28 | |
Post | 1.53 ± 0.28 | 1.71 ± 0.25 | 1.76 ± 0.29 | 1.76 ± 0.17 | ||
Difference (%) | −3.2 ± 10.0 | 0.1 ± 10.2 | 3.5 ± 12.3 | 3.1 ± 16.7 | 0.05 |
Training Group | ES | |||||
---|---|---|---|---|---|---|
CTRL | ECC | ISO | PLYO | |||
Nmax | Pre | 28.0 ± 8.4 | 23.1 ± 6.4 | 21.4 ± 5.9 | 24.2 ± 4.8 | |
Post | 29.3 ± 8.4 | 25.4 ± 7.0 | 25.7 ± 5.8 | 27.0 ± 5.5 | ||
Difference (%) | 5.1 ± 7.6 | 10.1 ± 10.6 | 21.9 ± 16.6 | 13.3 ± 21.9 | 0.18 | |
Eexp (kJ) | Pre | 10.7 ± 3.2 | 8.0 ± 2.4 | 9.0 ± 2.2 | 7.4 ± 1.1 | |
Post | 11.1 ± 3.3 | 8.8 ± 2.9 | 10.1 ± 2.6 | 9.7 ± 1.2 | ||
Difference (%) | 5.1 ± 7.6 | 10.1 ± 10.7 | 13.3 ± 21.9 | 21.9 ± 16.6 a,b,c | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vigouroux, L.; Devise, M. Pull-Up Performance Is Affected Differently by the Muscle Contraction Regimens Practiced during Training among Climbers. Bioengineering 2024, 11, 85. https://doi.org/10.3390/bioengineering11010085
Vigouroux L, Devise M. Pull-Up Performance Is Affected Differently by the Muscle Contraction Regimens Practiced during Training among Climbers. Bioengineering. 2024; 11(1):85. https://doi.org/10.3390/bioengineering11010085
Chicago/Turabian StyleVigouroux, Laurent, and Marine Devise. 2024. "Pull-Up Performance Is Affected Differently by the Muscle Contraction Regimens Practiced during Training among Climbers" Bioengineering 11, no. 1: 85. https://doi.org/10.3390/bioengineering11010085
APA StyleVigouroux, L., & Devise, M. (2024). Pull-Up Performance Is Affected Differently by the Muscle Contraction Regimens Practiced during Training among Climbers. Bioengineering, 11(1), 85. https://doi.org/10.3390/bioengineering11010085