Deconstructing Fat to Reverse Radiation Induced Soft Tissue Fibrosis
Abstract
:1. Introduction
2. Structural Components of Fat Grafts
3. Clinical Applications
4. Radiation Induced Fibrosis: Mechanism
5. Radiation Induced Fibrosis: Clinical Impact
6. Role of Fat Grafting in Treating Radiation Induced Fibrosis
7. Engineering Strategies to Optimize Regenerative Potential of Adipose Tissue
7.1. Cell-Assisted Lipotransfer
7.2. Adipose-Derived Stem/Stromal Cells
7.3. Decellularized Adipose Matrix
7.4. Exosomes
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Seitz, A.J.; Asaad, M.; Hanson, S.E.; Butler, C.E.; Largo, R.D. Autologous fat grafting for oncologic patients: A Literature Review. Aesthet. Surg. J. 2021, 41 (Suppl. S1), S61–S68. [Google Scholar] [CrossRef]
- Zuk, P.A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J.W.; Katz, A.J.; Benhaim, P.; Lorenz, H.P.; Hedrick, M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 2001, 7, 211–228. [Google Scholar] [CrossRef] [Green Version]
- Shukla, L.; Morrison, W.A.; Shayan, R. Adipose-derived stem cells in radiotherapy injury: A new frontier. Front. Surg. 2015, 2, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hymes, S.R.; Strom, E.A.; Fife, C. Radiation dermatitis: Clinical presentation, pathophysiology, and treatment. J. Am. Acad. Dermatol. 2006, 54, 28–46. [Google Scholar] [CrossRef]
- Borrelli, M.R.; Shen, A.H.; Lee, G.K.; Momeni, A.; Longaker, M.T.; Wan, D.C. Radiation-induced skin fibrosis: Pathogenesis, Current Treatment Options, and Emerging Therapeutics. Ann. Plast. Surg. 2019, 83 (Suppl. S1), S59–S64. [Google Scholar] [CrossRef]
- Shukla, L.; Yuan, Y.; Shayan, R.; Greening, D.W.; Karnezis, T. Fat Therapeutics: The Clinical Capacity of Adipose-Derived Stem Cells and Exosomes for Human Disease and Tissue Regeneration. Front. Pharmacol. 2020, 11, 158. [Google Scholar] [CrossRef] [Green Version]
- Deptuła, M.; Brzezicka, A.; Skoniecka, A.; Zielinski, J.; Pikuła, M. Adipose-derived stromal cells for nonhealing wounds: Emerging opportunities and challenges. Med. Res. Rev. 2021, 41, 2130–2171. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.; Guo, J.; Banyard, D.A.; Fadavi, D.; Toranto, J.D.; Wirth, G.A.; Paydar, K.Z.; Evans, G.R.D.; Widgerow, A.D. Stromal vascular fraction: A regenerative reality? Part 1: Current concepts and review of the literature. J. Plast. Reconstr. Aesthet. Surg. 2016, 69, 170–179. [Google Scholar] [CrossRef]
- Marędziak, M.; Marycz, K.; Tomaszewski, K.A.; Kornicka, K.; Henry, B.M. The influence of aging on the regenerative potential of human adipose derived mesenchymal stem cells. Stem Cells Int. 2016, 2152435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tchkonia, T.; Morbeck, D.E.; Von Zglinicki, T.; Van Deursen, J.; Lustgarten, J.; Scrable, H.; Khosla, S.; Jensen, M.D.; Kirkland, J.L. Fat tissue, aging, and cellular senescence. Aging Cell 2010, 9, 667–684. [Google Scholar] [CrossRef]
- Louwen, F.; Ritter, A.; Kreis, N.N.; Yuan, J. Insight into the development of obesity: Functional alterations of adipose-derived mesenchymal stem cells. Obes. Rev. 2018, 19, 888–904. [Google Scholar] [CrossRef]
- Conley, S.M.; Hickson, L.J.; Kellogg, T.A.; McKenzie, T.; Heimbach, J.K.; Taner, T.; Tang, H.; Jordan, K.L.; Saadiq, I.M.; Woollard, J.R. Human obesity induces dysfunction and early senescence in adipose tissue-derived mesenchymal stromal/stem cells. Front. Cell Dev. Biol. 2020, 8, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eto, H.; Suga, H.; Matsumoto, D.; Inoue, K.; Aoi, N.; Kato, H.; Araki, J.; Yoshimura, K. Characterization of Structure and Cellular Components of Aspirated and Excised Adipose Tissue. Plast. Reconstr. Surg. 2009, 124, 1087–1097. [Google Scholar] [CrossRef] [Green Version]
- Nemir, S.; Hanson, S.E.; Chu, C.K. Surgical Decision Making in Autologous Fat Grafting: An Evidence-Based Review of Techniques to Maximize Fat Survival. Aesthet. Surg. J. 2021, 41 (Suppl. S1), S3–S15. [Google Scholar] [CrossRef] [PubMed]
- Xue, E.Y.; Narvaez, L.; Chu, C.K.; Hanson, S.E. Fat Processing Techniques. Semin. Plast. Surg. 2020, 34, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Nguyen, A.; Banyard, D.A.; Fadavi, D.; Toranto, J.D.; Wirth, G.A.; Paydar, K.Z.; Evans, G.R.; Widgerow, A.D. Stromal vascular fraction: A regenerative reality? Part 2: Mechanisms of regenerative action. J. Plast. Reconstr. Aesthet. Surg. 2016, 69, 180–188. [Google Scholar] [CrossRef]
- Del Vecchio, D.; Bravo, M.G.; Mandlik, V.; Aslani, A. Body Feminization Combining Large-Volume Fat Grafting and Gluteal Implants. Plast. Reconstr. Surg. 2022, 149, 1197–1203. [Google Scholar] [CrossRef]
- Voglimacci, M.; Garrido, I.; Mojallal, A.; Vaysse, C.; Bertheuil, N.; Michot, A.; Chavoin, J.P.; Grolleau, J.L.; Chaput, B. Autologous fat grafting for cosmetic breast augmentation: A systematic review. Aesthet. Surg. J. 2015, 35, 378–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentile, P.; Casella, D.; Palma, E.; Calabrese, C. Engineered fat graft enhanced with adipose-derived stromal vascular fraction cells for regenerative medicine: Clinical, Histological and Instrumental Evaluation in Breast Reconstruction. J. Clin. Med. 2019, 8, 504. [Google Scholar] [CrossRef] [Green Version]
- Gentile, P.; Scioli, M.G.; Bielli, A.; Orlandi, A.; Cervelli, V. Comparing different nanofat procedures on scars: Role of the stromal vascular fraction and its clinical implications. Regen. Med. 2017, 12, 939–952. [Google Scholar] [CrossRef]
- Moon, K.C.; Suh, H.S.; Kim, K.B.; Han, S.K.; Young, K.W.; Lee, J.W. Potential of allogeneic adipose-derived stem call-hydrogel complex for treating diabetic foot ulcers. Diabetes 2019, 68, 837–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarajapu, Y.P.; Grant, M.B. The promise of cell-based therapies for diabetic complications: Challenges and solutions. Circ. Res. 2010, 106, 854–869. [Google Scholar] [CrossRef] [Green Version]
- Raziyeva, K.; Kim, Y.; Zharkinbekov, Z.; Kassymbek, K.; Jimi, S.; Saparov, A. Immunology of Acute and Chronic Wound Healing. Biomolecules 2021, 11, 700. [Google Scholar] [CrossRef] [PubMed]
- Stewart, F.A.; Akleyev, A.V.; Hauer-Jensen, M.; Hendry, J.H.; Kleiman, N.J.; Macvittie, T.J.; Aleman, B.M.; Edgar, A.B.; Mabuchi, K.; Muirhead, C.R.; et al. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs. Ann. ICRP 2012, 41, 1–322. [Google Scholar] [CrossRef]
- Martin, M.; Lefaix, J.L.; Delanian, S. TGF-β1 and radiation fibrosis: A master switch and a specific therapeutic target? Int. J. Radiat. Oncol. Biol. Phys. 2000, 47, 277–290. [Google Scholar] [CrossRef]
- Salvo, N.; Barnes, E.; van Draanen, J. Prophylaxis and management of acute radiation-induced skin reactions: A systematic review of the literature. Curr. Oncol. 2010, 17, 94–112. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.; Lefaix, J.L.; Pinton, P.; Crechet, F.; Daburon, F. Temporal modulation of TGF-beta 1 and beta-actin gene expression in pig skin and muscular fibrosis after ionizing radiation. Radiat. Res. 1993, 134, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Yarnold, J.; Brotons, M.C. Pathogenetic mechanisms in radiation fibrosis. Radiother. Oncol. 2010, 97, 149–161. [Google Scholar] [CrossRef]
- Archambeau, J.O.; Pezner, R.; Wasserman, T. Pathophysiology of irradiated skin and breast. Int. J. Radiat. Oncol. Biol. Phys. 1995, 31, 1171–1185. [Google Scholar] [CrossRef] [PubMed]
- Falanga, V.; Zhou, L.; Yufit, T. Low oxygen tension stimulates collagen synthesis and COL1A1 transcription through the action of TGF-beta1. J. Cell Physiol. 2002, 191, 42–50. [Google Scholar] [CrossRef]
- Bryant, A.K.; Banegas, M.P.; Martinez, M.E.; Mell, L.K.; Murphy, J.D. Trends in Radiation Therapy among Cancer Survivors in the United States, 2000–2030. Cancer Epidemiol. Biomark. Prev. 2017, 26, 963–970. [Google Scholar] [CrossRef] [Green Version]
- Korzets, Y.; Fyles, A.; Shepshelovich, D.; Amir, E.; Goldvaser, H. Toxicity and clinical outcomes of partial breast irradiation compared to whole breast irradiation for early-stage breast cancer: A systematic review and meta-analysis. Breast Cancer Res. Treat. 2019, 175, 531–545. [Google Scholar] [CrossRef]
- Lin, A.J.; Gabani, P.; Fischer-Valuck, B.; Rudra, S.; Gay, H.; Daly, M.; Oppelt, P.; Jackson, R.; Rich, J.; Paniello, R.; et al. Patterns of care and survival outcomes for laryngeal small cell cancer. Head Neck 2019, 41, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Almadori, A.; Kalavrezos, N.; Butler, P.E.M. Treatment of Fibrotic Radiotherapy Damages in Head and Neck with Fat Grafting. In Plastic and Aesthetic Regenerative Surgery and Fat Grafting; Kalaaji, Ed.; Springer: Cham, Switzerland, 2022; pp. 447–458. [Google Scholar]
- Brook, I. Early side effects of radiation treatment for head and neck cancer. Cancer Radiother. 2021, 25, 507–513. [Google Scholar] [CrossRef]
- Martin, S.; Awad, L.; Langridge, B.; Turner, B.; Bakko, F.; Butler, P. Patient reported outcomes of cancer survivors with radiation induced fibrosis. Br. J. Surg. 2023, 110, znad101.188. [Google Scholar] [CrossRef]
- Gill, G.; Lane, C.; Myers, C.; Kerr, E.D.; Lambert, P.; Cooke, A.; Kerr, P.D. Longitudinal functional outcomes and late effect of radiation following treatment of nasopharyngeal carcinoma: Secondary analysis of a prospective cohort study. J. Otolaryngol. Head Neck Surg. 2022, 51, 41. [Google Scholar] [CrossRef] [PubMed]
- Kerr, A.J.; Dodwell, D.; McGale, P.; Holt, F.; Duane, F.; Mannu, G.; Darby, S.C.; Taylor, C.W. Adjuvant and neoadjuvant breast cancer treatments: A systematic review of their effects on mortality. Cancer Treat. Rev. 2022, 105, 102375. [Google Scholar] [CrossRef]
- Citrin, D.E. Recent developments in radiotherapy. N. Engl. J. Med. 2017, 377, 1065–1075. [Google Scholar] [CrossRef] [PubMed]
- Baskar, R. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci. 2012, 3, 193–199. [Google Scholar] [CrossRef] [Green Version]
- See, M.S.F.; Farhadi, J. Radiation therapy and immediate breast reconstruction: Novel approaches and evidence base for radiation effects on the reconstructed breast. Clin. Plast. Surg. 2018, 45, 13–24. [Google Scholar] [CrossRef]
- Tallet, A.V.; Salem, N.; Moutardier, V.; Ananian, P.; Braud, A.-C.; Zalta, R.; Cowen, D.; Houvenaeghel, G. Radiotherapy and immediate two-stage breast reconstruction with a tissue expander and implant: Complications and esthetic results. Int. J. Radiat. Oncol. Biol. Phys. 2003, 57, 136–142. [Google Scholar] [CrossRef]
- Awadeen, A.; Fareed, M.; Elameen, A.M. The impact of postmastectomy radiation therapy on the outcomes of prepectoral implant-based breast reconstruction: A Systematic Review and Meta-Analysis. Aesthet. Plast. Surg. 2023, 47, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Sinnott, C.J.; Pronovost, M.T.; Persing, S.M.; Wu, R.; Young, A.O. The impact of premastectomy versus postmastectomy radiation therapy on outcomes in prepectoral implant-based breast reconstruction. Ann. Plast. Surg. 2021, 81 (Suppl. S1), S21–S27. [Google Scholar] [CrossRef]
- Chu, C.N.; Hu, K.C.; Wu, R.S.; Bau, D.T. Radiation-irritated skin and hyperpigmentation may impact the quality of life of breast cancer patients after whole breast radiotherapy. BMC Cancer 2021, 21, 330. [Google Scholar] [CrossRef]
- Hofsø, K.; Rustøen, T.; Cooper, B.A.; Bjordal, K.; Miaskowski, C. Changes over time in occurrence, severity, and distress of common symptoms during and after radiation therapy for breast cancer. J. Pain Symptom Manag. 2013, 45, 980–1006. [Google Scholar] [CrossRef]
- Browall, M.; Ahlberg, K.; Karlsson, P.; Danielson, E.; Persson, L.O.; Gaston-Johansson, F. Health-related quality of life during adjuvant treatment for breast cancer among postmenopausal women. Eur. J. Oncol. Nurs. 2008, 12, 180–189. [Google Scholar] [CrossRef]
- Marta, G.N.; Hanna, S.A.; Martella, E.; Silva, J.L. Complications from radiotherapy for breast cancer. Sao Paulo Med. J. 2011, 129, 116–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devulapalli, C.; Bello, R.J.; Moin, E.; Alsobrooks, J.; Fallas, P.B.; Ohkuma, R.; Manahan, M.A.; Sack, J.M.; Cooney, C.M.; Rosson, G.D. The Effect of Radiation on Quality of Life throughout the Breast Reconstruction Process: A Prospective, Longitudinal Pilot Study of 200 Patients with Long-Term Follow-Up. Plast. Reconstr. Surg. 2018, 141, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Coen, J.J.; Taghian, A.G.; Kachnic, L.A.; Assaad, S.I.; Powell, S.N. Risk of lymphedema after regional nodal irradiation with breast conservation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2003, 55, 1209–1215. [Google Scholar] [PubMed]
- Bartels, S.A.L.; Donker, M.; Poncet, C.; Suave, N.; Straver, M.E.; van de Velde, C.J.H.; Mansel, E.R.; Blanken, C.; Orzalesi, L.; Klinkenbijl, J.H.G.; et al. Radiotherapy or Surgery of the Axilla After a Positive Sentinel Node in Breast Cancer: 10-Year Results of the Randomized Controlled EORTC 10981-22023 AMAROS Trial. J. Clin. Oncol. 2023, 41, 2159–2165. [Google Scholar] [CrossRef]
- Sultan, S.M.; Barr, J.S.; Butala, P.; Davidson, E.H.; Weinstein, A.L.; Knobel, D.; Saadeh, P.B.; Warren, S.M.; Coleman, S.R.; Hazen, A. Fat grafting accelerates revascularisation and decreases fibrosis following thermal injury. J. Plast. Reconstr. Aesthet. Surg. 2012, 65, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Garza, R.M.; Paik, K.J.; Chung, M.T.; Duscher, D.; Gurtner, G.C.; Longaker, M.T.; Wan, D.C. Studies in fat grafting: Part III. Fat grafting irradiated tissue—Improved skin quality and decreased fat graft retention. Plast. Reconstr. Surg. 2014, 134, 249–257. [Google Scholar] [CrossRef] [Green Version]
- Lindegren, A.; Schultz, I.; Sinha, E.; Cheung, L.; Khan, A.A.; Tekle, M.; Wickman, M.; Halle, M. Autologous fat transplantation alters gene expression patterns related to inflammation and hypoxia in the irradiated human breast. Br. J. Surg. 2019, 106, 563–573. [Google Scholar] [CrossRef] [Green Version]
- Rigotti, G.; Marchi, A.; Galiè, M.; Baroni, G.; Benati, D.; Krampera, M.; Pasini, A.; Sbarbati, A. Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: A healing process mediated by adipose-derived adult stem cells. Plast. Reconstr. Surg. 2007, 119, 1409–1422. [Google Scholar] [CrossRef]
- Panettiere, P.; Marchetti, L.; Accorsi, D. The Serial Free Fat Transfer In Irradiated Prosthetic Breast Reconstructions. Aesthet. Plast. Surg. 2009, 33, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Lesniak, D.M.; Sarfati, I.; Meredith, I.; Millochau, J.; Wang, K.-C.; Nos, C.; Clough, K.B. Fat grafting before delayed prophylactic mastectomy and immediate implant reconstruction for patients at high risk of complications. Plast. Reconstr. Surg. 2022, 149, 52–56. [Google Scholar] [CrossRef]
- Ribuffo, D.; Atzeni, M.; Guerra, M.; Bucher, S.; Politi, C.; Maura, D.; Atzori, F.; Dessi, M.; Madeddu, C.; Lay, G. Treatment of irradiated expanders: Protective lipofilling allows immediate prosthetic breast reconstruction in the setting of postoperative radiotherapy. Aesthet. Plast. Surg. 2013, 37, 1146–1152. [Google Scholar] [CrossRef]
- Crawford, K.M.; Lawlor, D.; Alvis, E.; Moran, K.O.; Endra, M.R. Successful immediate staged breast reconstruction with intermediary autologous lipotransfer in irradiated patients. Plast. Reconstr. Surg. Glob. Open 2019, 7, e2398. [Google Scholar] [CrossRef] [PubMed]
- Caviggioli, F.; Maione, L.; Forcellini, D.; Klinger, F.; Klinger, M. Autologous fat graft in postmastectomy pain syndrome. Plast. Reconstr. Surg. 2011, 128, 349–352. [Google Scholar] [CrossRef]
- Caviggioli, F.; Maione, L.; Klinger, F.; Lisa, A.; Klinger, M. Autologous Fat Grafting Reduces Pain in Irradiated Breast: A Review of Our Experience. Stem Cells Int. 2016, 2016, 2527349. [Google Scholar] [CrossRef] [Green Version]
- Maione, L.; Vinci, V.; Caviggioli, F.; Klinger, F.; Banzatti, B.; Catania, B.; Lisa, A.; Klinger, M. Autologous Fat Graft in Postmastectomy Pain Syndrome Following Breast Conservative Surgery and Radiotherapy. Aesthet. Plast. Surg. 2014, 38, 528–532. [Google Scholar] [CrossRef] [PubMed]
- Lisa, A.V.E.; Murolo, M.; Maione, L.; Vinci, V.; Battistini, A.; Morenghi, E.; De Santis, G.; Klinger, M. Autologous fat grafting efficacy in treating Post Mastectomy pain syndrome: A prospective multicenter trial of two Senonetwork Italia breast centers. Breast J. 2020, 26, 1652–1658. [Google Scholar] [CrossRef] [PubMed]
- Kuruvilla, A.S.; Yufan, Y.; Rathi, S.; Wang, F.; Weichman, K.E.; Ricci, J.A. Oncologic Safety in Autologous Fat Grating After Breast Conservation Therapy: A Systematic Review and Meta-Analysis of the Literature. Ann. Plast. Surg. 2023, 90, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Chen, S.; Peng, W.; Chen, D. Current perspectives on cell-assisted lipotransfer for breast cancer patients after radiotherapy. World J. Surg. Oncol. 2023, 21, 133. [Google Scholar] [CrossRef]
- Retchkiman, M.; Elkhatib, A.; Efanov, J.I.; Gangon, A.; Bou-Merhi, J.; Danino, M.A.; Bernier, C. BREAST-Q Patient-reported outcomes in different types of breast reconstruction after fat grafting. Plast. Reconstr. Glob. Open 2023, 11, e4814. [Google Scholar] [CrossRef]
- Masia-Gridilla, J.; Gutierrez-Santamaria, J.; Alvarez-Saez, I.; Pamias-Romero, J.; Saez-Barba, M.; Bescos-Atin, C. Outcomes following autologous fat grafting in patients with sequelae of head and neck cancer treatment. Cancers 2023, 15, 800. [Google Scholar] [CrossRef]
- Phulpin, B.; Gangloff, P.; Tran, N.; Bravetti, P.; Merlin, J.L.; Dolivet, G. Rehabilitation of irradiated head and neck tissues by autologous fat transplantation. Plast. Reconstr. Surg. 2009, 123, 1187–1197. [Google Scholar] [CrossRef]
- Kraaijenga, S.A.; Lapid, O.; van der Molen, L.; Hilgers, F.J.; Smeele, L.E.; van den Brekel, M.W. Feasibility and potential value of lipofilling in post-treatment oropharyngeal dysfunction. Laryngoscope 2016, 126, 2672–2678. [Google Scholar] [CrossRef]
- Bamba, R.; Shadfar, S.; Van Natta, B.W. Fat Grafting as a Novel Treatment for Xerostomia. J. Craniofac. Surg. 2021, 32, e211–e215. [Google Scholar] [CrossRef]
- Faghahati, S.; Delaporte, T.; Toussoun, G.; Gleizal, A.; Morel, F.; Delay, E. Treatment by fat tissue transfer for radiation injury in childhood facial cancer. Ann. Chir. Plast. Esthet. 2010, 55, 169–178. [Google Scholar] [CrossRef]
- Yoshimura, K.; Sato, K.; Aoi, N.; Kurita, M.; Inoue, K.; Suga, H.; Eto, H.; Kato, H.; Hirohi, T.; Harii, K. Cell-assisted lipotransfer for facial lipoatrophy: Efficacy of clinical use of adipose-derived stem cells. Dermatol. Surg. 2008, 34, 1178–1185. [Google Scholar] [CrossRef]
- Hanson, S.E. The future of fat grafting. Aesthet. Surg. J. 2021, 41, S69–S74. [Google Scholar] [CrossRef]
- Matsumoto, D.; Sato, K.; Gonda, K.; Takaki, Y.; Shigeura, T.; Sato, T.; Aiba-Kojima, E.; Iizuka, F.; Inoue, K.; Suga, H.; et al. Cell-assisted lipotransfer: Supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection. Tissue Eng. 2006, 12, 3375–3382. [Google Scholar] [CrossRef] [Green Version]
- Kølle, S.F.; Fischer-Nielsen, A.; Mathiasen, A.B.; Elberg, J.J.; Oliveri, R.S.; Glovinski, P.V.; Kastrup, J.; Kirchhoff, M.; Rasmussen, B.S.; Talman, M.-L.M.; et al. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue- derived stem cells for graft survival: A randomised placebo-controlled trial. Lancet 2013, 382, 1113–1120. [Google Scholar] [CrossRef]
- Luan, A.; Duscher, D.; Whittam, A.J.; Paik, K.J.; Zielins, E.R.; Brett, E.A.; Atashroo, D.A.; Hu, M.S.; Lee, G.K.; Gurtner, G.C.; et al. Cell-assisted lipotransfer improves volume retention in irradiated recipient sites and rescues radiation-induced skin changes. Stem Cells 2016, 34, 668–673. [Google Scholar] [CrossRef] [Green Version]
- Karantalis, V.; DiFede, D.L.; Gerstenblith, G.; Pham, S.; Symes, J.; Zambrano, J.P.; Fishman, F.; Pattany, P.; McNiece, I.; Conte, J.; et al. Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: The Prospective Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery (PROMETHEUS) trial. Circ. Res. 2014, 114, 1302–1310. [Google Scholar]
- Yu, D.; Zhang, S.; Mo, W.; Jiang, Z.; Wang, M.; An, L.; Wang, Y.; Liu, Y.; Jiang, S.; Wu, A.; et al. Transplantation of the stromal vascular fraction (SVF) mitigates severe radiation-induced skin injury. Radiat. Res. 2021, 196, 250–260. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chen, L.; Scott, P.G.; Tredget, E.E. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 2007, 25, 2648–2659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, C.; Yang, D.; Xu, J.; Si, Z.; Jin, X.; Zhang, J. Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis. Cell Transplant. 2011, 20, 205–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forcheron, F.; Agay, D.; Scherthan, H.; Riccobono, D.; Herodin, F.; Meineke, V.; Drouet, M. Autologous adipocyte derived stem cells favour healing in a minipig model of cutaneous radiation syndrome. PLoS ONE 2012, 7, e31694. [Google Scholar] [CrossRef]
- Huang, S.P.; Huang, C.H.; Shyu, J.F.; Lee, H.S.; Chen, S.G.; Chan, J.Y.; Huang, S.M. Promotion of wound healing using adipose-derived stem cells in radiation ulcer of a rat model. J. Biomed. Sci. 2013, 20, 51. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Nio, Z.; Xue, Y.; Yuan, F.; Fu, Y.; Bai, N. Improvement in the repair of defects in maxillofacial soft tissue in irradiated minipigs by a mixture of adipose-derived stem cells and platelet-rich fibrin. Br. J. Oral. Maxillofac. Surg. 2013, 52, 740–745. [Google Scholar] [CrossRef]
- Borrelli, M.R.; Diaz, N.; Adem, S.; Nguyen, D.; Momeni, A.; Longaker, M.T.; Wan, D.C. Fat grafting rescues radiation-induced groin contracture and results in diminished numbers of profibrotic Prrx1-prositive dermal fibroblasts. Plast. Reconstr. Surg. Glob. Open 2020, 8, 24–25. [Google Scholar] [CrossRef]
- Borrelli, M.R.; Deleon, N.M.D.; Adem, S.; Patel, R.A.; Mascharak, S.; Shen, A.H.; Irizarry, D.; Nguyen, D.; Momeni, A.; Longaker, M.T.; et al. Fat grafting rescues radiation-induced joint contracture. Stem Cells 2020, 38, 382–389. [Google Scholar] [CrossRef]
- Chang, P.; Qu, Y.; Liu, Y.; Cui, S.; Zhu, D.; Wang, H.; Jin, X. Multi-therapeutic effects of human adipose-derived mesenchymal stem cells on radiation-induced intestinal injury. Cell Death Dis. 2013, 4, e685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, J.Y.; Ra, J.C.; Shin, I.S.; Jang, Y.H.; An, H.-Y.; Choi, J.-S.; Kim, W.C.; Kim, Y.-M. Systemic transplantation of human adipose tissue-derived mesenchymal stem cells for the regeneration of irradiation-induced salivary gland damage. PLoS ONE 2013, 9, 371167. [Google Scholar] [CrossRef] [Green Version]
- Minteer, D.; Marra, K.G.; Rubin, J.P. Adipose-derived mesenchymal stem cells: Biology and potential applications. Adv. Biochem. Eng. Biotechnol. 2013, 129, 59–71. [Google Scholar] [PubMed]
- Ejaz, A.; Epperly, M.W.; Hou, W.; Greenberger, J.S.; Rubin, J.P. Adipose-derived stem cell therapy ameliorates ionizing irradiation fibrosis via hepatocyte growth factor-mediated transforming growth factor-beta downregulation and recruitment of bone marrow cells. Stem Cells 2019, 37, 791–802. [Google Scholar] [CrossRef] [PubMed]
- Yun, I.S.; Jeon, Y.R.; Lee, W.J.; Lee, J.W.; Rah, D.K.; Tark, K.C.; Lew, D.H. Effect of human adipose derived stem cells on scar formation and remodeling in a pig model: A pilot study. Dermatol. Surg. 2012, 38, 1678–1688. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, R.A.; Hakakian, C.S.; Birnbaum, Z.; Aronowitz, J.A. Autologous fat grafting and cell-assisted lipotransfer to alleviate radiotherapy tissue damage. Stem Cell Res. Ther. 2017, 2, 64–73. [Google Scholar]
- Yao, C.; Zhou, Y.; Wang, H.; Deng, F.; Chen, Y.; Zhu, X.; Kong, Y.; Pan, L.; Xue, L.; Zhou, X.; et al. Adipose-derived stem cells alleviate radiation-induced dermatitis by suppressing apoptosis and downregulating cathepsin F expression. Stem Cell Res. Ther. 2021, 12, 447. [Google Scholar] [CrossRef]
- Zheng, H.; Yu, Z.; Deng, M.; Cai, Y.; Wang, X.; Xu, Y.; Zhang, L.; Zhang, W.; Li, W. Fat extract improves fat graft survival via proangiogenic, anti-apoptotic and pro-proliferative activities. Stem Cell Res. Ther. 2019, 10, 174. [Google Scholar] [CrossRef]
- Borrelli, M.R.; Adem, S.; Deleon, N.M.D.; Nguyen, D.; Momeni, A.; Longaker, M.T.; Wan, D.C. Fat grafting mitigates radiation-induced scalp fibrosis and decreases the abundance of profibrotic engrailed1-positive fibroblasts in the overlying skin. Plast. Reconstr. Surg. Open 2020, 8, 101–102. [Google Scholar] [CrossRef]
- Borrelli, M.R.; Patel, R.A.; Adem, S.; Diaz Deleon, N.M.; Shen, A.H.; Sokol, J.; Yen, S.; Chang, E.Y.; Nazerali, R.; Nguyen, D.; et al. The antifibrotic adipose-derived stromal cell: Grafted fat enriched with CD74+ adipose-derived stromal cells reduces chronic radiation-induced skin fibrosis. Stem Cells Transl. Med. 2020, 9, 1401–1413. [Google Scholar] [CrossRef]
- Zielins, E.R.; Paik, K.; Ransom, R.C.; Brett, E.A.; Blackshear, C.P.; Luan, A.; Walmsley, G.G.; Atashroo, D.A.; Senarath-Yapa, K.; Momeni, A.; et al. Enrichment of adipose-derived stromal cells for BMPR1A facilitates enhanced adipogenesis. Tissue Eng. Part A 2016, 22, 214–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brett, E.; Zielins, E.R.; Chin, M.; Januszyk, M.; Blackshear, C.P.; Findlay, M.; Momeni, A.; Gurtner, G.C.; Longaker, M.T.; Wan, D.C. Isolation of CD248-expressing stromal vascular fraction for targeted improvement of wound healing. Wound Repair Regen. 2017, 25, 414–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deleon, N.M.D.; Adem, S.; Lavin, C.V.; Abbas, D.B.; Griffin, M.; King, M.E.; Borrelli, M.R.; Patel, R.A.; Fahy, E.J.; Lee, D.; et al. Angiogenic CD34+CD146+ adipose-derived stromal cells augment recovery of soft tissue after radiotherapy. J. Tissue Eng. Regen. Med. 2021, 15, 1105–1117. [Google Scholar] [CrossRef] [PubMed]
- Abbas, D.B.; Lavin, C.V.; Fahy, E.J.; Griffin, M.; Guardino, N.J.; Nazerali, R.S.; Nguyen, D.H.; Momeni, A.; Longaker, M.T.; Wan, D.C. Fat Grafts Augmented with Vitamin E Improve Volume Retention and Radiation-Induced Fibrosis. Aesthet. Surg. J. 2022, 42, 946–955. [Google Scholar] [CrossRef]
- Liu, G.S.; Peshavariya, H.M.; Higuchi, M.; Chan, E.C.; Dusting, G.J.; Jiang, F. Pharmacologic priming of adipose-derived stem cells for paracrine VEGF production with deferoxamine. J. Tissue Eng. Regen. Med. 2016, 10, E167–E176. [Google Scholar] [CrossRef] [PubMed]
- Souza, L.E.B.; Beckenkamp, L.R.; Sobral, L.M.; Fantacini, D.M.C.; Melo, F.U.F.; Borges, J.S.; Leopoldino, A.M.; Kashima, S.; Covas, D.T. Pre-culture in endothelial growth medium enhances the angiogenic properties of adipose-derived stem/stromal cells. Angiogenesis 2018, 21, 15–22. [Google Scholar] [CrossRef]
- Fu, H.; Dong, S.; Li, K. Study on promoting the regeneration of grafted fat by cell-assisted lipotransfer. Regen. Ther. 2022, 22, 7–18. [Google Scholar] [CrossRef]
- Yu, F.; Witman, N.; Yan, D.; Zhang, S.; Zhou, M.; Yan, Y.; Yao, Q.; Ding, F.; Yan, D.; Wang, H.; et al. Human adipose-derived stem cells enriched with VEGF-modified mRNA promote angiogenesis and long-term graft survival in a fat graft transplantation model. Stem Cell Res. Ther. 2020, 11, 490. [Google Scholar] [CrossRef]
- Jiang, X.; Lai, X.R.; Lu, J.Q.; Tan, L.Z.; Zhang, J.R.; Liu, H.W. Decellularized adipose tissue: A key factor in promoting fat regeneration by recruiting and inducing mesenchymal stem cells. Biochem. Biophys. Res. Commun. 2021, 541, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Adem, S.; Abbas, D.B.; Lavin, C.V.; Fahy, E.J.; Griffin, M.; Deleon, N.M.D.; Borrelli, M.R.; Mascharak, S.; Shen, A.H.; Patel, R.A.; et al. Decellularized Adipose Matrices Can Alleviate Radiation-Induced Skin Fibrosis. Adv. Wound Care 2022, 11, 524–536. [Google Scholar] [CrossRef]
- Kokai, L.E.; Schilling, B.K.; Chnari, E.; Huang, Y.-C.; Imming, E.A.; Karunamurthy, A.; Khouri, R.K.; D’Amico, R.A.; Coleman, S.R.; Marra, K.C.; et al. Injectable allograft adipose matrix supports adipogenic tissue remodeling in the nude mouse and human. Plast. Reconstr. Surg. 2019, 143, 299e. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Lin, S.; Tan, X.; Zhu, S.; Nie, F.; Zhen, Y.; Gu, L.; Zhang, C.; Wang, B.; Wei, W.; et al. Exosomes from adipose-derived stem cells and application to skin wound healing. Cell Prolif. 2021, 54, e12993. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.G.; Cai, X.; Li, K.; Hao, R.; An, Y. Research Progress on Exosomes derived from human adipose Mesenchymal stem cells. Int. J. Sci. 2019, 8, 114–117. [Google Scholar]
- Chen, B.; Cai, J.; Wei, Y.; Jiang, Z.; Desjardins, H.E.; Adams, A.E.; Li, S.; Kao, H.-K.; Guo, L. Exosomes Are Comparable to Source Adipose Stem Cells in Fat Graft Retention with Up-Regulating Early Inflammation and Angiogenesis. Plast. Reconstr. Surg. 2019, 144, 816e–827e. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Wang, J.; Zhou, X.; Xiong, Z.; Zhao, J.; Yu, R.; Huang, F.; Zhang, H.; Chen, L. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci. Rep. 2016, 6, 32993. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Fu, B.; Yang, X.; Xiao, Y.; Pan, M. Adipose mesenchymal stem cell-derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/β-catenin signaling in cutaneous wound healing. J. Cell Biochem. 2019, 120, 10847–10854. [Google Scholar] [CrossRef]
- He, L.; Zhu, C.; Jia, J.; Hao, X.-Y.; Yu, X.-Y.; Liu, X.-Y.; Shu, M.-G. ADSC-Exos containing MALAT1 promotes wound healing by targeting miR-124 through activating Wnt/β-catenin pathway. Biosci. Rep. 2020, 40, BSR20192549. [Google Scholar] [CrossRef] [PubMed]
- Zuo, R.; Liu, M.; Wang, Y.; Li, J.; Wang, W.; Wu, J.; Sun, C.; Li, B.; Wang, Z.; Lan, W.; et al. BM-MSC-derived exosomes alleviate radiation-induced bone loss by restoring the function of recipient BM-MSCs and activating Wnt/β-catenin signaling. Stem Cell Res. Ther. 2019, 10, 30. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; An, Y.; Sun, Y.; Yang, F.; Xu, Q.; Wang, Z. Adipose Mesenchymal Stem Cell-Derived Exosomes Promote Wound Healing Through the WNT/β-catenin Signaling Pathway in Dermal Fibroblasts. Stem Cell Rev. Rep. 2022, 18, 2059–2073. [Google Scholar] [CrossRef]
- Shabbir, A.; Cox, A.; Rodriguez-Menocal, L.; Salgado, M.; Van Badiavas, E. Mesenchymal Stem Cell Exosomes Induce Proliferation and Migration of Normal and Chronic Wound Fibroblasts, and Enhance Angiogenesis In Vitro. Stem Cells Dev. 2015, 24, 1635–1647. [Google Scholar] [CrossRef]
- Li, S.; Shao, L.; Xu, T.; Jiang, X.; Yang, G.; Dong, L. An indispensable tool: Exosomes play a role in therapy for radiation damage. Biomed. Pharmacother. 2021, 137, 111401. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Wen, Y.; Luo, P.; Ma, L.; Liu, Y.; Ai, J.; Shi, C. Therapeutic implications of exosomes in the treatment of radiation injury. Burn. Trauma 2022, 10, tkab043. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prescher, H.; Froimson, J.R.; Hanson, S.E. Deconstructing Fat to Reverse Radiation Induced Soft Tissue Fibrosis. Bioengineering 2023, 10, 742. https://doi.org/10.3390/bioengineering10060742
Prescher H, Froimson JR, Hanson SE. Deconstructing Fat to Reverse Radiation Induced Soft Tissue Fibrosis. Bioengineering. 2023; 10(6):742. https://doi.org/10.3390/bioengineering10060742
Chicago/Turabian StylePrescher, Hannes, Jill R. Froimson, and Summer E. Hanson. 2023. "Deconstructing Fat to Reverse Radiation Induced Soft Tissue Fibrosis" Bioengineering 10, no. 6: 742. https://doi.org/10.3390/bioengineering10060742
APA StylePrescher, H., Froimson, J. R., & Hanson, S. E. (2023). Deconstructing Fat to Reverse Radiation Induced Soft Tissue Fibrosis. Bioengineering, 10(6), 742. https://doi.org/10.3390/bioengineering10060742